
 

 

Abstract—Physical-layer-based security aims at ensuring the 

reliability of communication and preventing eavesdropping by 

taking advantage of the physical layer’s characteristics rather 

than the data encryption in upper layer. Cooperation is a way to 

achieve this goal with many benefits for wireless communication. 

In particular, the cooperation scheme called decode-and-forward 

(DF) is discussed in this paper and our objective is to design the 

beamforming weight of each cooperating node which is one 

antenna equipped for maximum achievable secrecy rate. 

Considering that individual power constraint is more reasonable 

than total power constraint and to set noise power levels at the 

destination and the eavesdropper different is more practical than 

the same, we get the whole optimization problem which is 

unconvex. With the help of perfect global channel state 

information (CSI), the problem is solved through a way where 

convex optimization and one-dimensional search are combined 

together. And strict proofs are presented for this method. Then 

zero-forcing (ZF) based simplification and extension to cope with 

multi-antenna case are discussed. Numerical results show that the 

proposed design can significantly improve the security 

performance of wireless systems. 

 
Index Terms—physical layer security, maximum achievable 

secrecy rate, cooperating relays, beamforming, convex analysis. 

 

I. INTRODUCTION 

ECURE data transmission plays an important role in 

wireless communication system. However, the open nature 

of wireless communication makes it vulnerable to wiretapping. 

At physical layer, this problem was first studied by Wyner [1] 

from an information-theoretic perspective. Wyner 

demonstrated that secure communication is possible without 

relying on private (secret) keys if the source-eavesdropper 

channel is a degraded version of the main (source-destination) 

channel, even though the eavesdropper has unlimited 

computation ability and know the coding/decoding scheme. He 

 

 used a concept ‘secrecy rate’ to describe a rate at which 
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information can be transmitted reliably in the main channel and 

can not be wiretapped by the eavesdropper, and defined 

‘secrecy capacity’ as the maximal achievable secrecy rate. 

Then, Wyner’s result was generalized to the Gaussian channel 

[2].In [3] secure communications over broadcast channels were 

studied by I. Csiszár and J. Körner. In recent years, 

considerable efforts have been made to extending this line of 

work to the fading channel like [4] ,[5]. 

To overcome the problem that the traditional single antenna 

system based PHY layer security approaches are infeasible 

when Wyner’s condition is not met [1], [2], some recent works 

have been proposed to make up for this weakness by using 

multiple antenna technique e.g., multiple-input multiple-output 

(MIMO) [6-10], single-input multiple-output (SIMO) [11] and 

multiple-input single-output (MISO) [12-13]. 

Additionally, another more flexible and practical approach is 

relaying cooperation where the source to destination 

transmission is helped by relays. Totally, there are three 

cooperative schemes which can be used to provide security, i.e. 

decode-and-forward (DF), amplify-and-forward (AF) and 

cooperative jamming (CJ). And in particular, the security 

performance of DF based cooperation system has attracted 

much attention in recent years [14-17].  

In [14] and [15], a DF based cooperative protocol was 

considered and beamforming vector of relays was designed for 

the achievable secrecy rate maximization or transmit power 

minimization. However these works just took the circumstance 

with a total power constraint into account.  

Because relays are distributed and independent in many 

applications, individual relay power constraints are more 

reasonable than the total power constraint in these case. As a 

complement, Junwei Zhang considered the maximization of the 

secrecy rate of DF model with individual relay power 

constraints through semidefinite programming (SDP) in [16]. 

But the optimal value we got through the SDP problem may not 

be the maximum secrecy rate of the system, because there is no 

proof that can show the existence of rank-one optimal solutions 

of the SDP problem in [16]. 
Figure 1.  System model 

In this paper, a more practical system model with different 

noise power at different nodes than that in [16] is studied. 
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Based on this model where each cooperating node is one 

antenna equipped, a new algorithm is proposed by combining 

the convex optimization and the one-dimensional search 

together to obtain the maximum achievable secrecy rate with 

sufficient proofs. Then a simplified problem with zero-forcing 

(ZF) constraint is discussed. Further more, in the end, the 

proposed algorithm is generalized to cope with the more 

complicate multi-antenna case. 

