
Mobile Component Runtime Environment for
Mobile Devices

Minhong Yun, Seokjin Yoon, Sunja Kim
*Electronics and Telecommunications Research Institute

138 Gajeonro, Yuseong-gu, Daejeon, South Korea
{mhyun, sjyuun, sunjakim}etri.re.kr

Abstract— The evolution of software must be concurred with
that of hardware to provide users with best services. Despite of
currently prominent evolution of hardware, lazy evolution of
software prohibits users from utilizing full capabilities of
mobile devices. So our institute is developing a mobile
component runtime environment which can extend and
optimize platform capabilities. It makes it possible that software
platform can be extended automatically and reduce software
platform upgrade and reorganizing issues. To achieve the goal
of the mobile component runtime environment our component
model supports two different types of components. One is in-
process component, and the other is out-of-process component.
Various and beneficial services are expected using the two types
of components. The mobile component runtime environment
includes component runtime engine and out-of-process
component runtime engine to run the two types of components.
To enhance the accessibility to our-of-process components, the
mobile component runtime environment uses light-weight RPC
for inter-process communication mechanism. And it enables
Java applications to access C/C++ components.

Keywords— Mobile Platform, Mobile Component

I. INTRODUCTION
Mobile devices have been evolved in hardware and

software sides, and currently with the growth of smarphone
users mobile devices face new challenges [1]. Cellular
phones which have evolved into smartphone via vanilla
phone and feature phone are trying to meet users’ needs that
users want various applications and services. The needs of

users’ exceed specialized features such as multimedia playback.
These are needs for applications and services that are useful for
wide-range area from game to mobile office. Smartphone, one
of the best known mobile devices, has progressed a lot in both
sides of hardware and software to provide users with various
applications and services. Most prominent progress in hardware
side is instalment of another application processor to process
applications. Before installing extra processor for applications,
baseband processor which is made for processing radio
frequency and data/voice communication was used for
processing all kinds of applications. Current smartphones
provide various applications with connecting baseband
processor to applications processor. MMU is also biggest
progress in hardware side. Using MMU makes phones install
general purpose OS such as Windows Mobile and Linux.

Installing application processor on phone causes hardware
changes and it also requires alternation of software [1]. The
requirement for alternation of software is mainly resulted from
in-stalling general purpose OS. Before installing general
purpose OS, phones adopt some middleware platforms such as
Wireless Internet Platform for Interoperability (WIPI) [2],
Binary Environment for Wireless (BREW) [3], Java VM and
etc to enable applications to be executed. In contrast to vanilla
and feature phones, smartphones that install general purpose
OS with MMU are able to run various applications without
middleware platforms. Since 2003, our research institute is
perpetually researching and developing software platform
based on embedded Linux. Now according to the recognition of
requirements for new software platform architecture to support
hardware progress, our research institute is researching and

Figure 1. Architecture of Mobile Component Runtime Environment

developing mobile component runtime environment to meet
the requirements. The mobile component runtime
environment will be introduced and discussed in this paper.

II. MOBILE COMPONENT RUNTIME ENVIRONMENT
The mobile component runtime environment consists of

three major parts; component runtime engine, out-of-process
component runtime engine, and light-weight RPC.

Component runtime engine has two major roles. The first
one is to provide applications or services with transparent
accessibility to mobile components. It enables applications
and services not to care about mobile component types. The
second major role of the component runtime engine is to run
and manage in-process components. It loads appropriate
components into applications’ memory, returns interfaces,
releases interfaces, and unloads components from memory.

Out-of-process component runtime engine has two major
jobs, too. The first one is to run and manage out-of-process
components. Similarly to component runtime engine it loads
appropriate out-of-process components, returns interfaces,
releases interfaces, and unloads out-of-process components
from memory.

The last important element of the mobile component
runtime environment is light-weight RPC. Because out-of-
process components run in different address space from
those of applications or services, there should be a way to
access components running in different address space. Light-
weight RPC gives a way for applications to access out-of-
process components. With the light-weight RPC applications
can transparently use capabilities of out-of-process
components which are located in different address spaces.

