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Abstract—Monitoring of Quality of Service (QoS) in high-
speed Internet infrastructures is a challenging task. However,
precise assessments must take into account the fact that the
requirements for the given quality level are service-dependent.
The backbone QoS monitoring and analysis requires processing
of large amounts of data and knowledge of which kinds
of applications the traffic is generated by. To overcome the
drawbacks of existing methods for traffic classification, we
proposed and evaluated a centralized solution based on the C5.0
Machine Learning Algorithm (MLA) and decision rules. The first
task was to collect and to provide to C5.0 high-quality training
data divided into groups, which correspond to different types of
applications. It was found that the currently existing means of
collecting data (classification by ports, Deep Packet Inspection,
statistical classification, public data sources) are not sufficient and
they do not comply with the required standards. We developed
a new system to collect training data, in which the major
role is performed by volunteers. Client applications installed
on volunteers’ computers collect the detailed data about each
flow passing through the network interface, together with the
application name taken from the description of system sockets.
This paper proposes a new method for measuring the level of
Quality of Service in broadband networks. It is based on our
Volunteer-Based System to collect the training data, Machine
Learning Algorithms to generate the classification rules and
the application-specific rules for assessing the QoS level. We
combine both passive and active monitoring technologies. The
paper evaluates different possibilities of implementation, presents
the current implementation of particular parts of the system,
their initial runs and the obtained results, highlighting parts
relevant from the QoS point of view.

Index Terms—broadband networks, data collecting, Machine
Learning Algorithms, performance monitoring, Quality of
Service, traffic classification, volunteer-based system.
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I. INTRODUCTION

This journal paper is the extended and revised version of [1]
which was presented at the 14th International Conference on
Advanced Communication Technology (ICACT 2012).

One of the most interesting challenges in today’s world
is how to measure the performance of computer network
infrastructures, when different types of networks are merged
together. In the last few years the data-oriented networks
evolved into converged structures, in which real-time traffic,
like voice calls or video conferences, is more and more
important. The structure is composed of traditional data cable
or more modern fiber links, existing Plain Old Telephone
Service (POTS) lines used to provide analog services (voice
telephony), or digital services (ADSL, PBX, ISDN), and
nowadays also of mobile and wireless networks. There are
numerous methods for the measurement of Quality of Service
(QoS) in current use, which provide the measurements both
on the user side and in the core of the network. Internet
Service Providers are interested in centralized measurements
and detecting problems with particular customers before
the customers start complaining about the problems, and
if possible, before the problems are even noticed by the
customers.

Each network carries data for numerous different kinds
of applications. QoS requirements are dependent on the
service. The main service-specific parameters are bandwidth,
delay, jitter, and packet loss. Regarding delay, we can
distinguish strict real time constraints for voice and video
conferences, and interactive services from delivery in relaxed
time frame. In conversation, a delay of about 0.1 s is hardly
noticeable, but 0.25 s delay means an essential degradation
of transmission quality, and more than 0.4 s is considered as
severely disturbing [2].

Therefore, in order to provide detailed information about
the quality level for the given service in the core of the
network, we need to know, what kind of data is flowing in
the network at the present time. Processing all the packets
flowing in a high-speed network and examining their payload
to get the application name is a very hard task, involving
large amounts of processing power and storage capacity.
Furthermore, numerous privacy and confidentiality issues can
arise. A solution for this problem can be use of Machine
Learning Algorithms (MLAs), which use previously generated
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decision rules, which are based on some statistical information
about the traffic. In our research, we used one of the newest
MLAs - C5.0. MLAs need very precise training sets to learn
how to accurately classify the data, so the first issue to be
solved was to find a way to collect high-quality training
statistics.

