
Mobile TCP socket for secure applications

Vu Truong Thanh, Yoshiyori Urano

Graduate School of Global Information and Telecommunication Studies, Waseda University, Japan
thanhvtr@aoni.waseda.jp, urano@waseda.jp

Abstract— A TCP session uses IP addresses (+ IP port) of both
end points as identifiers. Therefore when a mobile handover to
a new AP that belong to a different subnet/domain, the IP
address will changes and ongoing TCP connections are reset.
Several approaches have been proposed to solve this problem,
and one of which was to modified the TCP/IP stack to update
the changes of the IP address for the ongoing connections [5]
[6]. However, these proposals causes unnecessary processing
when TCP is used in applications which have already employed
some kinds of security measures, such as SIP. This paper
proposes the Mobi Socket, which specifically supports TCP
mobility for intrinsic secure applications without unnecessary
overhead.

Keywords— TCP mobility, secure applications

I. INTRODUCTION
TCP/IP was developed when all network nodes were

stationary, and connection to a network is through cable,
therefore it is unthinkable that a node will move to another
subnet while accessing to the Internet, and the IP address of
an end host is assumed to stay unchanged while a computer
is running. As a result, IP address (together with IP port) is
used as identifiers for TCP session, and the TCP layer at the
end host maintains TCP control blocks (TCBs), which hold
the IP addresses and IP ports of both ends for each TCP
connection to find the right socket for each datagram it
receives from the IP layer.

But with the introduction of wireless access technologies
such as Wi-Fi, it is possible for a mobile node to handover to
a new AP that belong to a different subnet/domain while
actively connecting to the Internet. This causes an IP address
change, and for current implementation of TCP/IP stack, all
ongoing TCP connections are reset. This will cause problem
for long-live TCP sessions.

There are two general approaches to solve the problem of
changing host IP address for TCP session. The first one uses
the split-connection approach, which introduces a fix middle
agent between the mobile host (MH) and correspondent host
(CH) [4]. The connection between CH and MH is broken
into two parts, the fixed part between the CH and the agent
remains unchanged regardless of the position of the MH, and
the TCP connection between the agent and the MH will be
re-established whenever the MH handovers to a new address.
In this sense only the TCP at the MH is affected, while at the

CH the TCP session is not disturbed. The problems of these
approaches are non- transparent end-to-end operation of TCP
session, as well as the requirement of new infrastructure
entities (the middle agent) and triangle overhead.

The other approach modify the TCP stack so that when the
mobile host changes the connection to the internet, the TCP
stacks at both ends preserver the TCP connection and update
the TCBs with the new IP address at both ends accordingly.

In [5], when the MH changes its location, the proposal in [5]
introduced new states to the TCP specification. When the
address of MH changes, MH and CN will exchange
information and update the new IP address accordingly. Both
sides will prepare in advance a share-secret, and use this share-
secret to authenticate each other during the update process.

The proposal in [6] employs a similar concept, but instead of
changing the TCP stack, it uses kernel extensions and a user-
level redirect daemon process (this was the design of the
prototype in BSD). The daemon process will monitor the
wireless network interface for changes of IP address, and if one
is detected, the daemon at the MH will inform the counterpart
at the CH to update the new IP address together. To secure the
update process from malicious acts, MH and CH also need a
share-secret in advance.

The problem with [5] is that both sides has to perform
additional works to exchange a share-secret in advance,
regardless of whether the MH will actually performs the
handover to a new Access Point (AP) or not, or whether the
TCP session lives long enough to experience a handover. The
proposal in [6] relieves this matter by initiating the preparation
process only if the TCP connection exists longer than a
threshold. However, if the MH does not perform a handover,
then all of the preparations for the long-live connections are
wasted.

One more problems with [5] and [6] is that processing the
share-secret for authentication will requires a lot of processing,
which in turn consumes battery power at the MH. If many TCP
connections are used (such as if the user constantly browsing
the Internet) then battery life will be shortened considerably.
Moreover, both [5] and [6] are not applicable in the case where
both ends perform handover simultaneously.

In the next parts of this paper, we propose a new type of
socket called the TCP MobiSocket, that remains connected
even if the concerned IP address changes. It works like normal
TCP socket, but does not get reset when the IP address at either
end changes, and with an additional updateTCB() member
function to update the TCBs with the new address. All of the
security issues that are required to secure the update of the new

address will be handled by the calling applications. This new
socket is dedicated to support mobile TCP session for
intrinsically secure application, without all the above
mentions problems of [5] and [6].

