Analysis of M/M/1 Queuing model of Reservation Management for Media Gateway Controller

Pedram Hajipour, Nahid Amani, Farzaneh Seyedmostafaei,
Iran Telecommunication Research Center, Tehran, Iran

E-mail: (pedramhajipour@gmail.com,n_amani@itrc.ac.ir,farzaneh_60@yahoo.com.)

Abstract

In recent years, Internet Protocol (IP) telephony has become a good alternative to the traditional Public Switched Telephone Networks (PSTN). IP telephony offers more flexibility in the implementation of new features and services. The Media Gateway Controller (MEGACO) is becoming a popular signaling protocol for Voice over IP (VoIP) based applications. This paper analyzes performance of MEGACO model (Media Gateway Controller for Telephones) based on COPS (Common Open Policy Server) which is a protocol defined in IETF (Internet Engineering Task Force) to transport configuration requests and deliver the policies. There is a basic “request <> response” protocol for the policy and information exchange, the COPS protocol buffer can be divided into three distinct conceptual layers: basic protocol, directives depending on the customer type and the representation of the policy data; moreover, MGC provides call control function of MG (Media Gateway) to set up, tear down and manage VoIP calls in carrier class VoIP network. In this paper, we simulated the M/M/1 performance model of the Media Gateway Controller and studied some of the key performance benchmarks response time to process the MEGACO calls and mean number of MEGACO calls in the system; therefore, we have used these criteria by queuing theory. Numbers of jobs based on variation service rate are presented beside some numerical examples of call setup time based on variation service rate.

Keywords: MEGACO, COPS, Media Gateway, Media Gateway Controller, M/M/1, Performance

1. Introduction

Voice over IP (VoIP) technology is currently finding its way into telecommunication market. It enables a telecommunication company to cut down its costs by allowing a single network to transmit both data and voice traffic. In addition, VoIP technology is gaining popularity in both commercial and residential markets because the voice quality resulting from packets transmitted over the IP network is comparable to the voice quality resulting from analog signals sent over the Public Switched Telephone Network (PSTN). In recent years the MEGACO/H.248 signaling protocol has been introduced by the Internet Engineering Task Force (IETF) and International Telecommunication Union (ITU) to help controlling and managing the growing volume of VoIP traffic. With emerge of VoIP technology; voice traffic is no longer restricted to the circuit-switched network. New IP-based products, such as IP phones and voice cable modems, have been introduced to integrate voice services over the data network. To properly manage and control these voice services, various signaling protocols have been developed. One of these protocols is MEGACO/H.248. It provides the master/slave architecture for controlling VoIP traffic. The MEGACO/H.248 signaling protocol employs a call control concept. The call control “intelligence” or the master server resides in the Media Gateway Controller (MGC), while the Media Gateway (MG) serves as the slave device (dumb terminal). This concept reduces the complexity of the gateway and making it simpler and more suitable for mass deployment. Six MEGACO commands are implemented: Add, Audit Capabilities, Audit Value, Modify, Notify, Service Change, and simultaneously.

Several MGs are connected to a single MGC via a router. We verified all signaling commands and simulated the MG registration and call-establishment scenarios. To verify that voice calls were actually established, we generated voice packets encoded using the RTP protocol. Comparison of PSTN services such as the 1-800 services and 911 emergency services with the Internet telephony services needs to evaluate the performance, scalability and reliability of the VOIP network [6]. According to the simulation of M/M/1 queuing model proposed in [5], we obtained the bandwidth management results of our proposed call flow. We consider a single MGC in this model to avoid the propagation delay between the MGCs.

2. MEGACO/H.248 Protocol

2.1. History

In traditional circuit-switched networks, call setups are performed primarily through backbone of the telephone network. As a result, a proprietary signaling protocol can be used for establishing and deleting connections. Nonetheless, a well defined signaling protocol is required for VoIP since VoIP traffic is routed through the public network infrastructure. Various signaling protocols have been designed to control VoIP traffic. For example Peer-to-peer protocols, such as SIP and H.323 have been introduced. Still these protocols have scalability problems
in terms of large-scale deployments. Hence a new architecture for signaling protocols was proposed; the control and the media gateway components were redefined using the master/slave architecture. Figure 1 shows the evolution of the MEGACO/H.248 protocol.

2.2. Gateway Architecture
In order to specifically model the MEGACO scenario, it is necessary to understand the design and functions of MEGACO. The MEGACO/H.248 protocol employs the master/slave architecture, where the MGC acts as the master server and MG behaves as the slave device. Figure 2 illustrates the simplified gateway architecture. In a deployed telecommunication network, one MGC may control multiple MGs.

