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Abstract— The Partial Transmit Sequence (PTS) method with 
low computation complexity, called decomposition PTS sub-
blocking was proposed which employs the radix-2 inverse fast 
Fourier transform (IFFT) for the signals at the middle stages of 
an N-point radix-2 IFFT and decimation in frequency (DIF) 
domain. This method (DIF-IFFT) can reduce the computation 
complexity relatively with keeping the better PAPR performance 
similar to other PTS techniques with using the same weighting 
factor. To improve computation complexity for the PTS method, 
the Split-Radix inverse fast Fourier transform (SRIFFT) which 
can reduces the number of complex computation was proposed. 
However, the PAPR reduction performance is the same as that 
for the radix-2 method. In this paper, we propose a new 
weighting factor technique in conjunction with DIF-PTS sub-
blocking based on Split-Radix IFFT technique called Improve 
PTS (I-PTS) which can improve both the PAPR performance 
and computation complexity without any increasing of side 
information. This paper presents the various computer 
simulation results to verifier the effectiveness of proposed 
method. 

Index Terms— DIF-IFFT, PAPR, SRIFFT, PTS. 

I. INTRODUCTION 

Orthogonal Frequency Division Multiplexing (OFDM) 
method has been standardized as the European digital audio 
broadcasting (DAB) and the digital video broadcasting (DVB) 
systems. It has also been proposed for the third-generation 
mobile radio standard in Europe. Multiplexing a serial data 
symbol stream into a large number of orthogonal subcarriers 
makes the OFDM signals spectral bandwidth efficiently [1]. 
However, a major drawback of OFDM method is that the 
OFDM signal has higher peak to average power ratio (PAPR). 
The higher PAPR leads the fatal degradation of OFDM 
performance in the nonlinear power amplifier (HPA) [2]. 

Partial transmit sequence (PTS) method [3] is proposed as 
one of the distortion-less PAPR reduction methods. However, 
the computation complexity and the size of side information 
would increase as increasing the number of clusters and 
weighting factors. To reduce this computation complexity, 
DIF-PTS method was proposed [4] which employs the 
intermediate signals within the IFFT and used radix-2 
decimation in the frequency domain (DIF) to obtain the PTS 
sub-blocks. Multiple IFFTs are then applied to the remaining 
stages. The PTS sub-blocking is performed in the middle 
stages of the N-point radix FFT DIF algorithm. The DIF-PTS 
method reduces the computational complexity relatively while 
it shows almost the same PAPR reduction performance as that 
of the conventional PTS OFDM scheme. 

In this paper, we propose a new weighting factor 
technique for the PTS method in conjunction with DIF-PTS 
sub-blocking based on Split-Radix IFFT technique which can 
improve both the PAPR performance and computation 
complexity. The proposed method can achieve the better 
PAPR reduction performance than that for the DIF-PTS 
method without any increasing of the size of side information.  

In the next section, the PAPR problem and conventional 
PTS are reviewed briefly. Section III presents the PTS-base 
Split-radix technique and Section IV presents the proposed 
method. Section V presents various computer simulation 
results to verify the effectiveness of the proposed method as 
comparing with the conventional PTS method. Some 
conclusions are given in Section VI. 

II. PAPR PROBLEM AND CONVENTIONAL PTS METHOD 

Let 1
0{ ( )}N

kX k 


denote the frequency-domain signal, where 

N is the number of FFT/IFFT points and k is the frequency 
index. The discrete time-domain OFDM signal is obtained by 
taking an N-point inverse discrete Fourier transform (IDFT) 
of ( )X k as given by the following equation.  
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where n is the discrete-time index, 2 /j N
NT e  (known as the 

twiddle factor), and 2 1j   . The frequency-domain signal 

( )X k would add constructively and generate a time domain 

signal with large peak amplitude. To evaluate the envelop 
variations of OFDM time domain signal, the ratio of peak to 
envelope power of the signal is usually used. The discrete 
time PAPR can be evaluated precisely by using a minimum of 
four times oversampling [5], which is given by, 
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In the PAPR reduction method of using the partial 
transmit sequences (PTSs), the frequency-domain vector

