An Efficient Two-Factor User Authentication Framework for Wireless Sensor Networks

Pardeep Kumar¹, Mangal Sain¹ and Hoon Jae Lee²
¹Department of Ubiquitous-IT, Graduate School of Design & IT
²Division of Computer & Information Engineering
Dongseo University, Busan, 617-716, South Korea

Pardeepkumar@dit.dongseo.ac.kr, mangalsain1@gmail.com, hjlee@dongseo.ac.kr

Abstract—Nowadays, Wireless sensor networks (WSNs) are appeared to be new and promising solutions for next generation real-time wireless monitoring applications. These WSNs could become a threat if suitable security is not considered before the deployment. However, if there is any loophole in security, that might opens the door to attackers and hence, endanger for the applications. So, user authentication is one of the core requirements to protect WSNs data access from the unauthorized users. In this regard, we propose an efficient two-factor user authentication framework for WSNs, which is based on password and smart card (two-factors). Our scheme provides mutual authentication, enables the user to choose and change their password frequently. Moreover, the new framework provides strong protection against different kinds of attacks at reasonable computation cost. In addition, we present analysis of our proposed framework security properties with the existing schemes in terms of overhead cost.

Keywords: Wireless sensor network security, user authentication, mutual authentication, password, smart card, two-factor.

I. INTRODUCTION

Recently, WSNs have been widely used in many real-time applications such as vehicular tracking, habitat monitoring, environment control, military surveillance, healthcare monitoring, wildlife monitoring, real-time traffic monitoring and so on. These wireless sensors facilitate ubiquitous nature, quick and easy deployment in any hostile environments to conveniently execute their tasks.

These sensor networks consist of discrete group of independent nodes with low cost, low power, limited computation, less memory and communicate wirelessly over limited frequency and low bandwidth [1]. Sensor nodes collectively monitor the area and sense substantial amount of data which is transmitted to the base-station using one node to another node via RF signals and routing schemes.

The potential development of WSNs applications has deal with many challenges such as security, architecture and protocol design issues. Therefore, state-of-art should pay attention, how to deploy sizeable WSNs.

Furthermore, providing security is very tedious task to these resource hungry sensor networks as compared to conventional networks such as local area networks (LANs) and wide area networks (WANs). While the WSNs security requirements are the same as traditional networks, namely availability, confidentiality, integrity, authentication and non-repudiations. Thus, providing suitable security has emerged as one of the critical issue in wireless sensor networks.

In real-time WSNs, sensor data access queries are almost issued from the base-station nodes or backend application system. As the sensor nodes themselves provide services to users, it is necessary to control who is accessing the information and if it is authorized to do so. Thus, user authentication is possible solution to provide the access control from the unauthorized parties.

Although a numbers of significant authentication schemes have been proposed to provide adequate security at link layer [2 - 6] and network layer [7] for WSNs. However, WSNs user authentication at application layer is not been addressed effectively in order to prevent the access of sensor data from an unauthorized users. Furthermore, a review of current literature on WSNs reveals that only few user authentication schemes have been adequately addressed [8-16] at application layer.

In this paper, we present an efficient two-factor user authentication framework for WSNs, which impose on two-factor elements (e.g. password and smart card). The elements of two-factor authentication include “something you know” and “something you have” [17]. The first element (something you know), refer to a factor that is known by user such as a password. While, second element (something you have) refer to a something embedded on a device such as software token, digital certificate or biometric identifier (e.g. fingerprint scan and so on).

So, our proposed scheme attains the access control (user authentication) for wireless sensor networks, which resists to many attacks such as: user must have to login with same identity, replay attack, impersonation attack, stolen-verifier attack, password guessing attack, node-compromise attack, man-in-the-middle attack and denial-of-service attack. In addition, a user can change its password whenever demanded.

The rest of the paper is organized as follows: Section II briefly reviews the related literatures with their weaknesses. In section III we discuss the proposed two-factor user authentication scheme in details. Section IV discusses the possible security analysis and performance evaluation as compared to existing schemes for WSNs and finally, section V conclusions are drawn and future research directions.

References:

II. LITERATURE REVIEW

In this section, we will discuss the literature reviewed for user authentication that has been recently proposed to verify the legitimacy of users for wireless sensor networks.