2.3. Media Gateway Controller
The MGC is the central point of intelligence for call signaling. It maintains the states of each MG and responds appropriately to any event notifications. For instance, upon receiving an off-hook event from a MG, the MGC instructs the MG to play the dial tone and listen to the dual tone multi-frequency (DTMF) tones.

2.4. Media Gateway
The master/slave architecture was designed to eliminate Processor-intensive functionalities from the MG. The cost of MG is much lower than the cost of MGC due to the reduced complexity which makes it more affordable to the commercial identical markets. Essentially, the MG is a dumb terminal and a waiting command from the MGC until its next actions. Upon the successful creation of a connection, the MG is also responsible for streaming the voice packets over the IP backbone using various encoding/compression algorithms.

2.5. MEGACO/H.248 Command Set
The commands supported by the MEGACO/H.248 protocol are[3]:

- [MGC ↔ MG]
 - Service Change – Notify the responder of the new service state
 - Audit Value – Determine the characteristics of an endpoint
 - Audit Capabilities – Determine the capability of an endpoint
 - Add – Add a connection
 - Modify – Change a connection characteristic
 - Subtract – Tear down a connection
 - Move – Move an endpoint from one connection to another connection (call-waiting)

- [MG ↔ MGC]
 - Notify – Notify the responder of an event (on hook)

3. Design Architecture
We have designed two core modules for the MEGACO/H.248 protocol: MGC and MG [2].

3.1. MGC Architecture
The MGC consists of three main components as shown in Figure 3: Message Receiver (MR), Message Processor (MP), and Message Sender (MS).

3.2. MGC Node
Figure 4 shows the node model of the MGC. The MGC node model consists of a transmitter, a receiver, and the MGC processor. The MGC processor is responsible for parsing MEGACO messages, determining necessary actions for the MGs, and composing the MEGACO messages.
The MGC process model, shown in Figure 5, has four states: init, idle, send, and process. The init state initializes all the resources in the MGC. Upon successful initialization, the system proceeds to the idle state, where it either waits for the MGs to respond or for the MGs to send new MEGACO requests. The system enters the process state when new MEGACO messages arrive. In this state, the received messages are parsed and appropriate responses to the MGs are generated. These responses are placed in an outgoing queue where they are periodically transmitted when the system enters the send state.

The Voice Generator is responsible for generating voice packets upon call establishment. These voice packets are then encapsulated into the RTP payload and sent over the network. Similar to the MGC, communications between MG components are accomplished through local function calls. Table 2 summarizes the responsibilities of each component.

3.4. MG Node

The MG node, shown in Figure 7, consists of a transmitter, a receiver, and the MG processor. The MG processor is responsible for handling MEGACO/H.248 commands sent from the MGC and detects events initiated by the user. Furthermore, RTP packets are generated by the MG processor for voice transmission.

Figure 8 depicts the state machine of the MG processor, which consists of the init, idle, msg_pr, mg_pr, and usr_pr states. The MG objects are initialized in the init state. After initialization, the state machine proceeds to idle state. In this state, the process waits for the periodic interrupt and packet arrival. When the state machine receives a regular interrupt in idle state, it enters usr_pr state. The state machine checks whether an event was initiated by the user. If an event was initiated, a corresponding event notification message is sent to the MGC. In this state, the state machine also checks for call establishment. Once a call is established, the state machine generates an RTP voice stream to the corresponding MG. Upon receiving a message in the idle state, the state machine proceeds to the msg_pr state where the packet type is determined. If a signaling command is received, the state machine moves to the mg_pr state where the command gets processed. Alternately, if a RTP packet is received, the state machine moves to the usr_pr state where the MG object statistics are updated.
4. Call Flow Scenario

For assessment of bandwidth management call flow, the following test bed including two Media Gateways, Media Gateway Controller, COPS (Bandwidth manager), and two routers which are routing between two Media Gateways territory and a bandwidth interface is presented in figure 9.

As seen in Figure 10, four basic call flow scenarios are defined to validate the implementation of six MEGACO/H.248 commands. Call Setups with Resource Reservation in MEGACO are described in the following subsections, where the MEGACO/H.248, COPS commands, and main parameters are included within the sequence diagrams.

Since their input and output process traffic in one direction and according to Markov model, their previous values are not dependent. We use the M/M/1 queue model to analyze call setup scenario. The traffic model is considered in each process requiring information processing. As illustrated in Figure 11, this model has been considered for establishing a call between the Media Gateway with Bandwidth Management caused by COPS. COPS protocol is a protocol to create policy for reservation of resources. This process begins with a Notify Request from MG1 to MGC to establish a call. For this purpose MG1 sends Off-hook signal to MGC, then MGC sends Notify Reply for MG1.