We will discuss the above three parts and other subsystem
parts in this section.

 COM EJB .Net CORBA Mobile

Component
In-Process O O O O O

Out-of-process O O O X O
Remote O O O O X

Multi-thread O O O O O
Multi-language O X O O O

Figure 2. Mobile Component and Related Systems

A. Mobile Component Runtime Environment Overview
The mobile component runtime environment looks similar

to Microsoft .Net Framework [9], Microsoft Component
Object Model (COM) [8], Object Management Group’s
Common Object Request Broker Architecture (CORBA)
[4][5][6], and Sun Microsystems’ Enterprise JavaBeans (EJB)
[7]. But the mobile component runtime environment
considers mobile environment from design phase. There is
also other distinction that the mobile component runtime
environment intends platform independence and provides
light-weight RPC for inter-process communications.

In Figure 2, the mobile component runtime environment
and other related systems are compared. Mobile component
runtime environment does not support remote components
which are in different devices, but local components in the

same device. Supporting remote components is intentionally
avoided, because it is expected that accessing remote
component in mobile environment is rare according to our
experience. Many applications run on mobile phones are made
in Java language, so mobile component runtime environment is
designed to support Java applications.

As shown in Figure 2, the mobile component runtime
environment supports in-process components and out-of-
process components and includes component runtime engine,
out-of-process (OOP) component runtime engine, light-weight
RPC (LRPC), com.institute.Component, message relay server,
repository, registry, and component monitor.

We will discuss each part of the mobile component runtime
environment in this section.

B. Component Types: In-process and Out-of-process
Component

There exist two component types as shown in Figure 2. One
is in-process component type and the other is our-of-process
component type. “Square” in the figure is in-process type
component, and “Square (OOP)” in the figure is out-of-process
type component. These are classified by the memory location
where they are executed.

In-process type components run at the same address spaces
as applications using the components. When different
applications use a component, each application loads its own
component instance into its own address space. In other words,
there will be multiple component instances in memory.
Because in-process components are loaded and run in the same
address spaces as those of applications, it is relatively easy and
quick to communicate between component and application.
Even if multiple applications use a component it is not
necessary to consider concurrency issues, because each
application has its own component instance. However, in-
process components can be loaded and executed only when
applications are running. And if an application using a
component ends, the component ends too. In other words,
component’s life cycle can’t exceed that of application using it.

However, out-of-process type components run at the
different address space from those of applications using the
components. Because out-of-process components and
applications run at different address spaces, to access and use
out-of-process components applications need way to transmit
and receive data from and to them. In the mobile component
runtime environment, light-weight RPC has been adopted for
IPC mechanism to address the problem. Out-of-process type
components take more execution time owing to the IPC latency.
However, out-of-process type components can save memory
spaces. When different applications use a component, there will
be only one component instance in memory. If an application
first uses a component, the component is loaded in the address
space of out-of-process component runtime engine. And when
another application uses the component, the component in the
address space of out-of-process component runtime engine is
referenced. Details of the out-of-process component runtime
engine will be discussed latter in this section. In other words,
different applications share a component. It avoids redundant
component interfaces, and saves memory spaces in mobile

environment. Because different applications share a
component, each out-of-process component must consider
about concurrency to avoid data loss or collision. It may
increase the complexity of components. However, out-of-
process type components have strong point that components’
life cycles do not belong to those of applications. An out-of-
process type component doesn’t need to end even if there is
no application using the component. Because out-of-process
components can determine their own life cycles, even though
all applications end, theses can run on the out-of-process
component runtime engine and process jobs. This feature of
out-of-process type components enables various services and
background processing.

C. Component and Interface
In mobile component runtime environment, component is

a binary chunk. And each component can have one or more
interfaces. Applications cannot use the components directly.
They should use interfaces to access components. For
example, a component providing math capabilities can have
two different interfaces; “math” interface for normal math
capabilities and “mathEx” for complicated and high
resolution math capabilities. To utilize the capabilities of
mathematics application should use one of the interfaces.