In order to collect the necessary statistics and generate
training sets for C5.0, a new system was developed, in
which the major role is performed by volunteers. Client
applications installed on their computers collect the detailed
information about each flow passing through the network
interface, together with the application name taken from the
description of system sockets. Information about each packet
belonging to the flow is also collected. Our volunteer-based
system guarantees precise and detailed data sets about the
network traffic. These data sets can be successfully used to
generate statistics used as the input to train MLAs and to
generate accurate decision rules.

The knowledge about the kind of application to which the
traffic belongs obtained from MLAs can be used together with
traffic requirements for the given application to assess the QoS
level in the core of the real network. The real traffic needs to be
sampled to obtain the necessary raw statistics. Parameters like
jitter, burstiness, download and upload speed can be assessed
directly on the basis of information obtained from the captured
traffic. To assess delay and packet loss, active measurement
techniques must be involved (like ping measurements in both
directions).

The remainder of this document is split into several sections,
which describe in detail the system architecture and some parts
of the implementation. Section II contains the overview of
current methods of assessing the network QoS level. Both
passive and active methods are described along with their
advantages and weaknesses. Section III gives an overview
of our methods, so the reader is able to understand how
the particular components are built and connected with each
other. Section IV describes current methods used for traffic
classification in computer networks and it explains why they
are not sufficient for our needs. Section V presents our new
tool used for collecting and classification of the network
traffic – the Volunteer-Based System (VBS). Section VI shows
how the statistical parameters are obtained from the data
collected by VBS. Section VII evaluates different Machine
Learning Algorithms and shows why we chose C5.0 to be
included in our system. Section VIII demonstrates design and
implementation of the system, while Section IX summarizes
the most important points.

II. RELATED WORK

During the last 20 years we have been witnesses to the
subsequent and increasing growth of the global Internet
and the network technology in general. The broadband and
mobile broadband performance today is mainly measured
and monitored by speed. However, there are several other
parameters, which are important for critical business and real-
time applications, such as voice and video applications or first-
person shooter games. These parameters include download

and upload speeds, round trip time, jitter, packet loss, and
availability [3], [4].

The lack of the centralized administration makes it difficult
to impose a common measurement infrastructure or protocol.
For example, the deployment of active testing devices
throughout the Internet would require a separate arrangement
with each service provider [3]. This state of affairs led to
some attempts to make simulation systems representing real
characteristics of the traffic in the network. Routers and traffic
analyzers provide passive single-point measurements. They do
not measure performance directly, but traffic characteristics are
strongly correlated with performance. Routers and switches
usually feature a capability to mirror incoming traffic to a
specific port, where a traffic meter can be attached. The main
difficulty in passive traffic monitoring is the steadily increasing
rate of transmission links (10 or 100 GB/s), which can simply
overwhelm routers or traffic analyzers, which try to process
packets. It forces introduction of packet sampling techniques
and, therefore, it also introduces the possibility of inaccuracies.
Even at 1 Gbit/s, the measurement can result in enormous
amount of data to process and store within the monitoring
period [3].

To overcome the heavy load in the backbone and to not
introduce inaccuracies, a smart monitoring algorithm was
needed. There are several approaches to estimate which traffic
flows need to be sampled. Path anomaly detection algorithm
was proposed in [5]. The objective was to identify the
paths, whose delay exceeds their threshold, without calculating
delays for all paths. Path anomalies are typically rare events,
and for the most part, the system operates normally, so there
is no need to continuously compute delays for all the paths,
wasting processor, memory, and storage resources [5]. Authors
propose a sampling-based heuristic to compute a small set of
paths to monitor, reducing monitoring overhead by nearly 50 %
comparing to monitoring all the existing paths.

The next proposals on how to sample network traffic in an
efficient way were made on the basis of adaptive statistical
sampling techniques, and they are presented in [6] and [7].