( )X k is partitioned into P disjoint sub-blocks

( ), 0,1..., 1pX k p P  , so that 
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set of weighting factors with 
1 0  which are applied to the 

sub-blocks ( )pX k . The substitute frequency-domain signal 

are given by [6], 
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Taking the IDFT of (3), and using the linearity property of 
the IDFT, the following equation can be obtained. 
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where ( ) ( ( ))p px n IDFT X k  are the P time-domain PTSs. To 

determine the sequence ' ( )x n  with the smallest PAPR, the 

following optimization criterion is employed. 
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In order to recover the data correctly at the receiver, the 
required side information is 

2( 1) logP W bits per OFDM 

symbol where W is the number of weighting factors. 
According to (4), P IDFTs are required to obtain ' ( )x n which 

can incur significant computational complexity. 

III. PTS-BASED SPLIT-RADIX TECHNIQUE 

A.  Split-Radix FFT Algorithms 

A Radix-2 algorithm diagram can be transformed quite 
straightforwardly into a Radix-4 algorithm diagram simply by 
changing the exponents of the twiddle factors. It is quite clear 
then that at each stage of the algorithm of Radix-4 is better for 
the odd terms of the DFT and Radix-2 for the even terms of 
the DFT. So, one might guess that restricting this 
transformation locally to the lower part of the diagram might 
improve the algorithm. It turns out that this is indeed the case. 
The Split-Radix algorithms is then based on the following 
decomposition [7]: 
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is the DFT to be computed, it is decomposed into, 
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The first stage of a Split-Radix decimation in the 
frequency decomposition then replaces a DFT of length N by 
one DFT of length N/2 and two DFT’s of length N/4 at the 
cost of (N/2-4) general complex multiplications ( 3 real 
multiplications + 3 additions), and 2 multiplications by the 
eighth root of unity (2 real multiplications + 2 additions). 

The length-N DFT is then obtained by successive use of 
such decompositions, up to the last stage where some usual 
radix-2 butterflies (without twiddle factors) are needed (see 
Fig.1 for a length 16-Split-Radix FFT). 

 

 
Fig. 1.  Length 16 Split-Radix algorithms. 

 
B.  IFFT-Based PTS Technique 

The DFT of an N-point sequence ( )X k can be directly 

computed by using equation (1). As the IDFT can be 
computed by taking the complex conjugate of the input and 
output sequences while using the same DFT parameters, we 
need only consider the DFT calculation. Thus, we only use 
the corresponding FFT computation in the following. 

 

Fig. 2.  Structure of OFDM transmitter with a low complexity PTS 
method. 

 
An FFT algorithm recursively converts the DFT 

computation to /r N r - point DFTs recurring through 
logrm N  stages. The value of r corresponds to a radix-r 

FFT algorithm. The DIF radix-r DFT of (1) is given by, 

S
/P

( )X n

+

(1) ( )X n

(2) ( )X n

( ) ( )VX n

( )s t

qx

ISBN 978-89-5519-162-2 3 Feb. 19~22, 2012 ICACT2012



0 0

/ 1 1

0 /
0 0

( )
N r r

ik nk kn
r N N r

n i

N
X rk k x n i T T T

r

 

 

           
               (7) 

where 
0 0,0 1,k k r   is the index of the butterfly outputs. As 

we consider the inputs to stage q for PTS sub-blocking, 
symbols and indices are represented with subscript : qq x and 

qn for an input x and time index n, respectively, which 
qX and 

qk for an output X and frequency index k, respectively. 