This paper is organized as follows. In Section II, we will 

introduce the system model and the DF-based cooperative 

protocol. In Section III, we will propose and prove our 

algorithm for the maximum secrecy rate and the corresponding 

beamforming vector. Then we discuss the simplified problem 

in Section IV and the extension in Section V. Simulation results 

are presented in Section VI, and conclusions are given in 

Section VII. 

 

II. SYSTEM MODEL AND COOPERATIVE PROTOCOL 

In this paper, we first consider a scenario in which there is 

only one source node S , one eavesdropper node E , one 

destination node D and N relay nodes labelled as 

{ ,....., }
N

R R
0 -1

. As Figure 1 illustrates, the source and relays 

are in the same cluster, while the destination and eavesdropper 

are located far away from this cluster. Each network node is 

equipped with only an omni-directional antenna. All channels 

are flat fading, quasistatic and memoryless. The global CSI is 

available for system design. And thermal noise at all nodes is 

zero-mean white complex Gaussian. Besides, it is assumed that 

the number of relays is known before optimization.  

The system works under a DF-based cooperative protocol. 

The protocol is divided into two stages and can be described as 

follows. In Stage I, the source transmits a message to other 

nodes within the cluster, and then the relays receive and decode 

it. When transmitting the symbol
S

x , the received signal at the 

relay
i

R  can be expressed as 

                           
, ,R i S i R i

y x l n= +                                (1) 

where 
i
l Î £  denotes the channel between 

i
R  and S and 

,R i
n  

is the noise at 
i

R with variance 
,R i

s2
. As the distance between 

the source and the relays are not too long, the relays can decode 

the received signal properly. And the power of the signal 

broadcasted by the source would be small so that the faraway 

destination and eavesdropper can receive none of it. 

In Stage II, relay nodes re-encode the decoded message and 

then cooperatively transmit weighted versions of the 

re-encoded symbols to the destination and the eavesdropper. 

When the re-encoded symbol 
S

x% is transmitted by relays, the 

signal 
D

y  which is received at D  equals 

                        
N

D i i S D
i

y whx n
-1

= 0

= +å %                          (2) 

where ( , ,..... )
i

w i N= 01 - 1 means the beamforming factor 

at 
i

R ,
i

h Î £ is the channel between 
i

R  and D , and 
D

n is the 

noise at D with variance 
D

s2 .Then the signal 
E

y which is the 

signal at E  can be expressed as, 

                         
N

E i i S E
i

y wgx n
-1

= 0

= +å %                          (3) 

where
i

g Î £ denotes the channel between
i

R  and E , and
E

n is 

the noise at E with variance
E

s2 . Without the loss of generality, 

all the symbols in the re-encoded message are normalized, i.e. 

[ ]
S

E x
2

= 1%  where []E g  denotes expectation. 

Let’s define [ ,...., ]T
N

w w
0 -1

=w , [ ,...., ]H
N

h h
0 -1

=h , 

[ ,....., ]H
N

g g
0 -1

=g and HR =
h

hh , HR =
g

gg where 

superscripts ( )Tg  and ( )Hg represent transpose and conjugate 

transpose respectively. Then the SNR at D and E  can be 

expressed as /H

D D
s

2
2G = h w  and /H

E E
s

2
2G = g w  

respectively. As discussed in [2], for a given w the secrecy 

capacity ( )
S

C w  is 

( )( ) max{ log( ) log( ) , }

       max{ log( ), }

S D E

D

E

C
1

= 1+G - 1+G 0
2

1+G1
= 0

2 1+G

w

  (4) 

 

III. DESIGN FOR ACHIEVABLE SECRECY RATE MAXIMIZATION 

Aiming at finding out the maximum achievable secrecy rate 

of this system which works under the protocol we described, it 

is obvious that we should try to maximize ( )
S

C w  via the design 

of the beamforming vector. Considering individual power 

constraints is more practical in the relay system, the problem 

what we are interested in is formulated as follows, 

w
maximize:   C ( )

subject to:  , ,...,

S

i i
w p i N

2

? = 0 - 1

w
         (5) 

where 
i

p  is the power constraint for , ,...,
i

R i N" = 0 - 1. 