Benenson et al’s [8] first sketched several security issues in WSNs, especially the access control and proposed the notion of n-authorization, where user can successfully authenticate with at least \((n-t) \) of n-sensors, where \(t \) is the number of sensor nodes that the adversary can compromise. Subsequently, Benenson et al’s [9] proposed another solution for user authentication problem in the presence of node capture attacks. The proposed scheme is based on public key cryptography (PKC) and elliptic curve cryptography (ECC). Some major weaknesses were pointed out on Benenson et al scheme, such as impersonation attack, denial-of-service (DoS) attacks could be mounted by sending many bogus signatures in authentication phase [10]. Moreover, the computation cost of PKC and ECC is very high for sensor networks.

Wong et al’s [10] proposed a dynamic user authentication scheme for wireless sensor networks, which is based on password. This scheme imposes on very light computation cost that requires only one-way hash function and simple XOR operations. The scheme consists of three phases: registration phase, login and authentication phase. Unfortunately, Wong et al scheme is vulnerable to many attacks such as replay attacks, forgery attacks, stolen-verifier attacks and password guessing attacks [11-12, 14 and 18].

Tseng et al’s [11] enhanced the weaknesses of Wong et al’s scheme and proposed an improved dynamic user authentication scheme for wireless sensor networks. The proposed scheme retains all the advantages of Wong et al’s scheme and improved security features with better efficiency such as: resistance to replay, forgery attacks and reduction of user password leakage risk. In addition, it allows users to change their password freely whenever demanded.

T. H. Lee [12] proposed a simple dynamic user authentication scheme for WSNs, which is the variant of strong password-based solution. T. H. Lee scheme is more simplified in term of authentication process by reducing the computational load, communication cost and furthermore, an intruder cannot impersonate the gateway node.

L. C. Ko [13] pointed out some weaknesses of Tseng et al’s scheme that might cause user authentication mechanism insecure. Since, Tseng et al’s scheme achieves many enhanced measure upon Wong et al’s scheme. In addition, Tseng et al’s does not achieve mutual authentication between the gateway and the sensor nodes and between the user itself and the sensor nodes. L. C. Ko proposed a novel dynamic user authentication scheme for WSNs, which provides better security features than Tseng et al’s scheme.

Watro et al’s [4] proposed a public key based scheme called TinyPK, which allows authentication and RSA-based Diffie-Hellman key agreement between sensor network and third party as well as between two sensor networks. To reduce the computational complexity, a small public exponent (e.g. \(e=3 \)) is used, which is very small variant of RSA. Furthermore, TinyPK protocol is vulnerable to “masquerade as sensor node to an unknowing user attack” [18].

Banerjee and Mukhopadhyay [15] proposed a symmetric key based authenticated querying in wireless sensor networks, which impose on random polynomial key pre-distribution scheme. This scheme authenticates the user agent but vulnerable to “user agent capture attack,” (e.g., when a user agent is compromised, an attacker can get all the information from any sensor node).

Yoon et al’s [16] proposed a user authentication scheme with privacy protection for WSNs, which is the variant of Kerberos protocol. The key idea behind this scheme is, it provides mutual authentication between trusted third party and both user agent and sensor node. Beside, Yoon et al’s scheme also provides the privacy protection to the user.

Recently, M. L. Das [18] mentioned some security flaw in Wong et al’s schemes, such as, the scheme vulnerable to many logged in user with the same login-id threat and also susceptible to stolen-verifier attacks. M. L. Das proposed a two-factor user authentication for WSNs, where the legitimate users must prove the possession of both a password and smart card. Das’s claimed that his scheme is secure against many attacks (e.g. user authentication, replay, guessing, impersonation, node compromise, stolen-verifier, DoS attacks).

Nyong and Lee [19] identified that Das’s scheme is still vulnerable to an offline password guessing attack by insider, node compromise attack and does not care about other security services, i.e., encryption and authenticity verification of query response. Hence, Nyong and Lee proposed an improved two-factor user authentication protocol for WSNs, which overcome the Das’s scheme security flaws with some additional security services such as, confidentiality and authenticity of user’s query response.

More recently, Khan and Alghathbar [20] pointed out that M.L. Das scheme is still not secure and cannot resist to many other security attacks, such as, gateway-node bypass attack, does not provides mutual authentication between gateway and sensor nodes, vulnerable to insider attack, and no provision for users to change their password. Khan and Alghathbar overcomes the security weaknesses of Das’s scheme and proposed improved two-factor user authentication in WSNs, which provides protection against insider attack, gateway bypass attack and introduced password change phase for users.