Considering the form of (7), the butterfly outputs at stage q 
are given by, 
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where 
qk =0,1,…, ( / ) 1qN r  , 

qn =0,1,…, ( / ) 1qN r  , and  ,

 =1,2,… 1qr  , denotes a particular 1/ qN r  -point DFT at the 

stage q. Fig. 1 shows the recursive reduction of the  -th 
1/ qN r  -point DFT to / qN r -point DFTs at stage q. It is 

assumed that the input sequence is in normal order, and the 
output is in digit-reversed order. Similarity, we can obtain the 
butterfly outputs at stage q for decimation in time (DIT) 
domain. 

The inputs ( ( / ) )q
q qX n N r i   at stage q are used for 

cluster partitioning in the proposed PTS technique and the 
remaining m-q stages are used to compute the multiple 
transforms as shown in Fig. 2. 

IV. PROPOSED METHOD 

A. Proposal of New Weighting Factor 

In the proposed method, the input data block is partitioned 
into the cluster as the same as conventional PTS method. The 
difference of proposed method as compared with the 
conventional method is that each cluster is partitioned by first 
and second parts as shown in Fig. 3. The first and second 
parts of cluster employ the different weighting factor although 
these two have the predetermined relationship [8]. The 
frequency domain signal for the proposed method can be 
given by, 

             
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where pje   and 
pje   are weighting factors for the first and 

second parts at the p-th cluster, respectively. ' ( )px n and '' ( )px n  

are the data sub-carriers of first and second parts at the p-th 
cluster, respectively. The weighting factors of proposed 
method are given by the following equation. 
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where '
p is the phase coefficient for the first part of clusters, 

and "
p  is the phase coefficient for the second parts. However, 

this fact leads other advantage in the computational 
complexity for the proposed method as compared with the 
case of 0.5  [9]. If   is 0, the phase value of second part 

of cluster can be obtained by ( ) ( )
2 1 0      

and the 

weighting factor for the second part of cluster becomes
( )
2( )

2 1jb e
   .  This means that the proposed method can use 

the original time domain signal without multiplying the 
weighting factor for the half part of subcarriers. 

 
Fig. 3.  Structure of OFDM symbol for the Improved PTS method. 

 
From the above results, Fig. 4 shows the averaged PAPR 

performance for the proposed method when changing . The 

best PAPR performance can be achieved when   is 0 and the 

proposed method with 0  can reduce the computation 

complexity. From this fact, the proposed method shows better 
PAPR performance than conventional PTS and DIF-PTS 
method with keeping the same size of side information and 
lower computation complexity as the conventional PTS 
method. 

 
Fig. 4.  Averaged PAPR Performance for the proposed DIF-IPTS 
method when changing  . 

B.  Computational Complexity Analyses 

We define the multiplicative complexity of the DIF 
IFFT algorithm as the number of complex multiplications 
by twiddle factors 0

1/
q
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n k
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T 

 and 0ik
rT . The twiddle factors 0ik

rT

are trivial ( 1  and j ). Let c
mM be the number of real 

multiplications needed to perform a 2m-complex DFT with 
the Split-Radix algorithm.  By using (6), we can obtain the 
following relationship. 
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And, with the initial conditions M1= 0, M2= 0, we obtain, 
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 2 3 4c m
mM m   .               (12) 

Disregarding for a while the number of additions needed 
to perform the complex multiplications, the remaining ones 
can easily be evaluated by 12mm  , since, at each of the m 
stage, anew point is generated by a complex addition. Then, 
since the number of real additions needed to compute a 
complex is equal to the number of multiplications, we have: 

12c m c
m mA m M   .               (13) 

The Split-Radix algorithm has the lower number of both 
multiplications and additions than Radix-2 algorithm. 

V. PERFORMANCE EVALUATION 

This section presents the various computer simulation 
results to verify the performance of proposed method. The 
receiver is coherent detector. The transmitted signal is taken 
over sampling by a factor of 4 (L=4). The simulation 
parameters to be used in the following evaluations are listed 
in Table I. 