Because of the property of function max{ , }? and log( )g , in 

order to solve (5), we could solve the following problem first, 

R 

R 

R 

S 

E 

D 

S D 

R E 

source 

relay 
 

destination 

eavesdropper 
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         w
maximize:   

subject to:  , ,...,

H

D

H

E

i i

R

R

w p i N

s

s

2

2

2

1+

1+

? = 0 - 1

h

g

w w

w w         (6) 

which can be re-expressed as 

       w

( )
maximize:   

( )

subject to:  , ,...,

H

E D

H

D E

i i

R

R

w p i N

s s

s s

2 2

2 2

2

+

+

? = 0 - 1

h

g

w w

w w          (7) 

Because /
E D

s s2 2  is a constant, (7) can be simplified into 

w
maximize:   

subject to:  , ,...,

H

D

H

E

i i

R

R

w p i N

s

s

2

2

2

+

+

? = 0 - 1

h

g

w w

w w          (8) 

However, solving (8) is challenging owing to its non-convex 

character. Motivated by [18] and [19], our method is to first 

study a subproblem with the denominator of (8)’s objective 

function fixed, and then use one dimension search to find the 

solution. Moreover, the strict proof of this method is presented. 

A. Subproblem With Fixed H

E
Rs2 +

g
w w  

Fixing H

E
Rs2 +

g
w win (8) to a scalar t, then our problem 

transforms into 

      
w

maximize:   

subject to:  

               , ,...,

H

H

E

i i

R

R t

w p i N

s2

2

+ =

? = 0 - 1

h

g

w w

w w .         (9) 

It is shown that the optimal objective value and optimal 

solution of (9) are influenced by t, which are defined as ( )f t and

*( )tw  respectively. To indicate the relationship between the 

optimal value of (8) and (9), we define a new function

( ) ( ( ) ) /
D

R t f t ts2= + . Definitely, if *t  maximizes ( )R t , then 

*( )R t is the optimal value of (8) and * *( )tw is also the optimal 

point of it.   

However, (9) is also difficult to tackle because of the 

existence of equality constraint. In order to overcome this, we 

changes (9) into the following optimization problem, 

  
w

maximize:   

subject to:  

               , ,...,

H

H

E

i i

R

R t

w p i N

s2

2

+ ?

? = 0 - 1

h

g

w w

w w         (10) 

Let’s define the optimal value of (10) as ( )f t
1

and the 

corresponding optimal point as
*( )w t
1

. Let ( ) ( ) /R t t tj
1

=  

where ( ) ( )
D

t f tj s2

1
= + and denote ( )R t

1
’s maximum point as

t
1
. Then we will have the conclusion stated in theorem 1 as 

follows. 

Theorem 1: 
*( )w t
1 1

 is the optimal point of (8), and ( )R t
1 1

 is 

its optimal value. 

Proof:  

When
*t t= , * *( )tw  is the optimal point of (9) and also is 

the feasible point of (10). So
* *( ) ( )f t f t

1
³ . Then we have the 

relation below, 
* *max ( ) ( ) ( ) ( ) max ( )

t t
R t R t R t R t R t

1 1 1 1
= 납 =    (11) 

In addition, when t t
1

= , assume that * *( ) ( )
H

t R t
1 1 1 1

殞
油薏 g
w w  

E
t ts2

2 1
+ = < . Then we have ( ) ( )f t f t

1 1 1 2
= . Because t t

2 1
< ,  

( ) ( )R t R t
1 2 1 1

> , which contradicts with the fact that t
1
 is the 

maximum point of ( )R t
1

. So we have 

* *( ) ( )
H

E
t R t ts2

1 1 1 1 1
殞 + =油薏 g
w w .                (12) 