If a congestion is detected, from user’s perspective it is very
important to know, if the congestion is located on the local or
on the remote side. If the link experiences a local congestion,
the user may be able to perform certain actions, e.g. shut down
an application, which consumes a lot of bandwidth, to ease
the congestion. On the other hand, if the congested link is a
remote link, either in the Internet core or at the server side,
the back-off of the low-priority applications on the user’s side
is unnecessary. It only benefits the high-priority flows from
other users, which compete for that link. Since this altruistic
behavior is not desirable, the low priority TCP only needs to
back off, when the congested link is local [8].

Detecting the location of congestion is a challenging
problem due to several reasons. First of all, we cannot send
many probing packets, because it causes too much overhead,
and it even expands the congestion. Secondly, without router
support, the only related signals to the end applications are
packet losses and delays. If packet losses were completely
synchronized (packets were dropped from all the flows), the
problem would be trivial. In reality, the packet loss pattern is
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only partially synchronized [8]. Authors of [8] attempted to
solve the problem of detecting the location of the congestion
by using the synchronization of the behavior of loss and
delay across multiple TCP sessions in the area controlled
by the same local gateway. If many flows see synchronized
congestion, the local link is the congested link. If the congested
link is remote, it is less likely that many flows from the same
host pass the same congested link at the same time. If there
is only a small number of flows which see the congestion,
the authors performed an algorithm based on queuing delay
patterns. If the local link is congested, most flows typically
experience high delays at a similar level. Otherwise, the
congestion is remote [8].

Traffic can be profiled according to the protocol
composition. Usually, predominance of the TCP traffic is
observed (around 95 % of the traffic mix). When congestion
occurs, TCP sources respond by reducing their offered load,
whereas UDP sources do not. It results in the higher ratio of
UDP to TCP traffic. If the proportion becomes high and the
bandwidth available to TCP connections becomes too low to
maintain a reasonable transmission window, the packet loss
increases dramatically (and TCP flows become dominated by
retransmission timeouts) [3]. Packet sizes provide insight into
the type of packet, e.g. short 40-44 bytes packets are usually
TCP acknowledgment or TCP control segments (SYN, FIN or
RST) [3].

Active methods for QoS monitoring raise three major
concerns. First, the introduction of the test traffic will
increase the network load, which can be viewed as an
overhead cost for active methods. Second, the test traffic can
affect measurements. Third, the traffic entering ISP can be
considered as invasive and discarded or assigned to a low-
priority class [3].

Within an administrative domain (but not across the
entire Internet), performance can be actively monitored using
the data-link layer protocol below IP, as the Operations,
Administration and Maintenance (OAM) procedure in ATM
and MPLS networks. As a result, at the IP layer it is often
desirable to measure performance using the IP/ICMP protocol.
So far, most tools or methods are based on ping (ICMP echo
request and echo reply messages) or traceroute (which exploits
the TTL field in the header of the IP packet) [3].

Although the round-trip times measured by ping are
important, ping is unable to measure the one-way delay
without additional means like GPS to synchronize clocks at the
source and destination hosts. Another difficulty is that pings
are often discarded or low-prioritized in many ISP networks.
Traceroute will not encounter this problem because UDP
packets are used. However, traceroute has known limitations.
For example, successive UDP packets sent by traceroute are
not guaranteed to follow the same path. Also, a returned ICMP
message may not follow the same path as the UDP packet that
triggered it [3].

Although end-to-end performance measurements can be
carried out at the IP layer or the transport/application layer, the
latest is capable of measurements closer to user’s perspective.
The basic idea is to run a program emulating a particular
application that will send traffic through the Internet. All the

parameters (delay, loss, throughput, etc) are measured on the
test traffic. This approach has one major drawback - custom
software needs to be installed at the measurement hosts [3].

On the basis of the mentioned work we found out that
the existing solutions are not sufficient for precise QoS
measurements. This state of affairs motivated us to create
a new system which combines both passive and active
measurement technologies.