TABLE   I 
SIMULATION PARAMETERS 

Modulation QPSK 
Demodulation Coherent 
Allocated bandwidth 5MHz 
Number of FFT points 256 and 512 
Number of sub-carriers 64 and 128 
Number of cluster (V) 4 
Number of discrete phase (W) 4 
Symbol duration 12.8us 
Guard interval 1.28us 

 
Fig. 5. Comparison of PAPR reduction performance for the conventional 

PTS, Radix-2 DIF PTS and Split-Radix DIF PTS methods. 
 
Figure 5 shows the PAPR performance for the 

conventional OFDM, conventional PTS, DIF-PTS based on 
Radix-2 and Split-Radix, respectively when the modulation 
technique is QPSK. This figure shows the PAPR reduction 
performance of DIF-PTS method when the Radix-2 and Split-
Radix are employed. The PAPR reduction performance both 
for the DIF-PTS base Radix-2 and Split-Radix can achieve 

same performance as that for the conventional PTS method 
when middle stages are   2

4
Radix

m q


   and   4
Split Radix

m q


 

  4
Split Radix

m q


    4
Split Radix

m q


  , respectively. However, 

the DIF-PTS can reduce much more computation complexity 
than conventional PTS method. 

Table II shows the comparisons for the PAPR 
performance and computation complexity for the 
conventional OFDM, conventional PTS, DIF-PTS based on 
Radix-2 and Split-Radix, respectively. This table shows the 
comparison computation complexity which refers the 
conventional PTS. From the table, the DIF-PTS and DIF-
IPTS based on radix-2 can reduce the computation complexity 
68.76% at   2

2
Radix

m q


   when comparing with 

conventional PTS. The DIF-IPTS based on Split-Radix shows 
the lower computation complexity which can reduce up to 
81.08% at   2

Split Radix
m q


   when comparing with 

conventional method. From these results, it can be concluded 
that the proposed method can achieve the lower PAPR 
reduction performance and reduces the computation 
complexity as compared with the conventional PTS and DIF-
PTS based on Radix-2. 

TABLE   II 
COMPARISONS OF COMPUTATION COMPLEXITY FOR DIFFERENCE METHODS 

 Computation multiplications 
Complexity (P=4 and N=256) 

(m-q=6) (m-q=5) (m-q=4) (m-q=3) (m-q=2) 
Conventional 

OFDM 
NA NA NA NA NA 

Conventional 
PTS 

0% 0% 0% 0% 0% 

DIF-PTS [4] 24.68% 36.77% 48.48% 59.40% 68.76% 
Radix-2   

DIF-IPTS 
24.68% 36.77% 48.48% 59.40% 68.76% 

Split-Radix 
DIF-IPTS 

52.99% 59.04% 67.82% 74.64% 81.08% 

 

 
Fig. 6.  Comparison of PAPR reduction performance between conventional 

PTS and Split-Radix DIF IPTS methods. 
 

Figure 6 shows the PAPR performance for the 
conventional OFDM, conventional PTS, DIF-PTS and DIF-
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IPTS based on Split-Radix, respectively when the modulation 
technique is QPSK, number of subcarriers is 64.  From the 
figure, it can be observed that the PAPR reduction 
performance of DIF-IPTS method based on Split-Radix can 
achieve better PAPR reduction performance when comparing 
with DIF-PTS method based on Split-Radix. From the figure, 
it can be concluded that the proposed new weighting factor 
can achieve the lower computation complex than DIF-IPTS 
based Radix-2.  

VI. CONCLUSIONS 

In this paper, we proposed the new weighting factor 
technique for PTS method in conjunction with DIF-PTS 
method based on Split-Radix. The proposed new weighting 
factors for the 1st and 2nd parts have the predetermined 
relationship so as to keep the same size of side information. 
To reduce the computation complexity, we used the  Split-
Radix DIF-IFFT technique. From the computer simulation 
results, we confirmed that the proposed method shows the 
better PAPR performance and lower computation complexity 
with keeping the same size of side information as compared 
with the DIF-PTS method. 
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