Then in order to obtain ( )f t
1 1

 and *( )t
1 1

w  we could focus on 

the following problem, 

w
maximize:   

subject to:  

               , ,...,

H

H

E

i i

R

R t

w p i N

s2

1

2

+ =

? = 0 - 1

h

g

w w

w w .        (13) 

Comparing (13) with (9), it is obvious that ( ) ( )f t f t
1 1 1

= so 

we can got 

 
*max ( ) ( ) ( ) max ( ) ( )

t t
R t R t R t R t R t

1 1 1 1
= = ?   (14) 

Combine (11) and (14) together, we have 

               max ( ) max ( )
t t

R t R t
1

= .                    (15) 

According to (13) and (15), t
1
is also ( )R t ’s maximum point, 

and 
*( )t
1 1

w is also (8)’s optimal point.                                     

In the light of Theorem 1, we can find out the maximum 

point of ( )R t
1

 through solving (10) instead of trying to 

calculate the complicate problem (8) directly. However (10) is 

also non-convex. In order to solve (10), we define a convex 

optimization problem as follows 

       
w

maximize:   Re( )

subject to:  

               , ,...,

H

H

E

i i

R t

w p i N

s2

2

+ ?

? = 0 - 1

g

w h

w w ,       (16) 

where Re( )Hw h is the real part of  Hw h . Then we have the 

following theorem. 

Theorem 2: The optimal solution of problem (16) is also the 

optimal solution of (10). 

Proof:  

Assuming that 
* ( )
R

tw  is an optimal solution of (16), then we 

have  

         
* * *Re (( ( )) ) ( ( )) ( ( ))H H

R R R
t t R t2 =

h
w h w w          (17) 

Supposing that the former equation is invalid, then we have 
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* * *( ( )) ( ( )) Re (( ( )) )H H

R R R
t R t t2> ?

h
w w w h . So we can find 

out [ , )v p? 2 make *Re (( ( ) ) )j H

R
t e v2 =w h  

* *( ( ) ) ( ( ) )j H j

R R
t e R t ev v

h
w w and *Re(( ( ) ) )j H

R
t e v > 0w h . So 

* *Re(( ( ) ) ) Re(( ( )) )j H H

R R
t e tv >w h w h which contradicts that 

* ( )
R

tw  is an optimal solution of (16). Then we have (17). 

Definitely * ( )
R

tw  is also a feasible point of (10) so  

        * *( ( )) ( ( )) ( )H

R R
t R t f t

1
£

h
w w .                  (18) 

Now considering the fact that [ , )t p$ ? 2 which can make  

* * *Re (( ( ) ) ) ( ( ) ) ( ( ) )j H j H jt e t e R t et t t2

1 1 1
=

h
w h w w and *Re(( ( )t

1
w  

) )j He t ?h . Here we can find that *( ) jt e t

1
w is still the optimal 

point of (10) and the feasible point of (16). So 
* *

* *

Re (( ( )) ) Re (( ( ) ) )

            ( ( ) ) ( ( ) ) ( )

H j H

R

j H j

t t e

t e R t e f t

t

t t

2 2

1

1 1 1

³

= =
h

w h w h

w w
       (19) 

 (17), (18), (19) together lead * *( ( )) ( ( )) ( )H

R R
t R t f t

1
=

h
w w  

which means * ( )
R

tw is an optimal point of (10).                      

B. Search for the Optimal Solution 

In order to obtain ( )R t
1

’s maximum point through which we 

could find out *( )w t
1 1

, let’s state some properties of ( )f t
1

and

( )R t
1

. 

Theorem 3: ( )tj  is a concave function of t . 

Proof:   

The proof is similar to the steps performed in [19, section IV], 

and therefore is sketched.  

We convert (16) into an equivalent real case as shown below, 

maximize:   

subject to:  

               W W , ,...,

T

T

E

i i N i

t

p i N

s2

2 2

+

+ P ?