II. DESIGN OF THE MOBISOCKET

Logically, there are two phases when mobile device
handover. First, the Network interface/card disconnects from
the old AP. Then it connects to the new AP. In traditional
TCP stack, the network stack at the MH will close all TCP
connections in cleaning-up activities, as well as reset the
TCBs during these phases.

On the other hand, all of the ongoing MobiSocket will
remain in ESTABLISHED state, when the IP address
changes, waiting to be updated by the application.

We design a new socket that allows the application to
update the change of PoA at both end hosts. The socket is
designed based on the following assumptions/requirements:

- There are cases when the TCP connection needs explicit
handling before communicating using the new IP
address (Re-establishment/update of Security
Association for VPN, sending the PATH message of
RSVP for QoS, etc…)

- The application takes care of security activities
regarding the update of the new address. The reasons for
this are (1) if the connection needs to be secure, the
applications have already shared some kind of security,
and (2) if the connection is not important to the extend
that it requires a shared security association between
both end host, then it might not important enough to be
hacked by others.

- Compatibility with applications using legacy TCP/IP
stack is desired to promote deployment. It means that in
the case the other end does not support the features of
mobile socket, connection will work according to that of
legacy TCP specification.

- Being able to provide handover of TCP session between
different network interfaces of the same mobile device.
The requirement is that not only IP address but change
of TCP port also must be supported, because the same
port of the other network interface might be in used by a
different application at the time of the request for
handover.

The application which uses the MobiSocket will call the
MobiSocket’s updateTCB()member function to update
the TCB with the new destination address.

To satisfy the above requirements, the mobile socket will
provide the following APIs to the applications:

� acvMobi(socket_id)

socket_id: the handler of the socket

¾ The application will call this function to explicitly

activate the mobile feature of the socket

¾ If this function is not called, then the MobiSocket
will work like normal TCP socket

¾ When this function is called, the TCP connection
will not be abolished if the concerned wireless
interface changes to a new IP address

� updateTCB(socket_id, direction, newIPaddress,
newPort)

socket_id: handler of the socket

direction: update the source or the
destination address

newIPaddress, newPort: the new IP address
and new port to update to TCB/PCB (TCP
Control Block/Protocol Control Block). If
the port is 0 then keep the existing port
value

¾ The application will call this function to update the
TCB/PCB (TCP Control Block/Protocol Control
Block) with the new source/destination address and
port

¾ The MobiSocket will start a new congestion control
algorithm called the mobile congestion control

� copyTCB(new_socket_id, old_socket_id)

old_socket_id: handler of the old socket

new_socket_id: handler of the new socket

¾ The application will call this function to update the
TCB/PCB (TCP Control Block/Protocol Control
Block) of the newly created socket with the
information of the old socket. This is used when the
application want to handover from old interface to
new interface.

¾ This function will copy all information of the old
socket (include current states, CWND, AWND,
RTO etc…, except the source IP address and source
Port) to that of the new socket, and then delete the
old socket without sending FIN to the other end (i.e.,
application at the CH).

Apart from the above two new APIs/member functions, the
MobiSocket also introduces two new message, the AddChange
and AddConfirm.

The AddChange contains (1) A shared token between Mobile
Host (MH) and Correspondent Host (CH), (2) the old IP
address and the new IP address encrypted by the private key of
the MH, (3) the new port address and (4) The old IP address of
the MH in plain-text

The AddConfirm contains (1) the shared token between MH
and CH, (2) the new IP address encrypted by the private key of
the CH

If the two messages above are implemented as TCP header
options, then these header options must be sent to the

applications, but currently there is no mechanism to perform
such action. Therefore, it might be better to send this as OOB
(out-of-band) data using the TCP Urgent Pointer.

III. WORKING PROCEDURE OF THE MOBISOCKET
Let’s consider the use of MobiSocket for a SIP application.

Suppose that a TCP connection is established between MH
and CH (the thick, solid line), which have established a SIP
session through the SIP server. The MobiSocket will work as
follows (see figure 1):

- First the application creates the TCP socket for the
SIP session, and calls the acvMobi() to activate the
mobile feature for the socket

- In step ○1 , the MH moves from Subnet 1 to Subnet
2, and in the process its address change from IPaddress1
to IPaddress2

- In step ○2 , the SIP application at the will call the
updateTCB() function to replace IPaddress1 with
IPaddress2 at the TCB table. Then it issues a SIP INFO
message to ask CH update the new IP address of the MH.