It is also possible that a component can have two different
versions of interfaces, and it is a good way to use
components and interfaces. In Figure 3, there is a Multimedia
Messaging Service (MMS) component with two different
interfaces. Interface MMS 1.0 can only handle SMIL 1.0 and
interface MMS 2.0 can only handle SMIL 2.0 [10]. The
component provides two versions of interfaces for the
purpose of backward compatibility. And applications can
access the appropriate interfaces to process MMS documents.

Each interface uses UUID for its ID. The UUID consists
of 128 bits, and correct way to construct the ID is described
in RFC 4122 [11], ITU-T Rec. X.667 [12] and ISO/IEC
11578:1996 [13]. It can be easily generated using many tools.
Some web site provides web-based UUID generator. For
Linux system, there is a library called libuuid which is easy
to use, and Microsoft provides GUID generator [14], too.

D. Component Runtime Engine
Component runtime engine provides applications with

transparent accessibility to in-process type components and
out-of-process type components, and loads in-process
components into applications’ own address spaces which use
the components.

In-process type components and out-of-process type
components have different life cycles and behaviours. However,
applications can access two different types of components
using same way. By providing applications with transparent
accessibility, the types of components used by applications can
be disregarded.

 When an application queries an interface for using an in-
process type component, component runtime engine first looks
up component registry to find the location where the
component locates. Then, the component runtime engine loads
the component into the address space of the application. It
returns the interface that the applications queried, and increase
reference counter of the inter-face. If the application using the
component requires one more same interface, the component
runtime engine does not load another component into memory,
but increases reference counter of the interface and returns the
same interface. When application does not want to use the
interface any more, it tells the component runtime engine to
release the interface. The component runtime engine decreases
the reference counter of the interface. And once reference
counter reaches zero, the component is moved to unload
candidate list. Before unloading the component from memory,
the component runtime engine keeps it for a while according to
the policy of the component runtime environment. Now the
policy is mixed one of LRU and time. If the application queries
an interface in a component which is in unload candidate list,
the component runtime engine just uses the loaded component.

E. Out-of-process Component Runtime Engine
Out-of-process component runtime engine is responsible for

executing and controlling out-of-process components. It loads
out-of-process components into the address space of out-of-
process component runtime engine, and runs them. There exists
only one out-of-process component runtime engine in a mobile
device. Therefore, all components are loaded into the address
space of the out-of-process component runtime engine.

Figure 4 shows detailed behaviour of the out-of-process
component runtime engine and an out-of-process component.
In the figure, there is a calculator application that uses Square
component which is out-of-process type. A stub component is
in the address space of the application. The stub component
works only for inter-process communication with light-weight
RPC. It does not provide any operation about square. The
applications using an out-of-process component can have
transparent access to the out-of-process component with the
stub component.

When an application queries an interface for using an out-of-
process type component, component runtime engine first looks
up component registry to find the location where the
component exists. After searching the component from the
registry, the component runtime engine recognizes that the

Figure 4. Out-of-process Component Behavior

Figure 3. Component with Multiple Interfaces

requested component is out-of-process type. Then, the
component runtime engine loads an appropriate stub
component into the address space of the application, and
send a message to out-of-process component runtime engine
to make the requested component get ready to work. Finally
the component runtime engine receives a message notifying
that the out-of-process component is ready, and establishes
the connection between the stub component and the out-of-
process component using light-weight PRC. After all
preparation to use out-of-process component is completed,
the component runtime engine returns the queried interface
of the stub component to the application. Now, the
application can access the out-of-process component.

The application doesn’t need to care about the inter-
process communication mechanism. It doesn’t even need to
know the type of the component it wants to use. All
components have only one type to the application. The
application accesses the component capabilities though light-
weight RPC. The application just uses the interface of the
stub component, and then the stub component process all
thing about light-weight RPC.