III. THE OVERVIEW OF THE METHODS

The flow chart of the system is shown in Figure 1. The
following paragraphs contain detailed description of our
methods. At first, the volunteers must be recruited from the
network users. The volunteers install on their computer a client
program, which captures relevant information about the traffic
and submits the data to the server. On the server these data
are used to generate per-application traffic statistics. The C5.0
Machine Learning Algorithm uses these statistics to learn how
to distinguish between different types of applications and,
later, it generates the classification rules (decision trees).

In order to assess the network QoS level in the core of the
network for particular users we needed to find a method to
capture the relevant traffic. The challenging task is to process
significant amount of traffic in the high-speed networks. When
the relevant flows are captured, per-flow statistics need to
be generated. There are two kind of statistics generated at
this step: One used for determining the kind of application
associated with that flow, and one used for assessing the QoS
level in the passive way. The system uses previously generated
classification rules together with the first type of statistics to
find out which application the flow belongs to. Then, on the
basis of the kind of the application, the system determines
ranges of values of the relevant QoS parameters. The last step
is to check if the current values (obtained from flow statistics
or in the active way) match the expected ones. If not, the
quality of the given service is considered as degraded.

IV. THE CURRENT METHODS FOR OBTAINING
PRE-CLASSIFIED DATA

There are many existing methods for obtaining pre-classified
data, but none of them were feasible to deliver data required
by us to obtain accurate statistics, which could be used
to train Machine Learning Algorithms (MLAs). The traffic
classification requires the packets to be logically grouped into
some structures, which could be assigned to the particular
application. The most common used structure among the
classification methods is the flow defined as a group of packets,
which have the same end IP addresses, ports, and use the
same transport layer protocol. In this paragraph we describe
the methods and evaluate their usefulness in providing data
for our system.

A. Capturing raw data from the network interfaces

The first possibility is to install one application at a time
on a host, and to capture its traffic by an external tool,
such as Wireshark [9]. Unfortunately, this approach is very
slow and it is not scalable. At first, it requires us to install
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Figure 1. The flow chart of the system

on a host each application that generates traffic we want to
capture. Before installing the application, we must uninstall
all other applications that can generate any network traffic.
The next drawback is that every operating system has some
background processes and many of them transmit some data
through the network. An example of such a process is the
system updater, which can run in background. There is no
simple way to recognize packets belonging to the traffic
generated by the application intentionally run by us, so the
captured sample contains a variable percentage of noise.
Finally, some applications, for example, web browsers, can
generate various types of traffic. Raw traffic capturers cannot
distinguish interactive web traffic, web radio podcasts, video
transmissions, or downloads of big files, performed by the
same browser.

B. The classification by ports

The port-based classification [10], [11] is very fast, and it
is supported on almost all the layer-3 devices in computer
networks. Unfortunately, this method is limited to services,

protocols, and applications, which use fixed port numbers. It
means that with big probability we can correctly classify, for
example, traffic generated by e-mail clients and file transfer
clients using File Transfer Protocol (FTP), when they use the
default ports to connect to servers. However, even in this case
we have false positives and false negatives. False negatives
result from non-standard ports used in this example by SMTP,
POP3, or FTP servers. When a network administrator changes
the port used by the given service (due to security reasons),
the traffic is not classified correctly. False positives result from
malicious applications, which intentionally use some well-
known port numbers to be treated in the network with a
priority, or to be able to transmit data at all. Such situation
exists when a Torrent user runs his client on port 80, which
cause the traffic to be treated as if it originated from a web
server. Another big concern of port-based classification is the
inability of recognizing different types of traffic using the
same transport-layer protocol and the same transport-layer
port. This drawback is strongly visible in the example of HTTP
traffic, which can consist of data generated by interactive
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web browsing, audio and video streaming, file downloads, and
HTTP tunneling for other protocols. Finally, the classification
made by ports is unable to deal with protocols using dynamic
port numbers, like BitTorrent or Skype [9], [12], [13].