- Upon receiving this INFO message in step ○3 , the
SIP application at the CH will authenticate the message
using SIP security associations, and all the
updateTCB() function to replace IPaddress1 with
IPaddress2 at the TCB table.

- Then in step ○4 the SIP application at the CH will
send back the INFO message back the the MH to
confirm the change of address. Note that both INFO
messages may contain other parameters of the concerned
TCP session, such as new window size, MSS etc…

- CH and MH will start sending data using the TCP
connection when they receives the INFO message from
the other end, and they will start receiving data after
they send the INFO message to the other end.

Figure 1. Working procedure of the MobiSocket

IV. DISCUSSION AND OPTIMIZATION
The merits of the MobiSocket are:
� Inherit intrinsic security feature of SIP
� Less processing overhead for security issues

(conserve power)
� Depending on the security requirements, the

application can decide whether to allow the
handover of TCP connection

� More suitable for application with strict security
requirements

� Still work when both ends handover simultaneously
� Reach-ability through SIP Registration

functionality
We can further optimize the operation of the MobiSocket as

follows:
- When the MN receives the INFO message from CN, both

ends might already time out (due to handover, NOT due to
congestion), so even if the TCB is updated, no data
exchange is possible until the time out is over (can be very
long). We can provide a new function to reset the timer
after the updateTCB() function, which is the
resetTimer(socket_id). This function will reset the TCP
socket to the state as if it has just received a data/ACK
packet from the other machine

- Furthermore, if SIP proxy is used, then normally the MN
has to finish re-Registration with the SIP proxy first before
it can send SIP INFO message to the other end. This
creates further delay for the TCP session. To solve this, we
note that the MN and CN can share public key with each
other during the initial INVITE process, therefore after the
MN handover to a new IP address, it can use the public
key of the CN to send the SIP INFO message to the CN
right away. However, this solution cannot be used if both
ends handover simultaneously (therefore they do not know
the IP address of each other), in this case they must contact
through SIP proxy server (after the re-Registration
process)

V. CONCLUSION
In this paper we propose the MobiSocket to support TCP

mobility for secure application such as SIP. This socket causes
no overhead if handover does not take place like previous
proposal, and moreover it still works when both side handover
simultaneously.

In this socket, there is no need for per-TCP connection
authentication, because the authentication is left to application.
Depending on the real situation, the application can also control
whether to keep the TCP session or not, which is more
appropriate for application which is applied with other
application level constrains such as security and QoS policy …

In the future, we would like to carry out the implementation
of the MobiSocket to confirm the design of the system, as well
as to measure the delay and throughput parameter when the
resetTimer() function is (1) called and (2) not called, and
compare the results with that of [5] and [6]. We also would like
to measure the delay in the case of SIP application, when we
send the INFO message before and after re-Registration, as
well as when two end hosts handoff together

We also plan to update the proposal in [1] with this new
MobiSocket.

REFERENCES
[1] Vu Truong Thanh, Yoshiyori Urano, “Agent based LLMA handover scheme

for SIP communication – The case for UDP traffic", The 11th International
Conference on Advanced Communication Technology (ICACT), Feb. 2009

[2] C. Perkins, “IP Mobility Support for IPv4”, Request for Comments:
3344, IETF, August 2002

[3] Huei-Wen Ferng et. al, “A SIP-Based Mobility Management
Architecture Supporting TCP with Handover Optimization”, Proc. of
Vehicular Technology Conference, pp. 1224-1228, Apr. 2007

[4] Milind Buddhikot et. al, “MobileNAT: a new technique for mobility
across heterogeneous address spaces”, Proc. the 1st ACM international
workshop on Wireless mobile applications and services on WLAN
hotspot, pp. 75-84, Sept., 2003

[5] FUNATO D., “TCP-R: TCP mobility support for continuous operation”,
Proc. IEEE International Conference on Network Protocols, pp. 229 -236
,Oct. 1997

[6] Vassilis Prevelakis and Sotiris Ioannidis, “Preserving TCP Connections
Across Host Address Changes”, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 299-310 Oct., 2006

[7] Rosenberg, et. al., “Session Initiation Protocol”, Request for Comments:
3261, IETF June 2002

[8] D. Yon et. al, “TCP-Based Media Transport in the Session Description
Protocol (SDP)”, Request for Comments: 4145, IETF, September 2005