III. PROPOSED FRAMEWORK

In this section, we propose a user authentication framework for wireless sensor networks that ensures the access and supply of data are taking place by the legitimate users only. So, in this regards, a user must register with the gateway node in a secure manner to access the real time sensors data. Upon the successful user registration, the gateway node personalizes a smart card to every registered user. Then, a user can submit his/her query in an authentic way and access the sensor networks data at any time within an administrative configurable period [10]. The framework is divided into four
phases, namely, user registration phase, login phase, authentication phase and password change phase. For convenience Table 1, a list of some notations and symbols will be used throughout the rest of paper.

TABLE 1

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_k)</td>
<td>User (k^{th}) to be login</td>
</tr>
<tr>
<td>(ID_k)</td>
<td>Login ID of (U_k)</td>
</tr>
<tr>
<td>(PW_k)</td>
<td>Password of (U_k)</td>
</tr>
<tr>
<td>(FID_k)</td>
<td>fictitious ID of (U_k)</td>
</tr>
<tr>
<td>(GW)</td>
<td>WSN gateway node</td>
</tr>
<tr>
<td>(Sn)</td>
<td>Sensor Node</td>
</tr>
<tr>
<td>(X_g)</td>
<td>Secret parameter generated by (GW) node</td>
</tr>
<tr>
<td>(h(.))</td>
<td>Cryptographic hash function</td>
</tr>
<tr>
<td>(</td>
<td>|)</td>
</tr>
<tr>
<td>(\oplus)</td>
<td>Bitwise XOR function</td>
</tr>
</tbody>
</table>

We have made the following assumptions for two-factor user authentication framework:
- All the nodes locations are static.
- The \(GW\) node is considered as trusted node.
- Each user who wishes to access the sensor network data, he/she must register once with the \(GW\) node.
- The secret parameter \(X_g\) is not known to the user, since; it is generated and securely stored in user’s smart card by the \(GW\) node.

(A). Registration Phase (RP)

In the registration phase, initially, each user must register him/her with the \(GW\) node using following steps:
- **RP-1.** The user \(U_k\) submits his/her ID and password (i.e., \(ID_k\) and \(PW_k\)) to the \(GW\) node over a secure channel.
- **RP-2.** Upon receiving the \(U_k\) registration request, the \(GW\) node computes:
 - \(h(PW_k)\)
 - \(h(X_g)\)
 - \(N_k = h(ID_k||h(PW_k)||h(X_g))\)

Thereafter, the \(GW\) node personalizes a smart card to the user with the parameters \(h(.), ID_k, N_k, h(PW_k), h(X_g)\), here, \(X_g\) is secret parameter securely generated and hashed by the \(GW\) node. Furthermore, \(h(X_g)\) is stored in the sensor nodes prior to deployment of the sensor nodes, who wish to exchange their data with the users. This step completes the user’s registration phase.

(B). Login Phase (LP)

This phase invoked whenever a user \(U_k\) wants to submit his/her query to access the sensor networks, then every time he/she has to accomplish the login phase. The user \(U_k\) inputs his \(ID_k\) and \(PW_k\) and inserts his smart card in the terminal. Now, smart card confirms the entered \(ID_k\) and \(PW_k\) with the pre-stored values \((ID_k\) and \(PW_k\). If the entered \(ID_k\) and \(PW_k\) are not verified then reject the login request. Otherwise, smart card executes some functions and performs following:
- **LP-1.** Compute \(FID_k = h(ID_k||h(PW_k)||h(X_g)) \oplus h(h(X_g)||T)\), here, \(T\) is denoting the current timestamp of \(U_k\)’s system.
- **LP-2.** Compute \(C_k = h(N_k||h(X_g)||T)\)
- **LP-3.** Now, this is end of the login phase and user login request message \(<FID_k, C_k, T\rangle\) is send to the \(GW\) node over a secure channel for the authentication process.