C. The Deep Packet Inspection (DPI)

The big advantage of the Deep Packet Inspection (DPI) [14] is
the possibility to inspect the content of the traffic. It includes
both inspecting particular packets, and inspecting flows in the
network as the whole. For that reason, it makes it possible
to distinguish different kinds of content generated by the
same application, or using the same application-layer protocol,
such as HTTP. However, DPI is slow and requires a lot of
processing power [9], [12]. Therefore, due to high load in
today’s network infrastructures, it is not feasible to run DPI
in the core of the network. Speed of Internet connections
provided to private users tends to increase much faster than
processing power of their machines, so performing DPI on
user’s machines became impossible in my case. Feasibility
to perform DPI on the user side does not depend only on
possessing the necessary processing power, but also on the
user’s impression. High CPU usage tends to slow down the
machine and it causes additional side-effects, for example,
a howling CPU fan. For that reason, full DPI can be done
only in a limited number of cases, namely on fast machines
using a slow Internet connection. DPI also brings privacy and
confidentiality issues, as it can reveal some highly sensitive
personal data, such as information about used credit cards,
logins and passwords, websites visited by the user, etc [9].
Moreover, DPI is unable to inspect encrypted traffic. Finally,
DPI depends on signatures of various protocols, services, and
applications, which need to be kept up to date.

D. The statistical classification

Solutions using statistical classification became quite popular
during the last few years [14]. To its characteristics we can
include fast processing and low resource usage. Statistical
classifiers are usually based on rules, which are automatically
generated from samples of data. Therefore, such kinds of
classifier often make use of Machine Learning Algorithms
(MLAs). Apart from all these advantages, statistical classifier
have one big drawback – they need to be trained on the
samples of data. So the technique assumes that we have
already correctly classified data, which we can provide as
the input to train the statistical classifier. For that reason, we
cannot use this method to collect and classify the initial portion
of data.

V. THE VOLUNTEER-BASED SYSTEM

The drawbacks of the existing methods for classification of
traffic in computer networks led us to the conclusion that
we need to design and build another solution. Therefore,
we decided to develop a system based on volunteers, which
captures the traffic from their network interfaces, and groups
the traffic into flows associated with the application name
taken from Windows or Linux sockets. The architecture

and the prototype were described and analyzed in [15] and
[16], and the first version of our current implementation
was presented in [17]. Afterwards, the system was extended
to support recognizing different kinds of HTTP traffic, and
it was named Volunteer-Based System (VBS). The detailed
description and evaluation of the extended version of the VBS
system can be found in [18]. We released the system under
The GNU General Public License v3.0, and we published it as
a SourceForge project. The project website [19] contains all
the information needed to use the system ( binary packages,
screenshots, documentation and bug tracking system) as well
as to perform further development (source code, roadmap,
comprehensive documentation of the source code).

The architecture of the system is shown in Figure 2. This
cross-platform solution consists of clients installed on users’
computers (Microsoft Windows XP and newer and Linux are
supported), and of a server responsible for storing the collected
data. The client registers information about each flow passing
the Network Interface Card (NIC), with the exception of traffic
to and from the local network. The captured information
are: The start time of the flow, the anonymized identifiers
of the local and the remote IP addresses, the local and the
remote ports, the transport layer protocol, the anonymized
identifier of the global IP address of the client, the name of
the application, and the identifier of the client associated with
the flow. The system also collects information about all the
packets associated with each flow: The identifier of the flow
to which the packet belongs, the direction, the size, the TCP
flags, the relative timestamp to the previous packet in the flow,
and the information about the HTTP content carried by the
packet. It is worth mentioning that one flow can contain many
higher-layer streams, for example, one TCP flow can contain
multiple HTTP conversations. Each of these conversations can
transfer different kinds of content, like web pages, audio and
video streams, or downloads of big files. For that reason we
extract from HTTP headers information necessary to precisely
separate the HTTP streams, and we append the information
about the type of the stream to the first packet of the stream.

