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Abstract—The richness and effectiveness of client-side vulner-
abilities contributed to an accelerated shift toward client-side
Web attacks. In order to understand the volume and nature of
such malicious Web pages, we perform a detailed analysis of a
subset of top visited Web sites using Google Trends. Our study
is limited to the Arabic content in the Web and thus only the top
Arabic searching terms are considered. To carry out this study,
we analyze more than 7,000 distinct domain names by traversing
all the visible pages within each domain. To identify different
types of suspected phishing and malware pages, we use the API
of Sucuri SiteCheck, McAfee SiteAdvisor, Google Safe Browsing,
Norton, and AVG website scanners. The study shows the existence
of malicious contents across a variety of types of Web pages. The
results indicate that a significant number of these sites carry some
known malware, are in a blacklisting status, or have some out-
of-date software. Throughout our analysis, we characterize the
impact of the detected malware families and speculate as to how
the reported positive Web servers got infected.

Index Terms—Malware, Malicious links, Web spam, Search
engine spam, Web vulnerabilities

I. INTRODUCTION

As the Web is increasingly becoming a crucial medium
for industries and businesses such as banking and govern-
ment, there is a drastic evolution in the for-profit Web-based
malware. A typical attack starts with the user visiting a
malicious Web page that either tempts the user to execute
some driveby downloads or exploits a vulnerability in the
Web browsers or a browser plug-in (e.g., Flash, Java and PDF
viewers). The exploit could then execute a malicious binary
to turn the host into a bot controlled by the adversary. Various
types of monetization vectors can be utilized by adversaries
such as spamming, clickfraud, dropping, browser hijacking,
information stealing and fake software. Prior studies show
that driveby downloads that target browser and browser plug-
in vulnerabilities to install malware now represent the largest
threat to end users [10]. The success of driveby downloads
led to the spread of exploit kits that facilitate compromising
the visiting hosts of a malicious page by providing a set of
browser exploits [4].

It is important to note that most malicious Web servers are
not owned by adversaries but are rather exploited by adver-
saries who either: (i) scan the Web servers over the Internet
for some particular vulnerabilities that are then exploited to
host some malicious pages [6]; (ii) embed their malicious code
into some third-party Web controls (e.g., ad rotator, calender,

ISBN 978-89-968650-0-1

173

AbdulMalik Al-Salman
Computer Science Department,
King Saud University, Riyadh, KSA

salman@ksu.edu.sa

and hit counters) that are utilized by some Web developers;
or (iii) use online advertisements for propagating malware
(e.g., scamming and click frauds) [8]. While it is expected
that developers should only use JavaScript from trustworthy
vendors, not just that this is not usually the case, but it is
also possible that some trustworthy JavaScript libraries get
compromised [9].

For simplicity, adversaries usually link or redirect their
compromised pages to a fewer number of malicious pages.
Also, given that adversaries usually utilize some known Web
exploit toolkits and use automation to accelerate their work
process, there are some similarities between malicious pages
on different sites [5].

For detecting malicious Web pages, low- and high-
interaction honeyclients (e.g., Capture-HPC [11]) can be used
to detect malicious content [3, 12]. To focus the examination
of Web pages in the wild for malicious content, a number of
heuristics can guide the search so that only the pages that are
more likely to contain malicious content are analyzed [2]. New
approaches include leveraging a seed of known, malicious Web
pages to extract the similarities that these pages share. These
similarities are then leveraged using search engines to find
similar malicious characteristics in other pages [5].

Given the recent spike in the malicious Web activity in the
middle east region [7] and that literature lacks any quantitative
study pertaining the status of malicious Arabic Web content,
we perform an analysis study of a subset of top visited
Arabic Web sites. In this work, we analyze more than 7,000
distinct domain names by traversing all the visible pages
within each domain. We use the API of Sucuri SiteCheck,
McAfee SiteAdvisor, Google Safe Browsing, Norton, and
Sophos (using Yandex service) website scanners to detect
malicious Web pages in the inspected domains.

Our results show that there are a variety of malicious Web
pages across many inspected domains of Arabic content. In
addition to the existence of some known malicious binaries,
many inspected Web site were found blacklisted by AV ven-
dors. We also characterize the impact of the detected malware
families and speculate as to how the reported positive Web
servers got infected.

Organization. Section II describes the collection process and
the malware classification methodology. Section III presents
the results and analysis of the examined Web pages. Section IV
provides further discussion and concluding remarks.
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Fig. 1. The number of URLs per category.