(C). Authentication Phase (AP)

The authentication phase is invoked when it receives the user’s login request message \(<FID_k, C_k, T\rangle\) at time \(T\). Now, the \(GW\) node authenticates user requests by the following steps:
- **AP-1.** The \(GW\) node validate the \(T\): check, if \((T' - T) \geq \Delta T\), if yes, then the \(GW\) node rejects this request and terminate the process. Otherwise, continues with next step. Here, \(T'\) is the current timestamp of the \(GW\) node and \(\Delta T\) is the expected time interval for the transmission delay.
- **AP-2.** Computes:
 \[h(ID_k||h(PW_k)||h(X_g)) = FID_k \oplus h(h(X_g)||T)\]
 and \(C_k = h(h(ID_k||h(PW_k)||h(X_g)\oplus h(X_g)||T))\)
- **AP-3.** Thereafter check: if \((C_k = C_k)\) then the \(GW\) node accepts the login request, and terminates the further operations.
- **AP-4.** And the \(GW\) node computes:
 \(A_k = h(FID_k||Sn||h(X_g)||T)\)
- **AP-5.** Now, the \(GW\) node sends a user’s request message \(<FID_k, A_k, T''\rangle\) over a communication channel to some nearest sensor node (e.g., \(Sn\)), which user was demanding. Here, message \(A_k = h(FID_k||Sn||h(X_g)||T'')\) and \(T''\) is the current timestamp of the \(GW\) node. Furthermore, \(A_k\) make sure to the sensor node that the request message \(<FID_k, A_k, T''\rangle\) has comes from the authentic \(GW\) node and not from the fake. Since, \(A_k\) is computed with help of the \(GW\) node secret parameter \((h(X_g))\), which is known to the \(GW\) node and securely stored in the sensor nodes.
- **AP-6.** Now, \(Sn\) validate the time \(T''\): check, if \((T'' - T) \geq \Delta T\), if yes, then the sensor node \((Sn)\) rejects the request and terminate the process, otherwise continues with next step. Here, \(T''\) is the current timestamp of the sensor node and \(\Delta T\) is the expected time interval for the transmission delay.
- **AP-7.** \(Sn\) now computes \(A_k'' = h(FID_k||Sn||h(X_g)||T'')\) and check: if \((A_k'' = A_k)\) then the sensor node respond to user’s requested query. Otherwise rejects the request and terminates the further operations.
- **AP-8.** \(Sn\) now computes message \(M_0 = h(Sn||h(X_g)||T''')\) and provide mutual authentication to the \(GW\) node. Here, \(T'''\) is the current timestamp of \(Sn\) node’s and sends message \(<M_0, T''''\rangle\) to the \(GW\) node.
- **AP-9.** Upon receiving the message \(<M_0, T''''\rangle\), the \(GW\) node validate the time \(T''''\): check, if \((T'''' - T) \geq \Delta T\), if yes, then the \(GW\) node rejects the request and terminate the process.

otherwise continues with next step. Here, T' is the current timestamp of GW node and ΔT is the expected time interval for the transmission delay.

AP-10) The GW node now computes $M_t^* = h(Sn||h(X_g)||T''')$ and check: if $(M_t^* = M_t)$ holds then mutual authentication is take places between the sensor node Sn and the GW node. Otherwise, Sn is not an authentic node and the GW node terminates the operations.

AP-11) Upon the successful mutual authentication between the sensor node Sn and the GW node, user U_t starts the access of sensor data.

(D) Password-Change Phase (PP)

The password change phase is invoked whenever user U_t wants to change or update his/her old password (PW_t) to a new password, say PW_t^*. The password change phase is described in the following:

PP-1). User U_t inserts his/her smart card into the terminal and enters his/her identity (ID_t) and password (PW_t).

PP-2). Now the smart card validates the U_t s entered ID_t and PW_t with stored values and check: if holds then the smart card request to the user for new password (i.e., PW_t^*). Otherwise, rejects the password change request and terminates the operation.

PP-3). Now upon receiving the U_t new password (PW_t^*), smart card computes: $N_t = N_t \oplus h(ID_t||h(PW_t)||h(X_g)) \oplus h(ID_t||h(PW_t^*)||h(X_g))$. Here N_t is old stored value of the smart card (i.e., $N_t = h(ID_t||h(PW_t)||h(X_g))$).

PP-4). Now the smart card replaces the old values (N_t and $h(PW_t)$) with new values (N_t^* and $h(PW_t^*)$). After performing the above steps, password change phase successfully takes places.

IV. ANALYSIS OF FRAMEWORK

In this section, we present our proposed two-factor framework strengths in terms of security analysis (i.e., resist against several well-known attacks) and performance analysis.