The collected information is then transmitted to the server,
which stores all the data in a MySQL database for further
analysis. The system was shown in [18] to be feasible
and capable of providing detailed per-application information
about the network traffic. An example of stored flows on
the server side is shown in Table I. The IP addresses for
privacy reasons are translated by a one-way hash function
and they are stored as anonymized identifiers. The information
about the packets belonging to one complete TCP conversation
is presented in Table II. As shown, this is an HTTP
communication, during which there were transferred two files
of the same type with identifier 22 (text/html).

The data collected during our experiments by the Volunteer-
Based System were used for training the C5.0 Machine
Learning Algorithm to be able to recognize traffic generated
by different types of applications and different types of traffic.
The first approach, focusing on distinguishing 7 different
applications (Skype, FTP, torrent, web browser, web radio,
America’s Army and SSH) and achieving accuracy of over
99 % was described and evaluated in [20]. The second
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Figure 2. Overview of the VBS system [16]

Table I
EXAMPLE OF THE STORED FLOWS DATA

flow id client
id

start time local IP remote IP local
port

remote
port

protocol
name

global client
IP

application name

1193430 4 1325445237826039 d1e0229 fb70266 48293 25395 UDP 178a02f1 uTorrent
2393417 5 1325445237826176 f4c025e 12230296 2276 80 TCP 177d02ef chrome
1193423 1 1325445237826304 d20022b 11920285 53778 80 TCP 12350297 firefox
1484673 4 1325445237825884 d1e0229 12170293 58104 993 TCP 178a02f1 thebat
3429674 4 1325445236820017 d1e0229 14cb02b9 61159 80 TCP 178a02f1 Dropbox
3329860 1 1325445237044777 d20022b 1199028a 47801 80 TCP 12350297 plugin-container
3829589 1 1325445236797638 d20022b 124d0296 36868 80 TCP 12350297 wget
3474027 4 1325445212663601 d1e0229 14db02c2 63409 24536 UDP 178a02f1 Skype
4194793 1 1325445280781252 d20022b 1206028f 53331 22849 TCP 12350297 amule

Table II
ONE TCP COMMUNICATION STORED IN THE DATABASE

flow id direction packet size
[B]

SYN
flag

ACK
flag

PSH
flag

FIN
flag

RST
flag

CWR
flag

ECN
flag

URG
flag

relative timestamp
[µs]

content type

2784673 OUT 60 1 0 0 0 0 0 0 0 0 1
2784673 IN 60 1 1 0 0 0 0 0 0 30012 1
2784673 OUT 52 0 1 0 0 0 0 0 0 44 1
2784673 OUT 431 0 1 1 0 0 0 0 0 395 1
2784673 IN 52 0 1 0 0 0 0 0 0 30241 1
2784673 IN 527 0 1 1 0 0 0 0 0 2554 22
2784673 OUT 52 0 1 0 0 0 0 0 0 27 1
2784673 IN 539 0 1 1 0 0 0 0 0 10455 22
2784673 OUT 52 0 1 0 0 0 0 0 0 15 1
2784673 OUT 287 0 1 1 0 0 0 0 0 1383 1
2784673 OUT 52 0 1 0 1 0 0 0 0 15047 1
2784673 IN 269 0 1 1 0 0 0 0 0 16408 1
2784673 OUT 40 0 0 0 0 1 0 0 0 45 1
2784673 IN 52 0 1 0 1 0 0 0 0 13354 1
2784673 OUT 40 0 0 0 0 1 0 0 0 29 1

approach, focusing on recognizing different kinds of HTTP
content (audio, video, file downloads, interactive websites) was
presented in [21].

VI. OBTAINING PER-APPLICATION STATISTICS

The next step was to obtain statistical profiles of flows for
different applications. Therefore, we developed a tool for
calculating statistics on several traffic attributes for each flow
in the database, which fulfills our requirements. The statistics
include 32 attributes based on sizes and 10 protocol-dependent
attributes [20]. We suspect that the attributes based on sizes

are independent of the current conditions in the network (like
for example congestion). All the protocol-dependent attributes
are very general. Precise port numbers are not used, but only
information about whether the port is well-known or dynamic.
This way we avoid constructing a port-based classifier, but we
can retain the information if the application model is more
like client-server or peer-to-peer.