If an application using a component queries the same
interface again, the component runtime engine increase the
reference counter of stub interface. The out-of-process
component runtime engine doesn’t do anything to out-of-
process component. The reference counter of the out-of-
process component does not change. However, when another
application queries the same interface, the component
runtime engine loads a new stub component instance into the
address space of the application and sends a message to the
out-of-process component runtime engine to increase the
reference counter of the out-of-process component. In other
words, if there are multiple applications which are using a
same out-of-process component, there will be multiple
instances of the stub component and only one out-of-process
component of which reference counter is same as the number
of the applications using the out-of-process component. For
example, if five applications are using a out-of-process
component, there will be five sub component instances in
each application’s address space and only one out-of-process
component will be loaded into the address space of the out-
of-process runtime engine. And the reference counter of the
out-of-process component will be five.

Because releasing and unloading of stub components in
applications’ address spaces is same to those of in-process
components, please refer the previous section. When a stub
component is un-loaded from the unload candidate list,
component runtime engine sends out-of-process component
runtime engine a message to decrease the reference counter
of out-of-process component. If all stub components related
to an out-of-process component are un-loaded, the reference
counter of the out-of-process component becomes zero and
the out-of-process component is moved into unload
candidate list of out-of-process component runtime engine.
Like component runtime engine, the out-of-process
component runtime engine keeps the out-of-process
component for a while before unloading from memory. If an

application queries an inter-face in a component which is in the
unload candidate list, the out-of-process component runtime
engine just uses it, not loads a new instance into memory.

In Figure 2 and Figure 4, OOP Component Status Server and
IP Component Status Relay Server are shown. The OOP
Component Status Server reports status changes of out-of-
process components, and the IP Component Status Relay
Server relays status changes of in-process components.
Because these two are not important parts of mobile component
runtime system, detailed descriptions are omitted.

F. Light-weight RPC
Inter-process communication mechanism is necessary for an

application to communicate with out-of-process components
[15][16]. To achieve the goal which makes applications to
communicate with components in standardized method,
Microsoft’s RPC[17], Sun Microsystems’ RPC [18], Java
Remote Method Invoca-tion (RMI) [19], and CORBA ORB [6]
have been surveyed. In the mobile component runtime
environment, light-weight RPC has been made by modifying
Sun Microsystems RPC. In Figure 6. Mobile Component and
Related Systems, the light-weight RPC and related RPC
systems are compared.

 SUN

RPC
MS
RPC

Java
RMI CORBA Light-

weight RPC
Local
RPC

TCP
UDP IPC TCP

UDP
TCP
UDP IPC

Async. RPC X O X X O
User Defined
Marshaling X O O X O

Language C/C++ C/C++ Java C/C++
Java C/C++

Multiple
Languages X X X O X

Figure 6. Mobile Component and Related Systems

The light-weight RPC has been designed with considering
compatibility with Sun RPC. Adding a new API to Sun RPC is
avoided, and only a new protocol parameter has been added to
support compatibility with Sun RPC. In other words, existing
applications using Sun RPC can run without using light-weight
RPC. The prototype of clnt_create() which is a part of Sun RPC
and initializes Sun RPC system is shown in Figure 8. The last
parameter used in this function, nettype, is for determining the
way how to communicate. Sun RPC supports only “TCP” and
“UDP” for this parameter. “IPC” is added for the last parameter
in light-weight RPC. In other words, applications which want

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

E
la

ps
 T

im
e

(m
s)

Transfered Data (MB)

RPC without Shared Memory RPC with Shared Memory

Figure 5. Transfering Data with and without Shared Memory.

to use the light-weight RPC instead of Sun RPC can use the
light-weight RPC by passing “IPC” through this parameter.

CLIENT* clnt_create (const char*
hostname, const u_long prognum, const
u_long versnum, const char* nettype);

Figure 8. The Prototype of clnt_create()

The light-weight RPC has three major features. The first
one is that the light-weight RPC can transfer massive data
very fast using shared memory. The light-weight RPC
supports both message queue and shared memory. When
shared memory is used for transferring data, the light-weight
RPC only transfer the information about shared memory, and
the massive data are transferred through shared memory.
Using shared memory to exchange massive data reduces time
required for sending and receiving data. Figure 6 shows the
way how the light-weight RPC uses shared memory to
transfer massive data. As shown in the figure, information
about the shared memory is exchanged through message
queue, and massive data are exchanged using shared memory.