+ ? = 0 - 1

W

g

W H

W W     (20) 

where [Re ( ), Im ( )]T T T=W w w , [Re( ), Im( );
g g

R RP = -
g

 

Im( ),Re( )]
g g

R R . And Im( )
g

R is the imaginary part of matrix

g
R , W

i
 is the ith element of vector W . 

Then considering the following convex optimization 

problem, 

minimize:   

subject to:  

               W W , ,...,

T

T

E

i i N i

t

p i N

s2

2 2

+

-

+ P ?

+ ? = 0 - 1

W

g

W H

W W     (21) 

it is obvious that (21)’s optimal value is the opposite to (20)’s 

and they have the same optimal solutions. The Lagrangian of 

(21) is  

( , , ) ( )T T

E
L tml ms2= - + + P -

g
W W H W W  

         ( )

( )
       = ( )

( )

                                   

N

i i i N i
i

T
N NT

T
N N

N

E i i
i

W W p

diag

diag

t p

l

l
m

l

ms m l

-1
2 2

+
= 0

´

´

-1
2

= 0

+ + -

念 ÷ç ÷ç- + P + ÷ç ÷ç ÷ç曜

+ - -

å

å

g

0HH
W W

0W H
  (22) 

Then the dual objective function is ( , )G ml =  

minimize ( , , )L ml
W

W which reaches the minimum at *W  

which is an optimal solution of (21). So 

      
* *

*

( , )

( )
( ) ( )

( )( )

.

T
N NT

T
N N

N

E i i
i

G

diag

diag

t p

ml

l
m

l

ms m l

´

´

-1
2

= 0

=

念 ÷ç ÷ç- + P + ÷ç ÷ç ÷ç曜

+ - - å

g

0HH
W W

0W H
 (23) 

Through a similar way in [19], (21)’s dual problem can be 

written as 

,

*

maximize 

subject to 

             

( )
             

( )( )

N

E i i
i

T

N N

T
N N

t p

diag

diag

ml
ms m l

m

l

l
m

l

-1
2

= 0

´

´

- -

?

0

- + P + 0
念 ÷ç ÷ç ÷ç ÷ç ÷曜

å

g

0HH

0W H

f

f

(24) 

Then (20)’s duality can be got through writing out the 

opposite of (24): 

,

*

minimize 

subject to 

             

( )
             

( )( )

N

i i E
i

T

N N

T
N N

t p

diag

diag

ml
m l ms

m

l

l
m

l

-1
2

= 0

´

´

+ -

?

0

- + P + 0
念 ÷ç ÷ç ÷ç ÷ç ÷曜

å

g

0HH

0W H

f

f

(25) 

Due to the convexity of (20), strong duality holds and the 

optimal value of (25) is
*( )TW H . Definitely multiplied by

*( )TW H , the optimal value of (25) becomes
*(( ) )T 2W H . From 

Theorem 2 we know that the square of optimal value of (20) is 

equal to (10)’s optimal value. From all this, the optimal value of 

the following problem is exactly ( )f t
1

: 

* * *

,

*

minimize ( ) ( ) ( )

subject to 

             

( )
             

( )( )

N
T T T

i i E
i

T
N N

T
N N

t p

diag

diag

ml
m l ms

m

l

l
m

l

-1
2

= 0

´

´

+ -

?

0

念 ÷ç ÷ç- + P + 0÷ç ÷ç ÷ç曜

å

g

W H W H W H

0HH

0W H

f

f

  

                                (26) 

As there must be
*( )T ?W H , by defining

' * =( )Tm mW H , 

' *( )T
i i

l l= W H  and
' ( ,..., )T

N
l l l

0 -1
= , (26) can be 
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expressed as, 

' ' '

,

'

'

'

'

'

minimize 

subject to 

             

( )
             

( )

N

i i E
i

N NT

N N

t p

diag

diag

ml
m l ms

m

l

l
m

l

-1
2

= 0

´

´

+ -

?