The general calculated statistics are [20]:

• number of inbound / outbound / total payload bytes in
the sample.

• proportion of inbound to outbound data packets / payload
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bytes.
• mean, minimum, maximum first quartile, median, third

quartile, standard deviation of inbound / outbound / total
payload size in the probe.

• ratio of small inbound data packets containing 50 B
payload or less to all inbound data packets.

• ratio of small outbound data packets containing 50 B
payload or less to all outbound data packets.

• ratio of all small data packets containing 50 B payload or
less to all data packets.

• ratio of large inbound data packets containing 1300 B
payload or more to all inbound data packets.

• ratio of large outbound data packets containing 1300 B
payload or more to all outbound data packets.

• ratio of all large data packets containing 1300 B payload
or more to all data packets.

• application: skype, ftp, torrent, web, web_radio, game,
ssh.

The protocol-dependent attributes are [20]:
• transport protocol: TCP, UDP.
• local port: well-known, dynamic.
• remote port: well-known, dynamic.
• number of ACK / PSH flags for the inbound / outbound

direction: continuous.
• proportion of inbound packets without payload to

inbound packets: continuous.
• proportion of outbound packets without payload to

outbound packets: continuous.
• proportion of packets without payload to all the packets:

continuous.
The precise process of obtaining these statistics was

described in detail and evaluated in [20]:

VII. MACHINE LEARNING ALGORITHMS

In the recent literature we can find numerous approaches to
use Machine Learning Algorithms to classify the traffic in
computer networks. The most widely used MLA classifiers
are C4.5 [9] and its modified Java implementation called J48
[12], [22]. Based on statistical analysis, MLAs have the ability
to assign a particular class (like P2P) even to traffic generated
by unknown applications [9]. It was also proved in [22] that
the statistical parameters for encrypted and unencrypted traffic
produced by the same application are similar and, therefore,
the encrypted payload does not influence results of the training
or the classification. The accuracy of the classification by
MLAs was claimed to be over 95 % [9]–[11], [13], [14], [23]–
[25]. The analysis of the related work can be found in [20].

It was found in [11] that results of the classification are most
accurate when the classifier was trained in the same network
as the classification process was performed. This may be due
to different parameters, which are constant in the particular
network, but which differ among various networks. A good
example is the Maximum Transmission Unit, which can easily
influence statistics based on sizes. Therefore, in our design
we decided to train the classifier by volunteers in the same
network as the classifier will be installed. This allows us to
make a self-learning system, where a group of volunteers

Figure 3. Average error rates of the classifiers [20]

in the network deliver data used for training the classifier
constantly improving its accuracy, while all the users can be
monitored in the core using the generated decision rules. The
next advantage of the design is that even if some network
users cannot participate in the data collecting process because
of using other operating systems or devices than supported
(like MacOS, Apple or Android smartphones), they will still
be able to be monitored in the core of the network because
of rules created on the basis of data collected from the other
users.

Our system uses the C5.0 MLA, which is a successor
of C4.5. It is proven to have many advantages over
its predecessor, such as higher accuracy, possibilities to
use boosting, pruning, weighting and winnowing attributes.
Furthermore, the time to generate the decision tree or rules
drastically decreased [26]. In order to test the efficiency of
C5.0, we performed a set of tests during which we used various
training and classification options. The training statistics were
obtained from the data provided by our VBS. During our
research we found relevant set of arguments and discovered
that the best results were obtained using the boosted classifier.
The average accuracy fluctuated between 99.3 % and 99.9 %
depending on number of training and test cases and amount of
data from each case. This behavior is illustrated in Figure 3. It
is worth mentioning that in our experiment we considered only
7 different groups of applications and only flows longer than
15 packets. In our small-scale prototype for tests we decided to
limit the number of applications and take into account Skype,
FTP, torrent, web traffic, web radio traffic, interactive game
traffic and SSH [20]. The limitation of the flow length was
done because we needed to have at least 5 packets to generate
the statistics (the first 10 packets of each flow were skipped
as their behavior is different than the behavior of the rest of
the flow). The detailed description of our methods and results
can be found in [20]. The decision tree generated in this step
can be used to classify the traffic in the real network.