The second feature is that it supports asynchronous
communications, whereas Sun RPC provides ways for
synchronous communications. Through support of the
asynchronous communications, out-of-process components
have flexibility to provide various services.

The last feature is that the light-weight RPC supports user
de-fined marshalling and demarshalling. If there are data
which should be marshaled or demarshaled manually,
components can register special handlers to process the data.
The handlers are invoked before transferring data or after
receiving data for components to process the data manually.
It gives flexibility to the mobile component runtime
environment, and helps to provide more various services.

Figure 6 is a graph to show time needed to transfer data
with and without shared memory. The data size is 33
megabytes. It takes 7728 ms to transfer 33MB data without
shared memory, and takes 3196 ms to transfer the same data
with shared memory. So, it takes more than twice to transfer
massive data without shared memory which is the way for
Sun RPC to transfer data. Equipment used for the test
includes 2.80 GHz Intel Pentium 4 processor and 512MB
main memory. The operating system is Fedora Core 9 with
Linux kernel 2.6.25.

G. File Structure for In-process and Out-of-process
Components

Two types of components are made by different sequence.
Making an in-process component starts from creating an IDL
file. Once an interface is defined in IDL file, the IDL file is
compiled into a .h file and a .c file.

Figure 9 shows how an IDL file becomes a component
binary with an interface. Suppose that we are making Square
component with Square interface in in-process component type.
The first two files, uuid.h and square.idl, are made by hand.
The uuid.h file contains interface UUID and the square.idl
includes definition of Square interface. These two files are
compiled into two source codes; squareServer.h and
squaerServer.c. The two skeleton codes have the right form to
be run on component runtime environment. Editing
squareServer.c to add some codes to calculate square is the
only one we should do. After inserting codes, Square
component with Square interface can be built.

Making an out-of-process component starts from creating a
RPC specification file. Once an interface is defined in a RPC
specification file, the RPC specification file is converted into
some .h files and .c files.

Figure 10 shows how a RPC specification file becomes two
component binaries with interfaces. Suppose that we are
making Square component with Square interface in out-of-
process component type. Like in the case of making an in-
process component, the first two files, uuid.h and square.idl,
are made by hand. The uuid.h file contains interface UUID, and
the square.x file includes RPC specification in RFC 1831 [20]
form. These two files are used by the new rpcgen. The new
rpcgen is based on Sun rpcgen. In the figure, four files
(square_clnt.c, square_svc.c, square.h, and square_xdr.c) in
boxes with dotted line are generated by original rpcgen, but
three files (squaerClien.c, squareServer.c, and square-Server.h)
in boxes with solid line are generated by the new rpcgen. The

Figure 9. From RPC Specification File to Component Binaries

Figure 7. From IDL File to Component Binary

Figure 10. Light-weight RPC Using Shared Memory

three files in common section in the figure are used for client
and server. The two files in client section in the figure are
used to build a stub component which is the same one of that
of Figure 2 and Figure 4. The two files in server section in
the figure is used to build Square component which is the
out-of-process component. Editing the squareServer.c file in
the server section to add some code to calculate square is the
only one we should do by hand. In summary, the new rpcgen
generates source codes for stub component and out-of-
process component from RPC specification file and only one
file is needed to be edited.

H. Supporting Java Applications
The needs of supporting Java applications in the mobile

component runtime environment are from mobile industry.
To reuse current Java applications in the mobile component
runtime environment, mobile companies request the mobile
component runtime environment to support Java applications.
A method using message relay server is used instead of using
JNI and etc to provide independence from Java VM.

Figure 11 shows details of the message relay server which
is the same one of Figure 2. The message relay server and the
component runtime engine run on C/C++ area. There exists
only one message relay server in a mobile device, which
interacts with com.institute.Component class. Java
applications use com.institute.Component class to access
C/C++ components. If a Java application wants to access
C/C++ component, it create com.institute.Component class
with interface UUID. The com.institute.Component sends a
message to the message relay server to load an appropriate
component into memory. After the message relay server
loads the component, the com.institute.Component class
returns a class instance which is used to access the loaded
C/C++ component. From now on, the Java application can
access the C/C++ component using com.institute.Component
instance. When the Java application wants to use C/C++
component, it passes method name and parameters to the
com.institute.Component instance. Then, the
com.institute.Component instance sends the message relay
server a message to invoke the method.