0

念 ÷ç ÷ç- + P + 0÷ç ÷ç ÷÷ç曜

å

g

0
HH

0

f

f

 (27) 

Then ( )tj  can be expressed as 

' ' '

,

'

'

'

'

'

minimize 

subject to 

             

( )
             

( )

N

i i E D
i

N NT

N N

t p

diag

diag

ml
m l ms s

m

l

l
m

l

-1
2 2

= 0

´

´

+ - +

?

0

念 ÷ç ÷ç- + P + 0÷ç ÷ç ÷÷ç曜

å

g

0
HH

0

f

f

  (28) 

(28) is a point-wise minimum of a family of affine functions, so 

( )tj  is concave[20, p.80].                                                       

Theorem 4: ( )R t
1

is a quasiconcave function of t .                    

Proof:  

Suppose ( )p x  is a concave function and ( )q x  is a convex 

function, with ( )p x > 0 and ( )q x > 0on a convex set C. We 

can easily get ( ) ( ) / ( )f x p x q x=  is quasiconcave on C 

according to the theorem in [20, p.103]. Then at the base of 

Theorem 3, it can be concluded that ( )R t
1

is quasiconcave for 

( )tj > 0 is concave, t > 0is affine (so convex).                       

Theorem 5: There’s at most a single interval in ( ( ))Dom R t
1

 

where ( )R t
1

 is invariant and any t belongs to this interval will 

be the maximum point of ( )R t
1

. Here ( ( ))Dom R t
1

represents 

the domain of ( )R t
1

. 

Proof:  

First, let’s consider the fact that ( )R t C
1

=  in an interval if 

and only if ( )t Ctj = . Then we just need to prove that there’s 

only a single interval in ( ( ))Dom R t
1

 where ( )tj is proportional 

to t . 

Part I:  

Assume ( )t Ctj =  on two separate interval [ , ]a b  and [ , ]c d

wherea b c d< < < . Then we can get ( )tj  is no bigger than 

Ct on [ , ]b c from (28). As ( )tj is concave, 

( ( ) ) ( ) ( ) ( ) [ , ]b c b cj q q qj q j q+ 1- ? 1- ? 1 [20, p. 67] 

which means ( )tj  is no smaller than Ct on [ , ]b c . 

Consequently, we have ( )t Ctj =  on [ , ]b c . Therefore, there is 

only a single interval where ( )t Ctj = . 

Part II:  

Assume ( )t Ctj =  on [ , ]a b and ( )t C tj
1

=  on [ , ]c d  with

a b c d< < < and C C
1

¹ . Because of (28) we have 

( )t Ct C tj
1

= <  on [ , ]a b . As t > 0 , C C
1

< . Similarly, 

( )t C t Ctj
1

= <  on [ , ]c d . As t > 0 , C C
1

> . Then 

contradiction appears. As a result, there is at most a single 

straight line through the original which partly overlaps with

( )tj . 

Combining the two parts above, we could easily get that 

there’s at most a single interval in ( ( ))Dom R t
1

where ( )R t
1

 is 

constant. 

Suppose ( )t Ctj = if and only if [ , ],t a b a b? . Then from 

(28) we know ( )t Ctj
2 2

<  fort b
2
> . So  

                  
( )

( )
t Ct

R t
t t

j
2 2

1 2

2 2

= < .                       (29) 

Through the similar way, for t a
1
< , there is  

                           ( )
Ct

R t
t

2

1 1

2

< .                              (30) 

Through (29) and (30), we can conclude ( )R t
1

 achieves its 

maximum for [ , ]t a b" ?  as ( )R t C
1

=  on [ , ]a b .                    

Considering Theorem 3-5, we will find that the optimal point 

and maximum value of ( )R t
1

 can be efficiently got using 

Golden Section method which is one of the classic one 

dimensional search algorithms. Before using this algorithm, we 

should find an interval including the optimal point of ( )R t
1

. 