VIII. THE CENTRALIZED MONITORING SOLUTION

This paragraph presents the proposed design of the centralized
monitoring solution which can be placed in any point in the
network to examine network QoS.

Because of heavy load in the high-speed networks, it is not
possible to monitor all the flows passing the central point at the
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same time. Therefore, statistics from only selected flows can
be captured and passed to the C5.0. Selection of such flows
can be based on two methods: Capturing one flow per user and
intelligent switching between the flows. From the QoS point
of view, it is important to discover problems with a particular
user or to inform the user that problems experienced by him
are results of problems in the remote network. If it is the user
who has the problem, then the problem usually influences all
the user’s network activity.

Each application has some special requirements regarding
network parameters. When a small congestion occurs, the
service level can still be sufficient for P2P file downloads,
but Skype communication may be not possible because of big
jitter and delays. It is, therefore, not sufficient to monitor one
random flow at a time, but we need to monitor a flow which
have high quality requirements. Our solution should be built
based on the following assumptions:

• Only one flow per user at a time is consistently monitored
for QoS.

• Statistics for another random flow per user at a time are
passed to C5.0 to discover the application.

• If the application has higher QoS requirements than the
currently monitored, switch monitoring to the new flow;
if not, stick to the current.

• If monitoring of the selected flow discovers problems,
start monitoring few flows at a time to check if this
problem lay on the user’s side or on the remote side.

Because of the dynamic switching between the flows when
determining the application, it is most probable that the system
will not be able to capture flows from their beginning. The
classifier designed by us, which use the C5.0, is able to
determine the application on the basis of the given number
of packets from any point in the flow [20].

Monitoring of the QoS can be done in passive or active
mode. The passive mode relies mostly on time-based statistics,
which are obtained directly from the flow passing the
measurement point. This way, we can assess the jitter, the
burstiness and the transmission speed (both download and
upload). Unfortunately, it is not possible to receive information
about the packet loss or the delay for other than TCP streams
while using this method. For that reason, additional tools
performing active measurements must be involved in the
process of estimating the QoS. One option is to use the ping-
based approach, as it can measure both delay and packet
loss. Unfortunately, other issues can arise. Ping requests and
responses are often blocked by network administrator, or
their priority is modified (decreased to save the bandwidth
or increased to cheat the users about the quality of the
connection). Other options include sending IP packets with
various TTL and awaiting Time Exceeded ICMP messages,
which are usually allowed to be transmitted in all the networks
and their priority is not changed. Active measurements must
be done in both directions (from the user and from the remote
side). The total packet loss and the delay can be calculated
as the sum of the delays and the packet losses from both
directions of the flow. Furthermore, the knowledge of the
direction that causes problems can be used to assess if the

problems are located in the local network or somewhere
outside.

IX. CONCLUSION

The paper shows a novel method for assessing the Quality
of Service in computer networks. Our approach involves a
group of volunteers from the target network to participate in
the initial training of the system, and later in the self-learning
process. The accurate data obtained from the volunteers
are used by the C5.0 MLA to create the per-application
profiles of the network traffic as classification decision trees.
The centralized measurement system uses the decision trees
to determine the applications associated with flows passing
through the measurement point. This knowledge allows us to
precisely define the QoS requirements for each particular flow.
To assess the QoS level two methods are proposed: The passive
and the active one.
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