Because the message relay server doesn’t know which
method will be called in runtime, there should be a general
way to call arbitrary methods with different parameters. In
the mobile com-ponent runtime environment, the message
relay server manipulates stack and registers to solve the

problem. Before calling a method, the message relay server
copies all parameters into appropriate registers and stack. Then,
call the method with no parameter. Because all parameters have
been copied into right locations, the method can use all the
parameters well.

III. CONCLUSION AND FUTURE WORKS
It is pretty sure that the evolution of mobile device hardware

enables users to get various services. One of the current trends
of smartphones is related to full touch screen with larger LCD.
The large LCD makes full-browsing and multimedia playback
more effective and easier. However, there is an opinion that it
is based on partial evolution of software, not whole evolution
of software, and the partial evolution is attributed to the
evolution of hardware. So, to utilize the advanced hardware
fully it is necessary to develop a software platform to support it.

So our institute is researching and developing a mobile
middleware platform based on the mobile component runtime
environment, and core implementations including light-weight
RPC, component runtime environment are completed. The
mobile component runtime environment is designed to support
operating system independence and multi-language for the
compatibility with Java applications.

The remained jobs include implementing peripheral parts
and deploying the mobile component runtime environment onto
real mobile devices. The target devices include Nokia N810
and Linux smartphone we have made before.

REFERENCES
[1] J.E.Yu. Key Enabler of Smartphone: Software, SW Insight, April 2009,

p5-35
[2] WIPI Official Site, http://www.wipi.or.kr
[3] BREW Official Site, http://brew.qualcomm.com
[4] Michi Henning and Steve Vinoski. Advanced CORBA Programming

with C++ First edition, Addison Wesley, 1999
[5] Randdy Otte, Paul Patrick and Mark Roy. Understanding CORBA,

Prentice Hall, Inc., 1996
[6] Introduction to CORBA,

http://java.sun.com/developer/onlineTraining/corba/corba.html
[7] Kung-Kiu and Zheng Wang. Software component models, IEEE

Transactions on software engineering, Vol 33, No. 10, October 2007
[8] John Cadman. Waite Group's COM/DCOM Primer Plus, Sams, Nov.

1998
[9] Microsoft. Microsoft .NET Framework Reviewers Guide, Microsoft

Corporation, Feb. 2002.
[10] W3C. Synchronized Multimedia, http://www.w3.org/AudioVideo/, Dec

2008
[11] P. Leach, M. Mealling, R. Salz. A Universally Unique IDentifier (UUID)

URN Namespace, http://www.ietf.org/rfc/rfc4122.txt, July 2005
[12] Object Identifiers (OID) and Registration Authorities Recommendations,

http://www.itu.int/ITU-T/studygroups/com17/oid.html, April 2009
[13] Information technology -- Open Systems Interconnection -- Remote

Procedure Call (RPC),
http://www.iso.org/iso/catalogue_detail.htm?csnumber=2229

[14] Create GUID (guidgen.exe),
http://msdn.microsoft.com/en-us/library/ms241442(VS.80).aspx, 2009

[15] John Bloomer. Power Programming with RPC, O’Reilly & Associates,
Inc., February 1992

[16] W. Richard Stevens. UNIX network programming: Interprocess
Communications, Volume 2, Second edition, Prentice Hall, Inc., 1999

[17] Remote Procedure Call (Windows), http://msdn.microsoft.com
[18] Remote Procedure Call (RPC), http://docs.sun.com
[19] The Java Tutorials: RMI, http://java.sun.com/docs/books/tutorial/rmi
[20] RPC: Remote Procedure Call Protocol Specification Version 2,

http://tools.ietf.org/html/rfc1831 Figure 11. C/C++ Component and Java Applications