II. SETUP AND METHODOLOGY

For locating and examining malicious Web pages in the
Arabic domains, a two-step process is followed. First, we
collect the top Arabic search terms from Google Trends for
the period between January 2004 and October 2012. Google
Trends classifies the search terms into 16 categories'. We have
also created a new category (called “others”) of some random
Arabic words, to not be limited to Google Trends top search
terms. Figure 1 shows the distribution of the Arabic search
terms among the 16 categories. Figure 2 shows the number of
search terms per category. The collected search terms (more
than 7,507 distinct domain names) are then used to query
Google search engine and gather the top 50 pages of search
results (only the URLs of the results are stored).

In the second phase, every URL is scanned against six
website scanners of some known AV vendors: (1) Sucuri
SiteCheck; (2) McAfee SiteAdvisor; (3) Google Safe Brows-
ing; (4) Norton; and (5) Sophos (using Yandex ranking). The
website scanners examine every visible page in the whole
domain of an URL. The scanning results of every URL is then
stored into a MySQL database for both the reported positive
and negative samples. Given the low number of detected
malicious pages using (3), we omit the detection results of
Google Safe Browsing. Figure 3 shows our process pipeline
for locating and examining Web pages in the Arabic domains.

lCategory refers to verticals; i.e., a classification of industries or mar-
kets [1]. The 16 categories are: arts and entertainment, autos and vehicles,
beauty and fitness, books and literature, business and industrial, computers and
electronics, finance, food and drink, games, health, hobbies and leisure, home
and garden, Internet and telecom, jobs and education, law and government,
news, online communities, people and society, pets and animals, real estate,
reference, science, shopping, sports, and travel.
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Fig. 2. The number of search terms per category.
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III. RESULTS AND ANALYSIS

As discussed in Section II, the second phase of the process
is to examine each Web site using different Web scanners. In
this section, we analyse the detection rate of each Web scanner
and correlate between them.

Figure 4 shows the detection percentage of reported positive
URLSs for each Web scanner (note that the URL is classified
as malicious if any other page within the URL domain is clas-
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The distribution of reported positive URLs among Google Trends categories.

sified as malicious). We note that McAfee SiteAdvisor scored
the highest detection rate among the other Web scanners.

To understand the distribution of reported positive URLSs
among Google Trends categories, in Figure 5, we show the
distribution in a radar chart. Note that shopping, games,
and Internet and telecom categories have more than 8% of
blacklisted Web pages, perhaps because these categories are
expected to represent a larger sector of users (e.g., relatively
young audience) and thus are targeted by adversaries.

Figure 6 divides the flagged Web links into one of three
classes: (i) sites that carry some known malware; (ii) sites that
are in a blacklisting status; (iii) sites that have some out-of-date
software, and (iv) sites that have no known malicious content.
In Figure 7, we see that news, shopping, and travel categories
score the highest for classes (i), (ii), and (iii), respectively. We
note here that class (i) is directly proportional to class (iii), as
once an unpatched version of a vulnerable software exists in a
host, the host is vulnerable to a variety of malware that can be
installed. Also, we note that class (ii) in Figure 6 is similar to
the number of reported positive by Norton in the radar chart
in Figure 5, which shows the type of flagged URLs by Norton
Web scanner.

Figure 8 shows the percentage of clean URLSs (i.e., sites that
have no known malicious content) for every category. While
job and education, home and garden, and health are the highest
three categories (i.e., most clean), reference, shopping, and
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Fig. 10. Classifying URLs according to 4 classes: site error, known malicious
JavaScript, suspicious domain, and hidden iframe.

news are the lowest three categories.

In Figure 10 shows different criteria for classifying URLs:
(1) hidden iframe is founded; (ii) known malicious JavaScript is
found; (iii) the domain is found suspicious; (iv) some errors
are found in the site. One observation is that the sites with
known malicious JavaScript represent 66% of the sites that
carry some known malware (see Figure 7). In Figure 9, we
show the distribution of the above criteria among the different
categories.
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IV. CONCLUSION

The fact that Google removes malicious Web sites from top
search results explains why Google Safe Browsing reports only
few malicious links in our datasets. However, this preliminary
study shows that Google search engine removes only a portion
of reported malicious Web sites by the Web scanners of other
AV vendors. Also, we find out that the distribution of the
blacklisted sites and the sites with malware vary according to
the subject of the Web site content. We emphasize that the
study in this paper is preliminary as it only gives a snapshot
of the current status of the Arabic content in the Web, and
that further work in this area is required.

Avenues for future work include: (i) studying a larger
sample space using different methods for gathering search
terms; (ii) repeating the study using other search engines; and
(iii) characterizing the impact of the detected malware families
in further details and understanding how the malicious Web
servers got infected. Given that Arabic Web spam is another
area that lacks any quantitative studies, we also plan to collect
a dataset of Arabic Web spam pages, study the used spam
techniques, and examine the effectiveness of search engines
in filtering out these spam pages.
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