(A) Security Analysis

Now we will shows the proposed framework that resists against the following attacks: replay attack, impersonation attack, stolen-verifier attack, password guessing attack, node-compromise attack, man-in-the-middle attack, denial-of-service attack. Furthermore, our framework consider mutual authentication between the GW node and the sensor node and enable users to change their password freely whenever required.

Replay attack. Our two-factor framework is secure against a replay attack, because the authenticity of messages $<FID_t,C_t,T>$, $<FID_t,A_t,T'>$ and $<M_t,T'''>$ is validated by checking the freshness of three timestamps $(T-T') \geq \Delta T$, $(T''-T') \geq \Delta T$ and $(T''-T') \geq \Delta T$. Thus, our framework is secure against replaying of message.

Impersonation attack. An attacker cannot impersonate the user, suppose, an attacker captures a login message $<FID_t,C_t,T>$. Now, he/she will wish to login again into the system, but this is not feasible to get the original password (PW_t) and secret (X_g), since, they are hashed with the cryptographic hash functions. Therefore, it is not possible to impersonate the user.

Stolen-verifier attack. Stolen-verifier attack is not applicable to our framework, because we are not using any password verifier table. So, any kind of stolen verifier attack will not occur on our framework.

Password guessing attack. Since, our framework is free from any password verifier table, so password guessing attack is not feasible. Furthermore, in login phase the password is not simply transmitted but it is transmitted with some other secrets, which is difficult to guess the user password.

Node-compromise attack. In general, sensors are placed in the hostile environment to do their task. Therefore, it could easy to capture a node from the environment and steal secret information about the networks. In order to overcome this attack, we store hashed secret values in sensor node, as, $A_t = h(FID_t||Sn||h(X_g)||T^*)$. Thus, by doing so, it is difficult to get the secret parameters in the case of node compromised.

Man-in-the-middle attack. An attacker may attempt a man-in-the-middle (MITM) by modifying the login message $<FID_t,C_t,T>$ into $<FID_t^*,C_t^*,T^*>$. However, this malicious attempt will not works, because without the knowledge of X_g, it is not easy to calculate the message $<FID_t^*,C_t^*,T^*>$. Thus, man-in-the-middle attack is not applicable in our framework.

Denial-of-service attack. In password change phase, denial-of-service attack cannot work in our framework. Suppose, when user smart card is stolen, unauthorized users cannot change new password. Since, in password change phase the old ID and PW is verified first. Hence, denial-of-service attack is not applicable on stolen smart.

Secure password change. In secure password change or update phase, our framework first verifies the old password, identity and then only request for new password. Otherwise rejects the password change requests. Therefore, our framework change password securely.

(B) Performance Analysis

Here we examine the performance and summarize the security functionality of our two-factor framework and compare with the M.L. Das [18] two-factor scheme. Table II shows that our framework is more secure and robust as compares to Das’s scheme and provides more security features on reasonable computational costs.

As shown in Table II, our two-factor framework has 13H computational cost and provides robust security features, such as, secure password change phase, provide mutual authentication, secure against node compromised attack and secure against denial-of-service attack and secure against many other attacks.
TABLE-II
PERFORMANCE ANALYSIS

<table>
<thead>
<tr>
<th>Security Features</th>
<th>Our Scheme</th>
<th>Das’s[18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure password change phase</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Provides mutual authentication</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Secure against node compromised attack</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Secure against denial-of-service</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Registration phase computational cost</td>
<td>3H</td>
<td>2H</td>
</tr>
<tr>
<td>Login phase computational cost</td>
<td>3H</td>
<td>3H</td>
</tr>
<tr>
<td>Authentication/verification phase cost</td>
<td>7H</td>
<td>5H</td>
</tr>
</tbody>
</table>

H: a cryptographic hash function

V. CONCLUSION

In this paper, we have proposed an efficient user authentication framework for wireless sensor networks, which is imposed on two-factors (i.e., password and smart card) and using cryptographic hash functions. We have provided security and performance analysis of the proposed framework and compared with M.L. Das scheme. Furthermore, we have demonstrated that our proposed framework is more robust against many security attacks and provides essential security features on the reasonable computational costs.

An interesting user authentication research is currently under investigation and we will enhance the proposed framework with more security features.

ACKNOWLEDGMENT

This research is supported by 2010 National Research Foundation (NRF) project, South Korea.

REFERENCES