Media gateway controller sends necessary signal communication including tone signal and numbering signal for MG1. MG1 processes of above signals and sends MG2 address MGC for establishing a call. Then MGC for communicating sends Add Request command to MG1. MGC sends Add Request to MG2. At this time with needs to reserve resources such as required bandwidth for call setup, MGC requests from Bandwidth Manager by COPS-DEC command. The call will be established between two MGs after resources provision.
5. Modeling the MGC and COPS

Most of the researches in VOIP related to MEGACO are focused on engineering principles, protocol definitions, enhancement and other improvement for example. A few research works are done in the area of performance modeling of MEGACO. Lots of IP telephony industries have been focusing on various MEGACO and MGC performance metrics. Here we propose analytical M/M/1 models which there are 8 successive queues in order to process various MEGACO packets with deterministic service time. They primarily considered the mean response time and the mean number of calls in the system to analyze performance and reliability of MEGACO protocol. Mean response time of a MGC is the difference between the time it takes for an NOTIFY Request sent from MG1 to reach MGC until the final response is sent by MGC to MG1. Mean number of calls is defined as the mean number of sessions that are currently in the system. They modeled a MEGACO as an open feed forward queuing network. The MGC is modeled as queuing with fourteen queues.

The mean number of calls N (random variable) in the system at study state is given by:

$$N = \sum_{k=1}^{J} \rho_k / (1 - \rho_k)$$

where $\rho_k = \lambda_j / \mu_k$

$$\lambda_j = \sum_{k=1}^{J} (\lambda_k Q[k,j])$$

for $1 < j < J$

$J=8$ is the number of stations in the queuing model. Q is the one step probability matrix corresponding to the queuing model, that is, $Q[i,j]$ the probability that a job departing station i goes to station j. The mean response time for calls is by Little’s law $R = N / \lambda$. They assumed the service rate is fixed at 0.5 ms$^{-1}$ and the arrival rate at 0.3 ms$^{-1}$, Alouf et al [5].

This architecture is a developed model based on the limited capacity of the single server queues for estimating the buffer size and studying the intensity of the generated traffic.

6. M/M/1 based MGC and COPS Model

We consider the analytical model proposed by Gurbani et al [5] and its consequences to assess the advantages of queuing model. In this work, the MGC and COPS is modeled as an open feed-forward queuing network with incoming NOTIFY Request message from MG1 as arrival calls, and there are sequence of eight M/M/1 based queuing stations that corresponds to each MEGACO message as shown in Figure 11.
3) Only 80 percent of the Notify Request messages will be successful in getting the Notify Reply (Observed Event) and 90 percent of those Add Request (MG1, MG2) responses will get the Add Reply (MG1, MG2) responses. Remaining 20 percent of the Notify Request message will get a non-Notify Reply and 10 percent of the Add Request (MG1, MG2) responses will receive an Add Reply (MG1, MG2) responses. During preparation for the next call, the MGC sends to modify request (MG1, MG2) thus MGC can setup a new call between MG1 and MG2 providing that there is a request for this propose.

7. Calculated results in MEGACO network

We consider former assumptions mentioned in this paper and assume $\mu = 0.5$, in order to calculate system’s mean response time with publication delay varying between 0 - 10 ms where the distance between MG and MGC is 0 - 1000 miles (Figure 12, 13). Each 100 miles is assumed to be equivalent with 1 ms delay. As one can see the mean response time with variation of arrival rate is approximately linear. The mean response time increases with publication delay.

Mean number of jobs based on service rate changes with different delays are shown in Figure 13. As we observe the maximum average number of jobs is less than 10 in maximum distance of 1000 miles. The results of Mean number of jobs and mean response time are obtained by changing base service rate delay while $\lambda (\lambda = 0.3)$ is supposed constant (Figure 14).

8. CONCLUSIONS AND FUTURE WORK

Based on the measurements and analysis, we have modeled Bandwidth management scenario in MEGACO with M/M/1 queuing model. With the predicted and experimental results, we has shown that the average response time, mean number of calls and
server utilization factor of the M/M/1 model can produce a more predictable model with significant performance improvements and also met the ITU-T standards. In future, we intend to extend our work with considering multiple Media Gateway Controllers located in various remote locations and carrying out a comparative study of performance effects when network delays are introduced into these models.

9. References