Denote 
min max

[ , ]t t  as this interval. Definitely,  
min

t would be 

E
s2 , and 

max
t  would be the optimal value of the following 

problem, 

 w
maximize:   

subject to:  , ,...,

H

E

i i

R

w p i N

s2

2

+

? = 0 - 1

g
w w

 .      (31) 

The complete algorithm is summarized as follows. 

Proposed Algorithm 

 
1:  Input:

D
s2 ,

E
s2 ,

i
p , g , h . 

2:  begin 

3:      initialize
min

t ,
max

t ,
max min

len t t= - . 

4:      while len e> , where e is the threshold. 

5:          
max max min

. ( )
left
t t t t= - 0618 - . 

6:          
min max min

. ( )
right
t t t t= +0618 - . 

7:          calculate ( ), ( )
left right

R t R t
1 1

. 

8:          if ( ) ( )
left right

R t R t
1 1

< .  

9:               
min left

t t= . 

10:        else if ( ) ( )
left right

R t R t
1 1

>  
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11:             
max right

t t=  

12:        else  

13:             
min left

t t= . 

14:             
max right

t t= . 

15:        end 

16:        
max min

len t t= -   

17:    end 

18:    
max min

( ) /t t t
1
= + 2  

19:    take t t
1

=  into (16) to find out *w . 

20:    calculate ( )*( ) max{log ( ) / / , }
S E D

C R ts s2 2

1 1
= 2 0w . 

21:end. 

22:output: *w , *( )
S

C w . 

 

IV. ZF CONSTRAINT BASED SIMPLIFICATION 

As discussed above, maximizing  ( )
S

C w  under individual 

power constraint is a complicate problem. In this section, we 

simplify the problem using a zero-forcing (ZF) constraint on 

the receiving signal at the eavesdropper, which is equivalent to 

asking HR = 0
g

w w . It is clear from (5) that the optimal w

under ZF constraint is given by 

w
maximize: 

subject to: 

              , ,...,

H

H

i i

R

R

w p i N
2

= 0

? = 0 - 1

h

g

w w

w w          (32) 

From the analysis similar to that in Theorem 2, we have 

(32)’s optimal solution can be got through solving the convex 

problem 

w
maximize: Re( )

subject to: 

              , ,...,

H

H

i i
w p i N

2

= 0

? = 0 - 1

w h

w g          (33) 

Then the maximum secrecy rate under ZF constraint can be 

written as 
* *( ) ( )

max{ log( ), }
H

z z

D

R

s2

1
1+ 0

2
h

w w
               (34) 

where *

z
w  is an optimal solution of (33). Note that this value is 

just sub-optimal, because of the existence of the ZF constraint. 

 

V. EXTENSION TO MULTI-ANTENNA CASE 

In this section, we will study a more complex scenario as an 

extension. In this scenario, relay nodes are equipped with 

multiple omni-directional antennas and other conditions are 

still the same as those in the former scenario. So in stage I, 

when the symbol 
S

x is transmitted, the received signal 
,R i

y  at 

i
R  is 

                 
, , ,

iN

R i S i j R i
j

y x l n
-1

= 0

= +å                         (35) 

where 
,i j

l  means the channel between the source and 
i

R ’s jth 

antenna, 
i

N means the number of  
i

R ’s antenna,
,R i

n  is the 

noise at 
i

R with variance 
,R i

s2 . 

In stage II, when symbol 
S

x% is transmitted, the received 

signal 
D

y  at D  equals  

                   
, ,

iNN

D i j i j S D
i j

y w h x n
-1-1

= 0 = 0

= +檍 %                  (36) 

where 
,

( , ,..... ; , ,...... )
i j i

w i N j N= 01 - 1 = 01 - 1 means the 

beamforming factor at 
i

R ’s jth antenna,
,i j

h Î £ is the channel 

between 
i

R ’s jth antenna and D , and 
D

n is the noise at D

with variance 
D

s2 . The received signal 
E

y  at E  can be shown 

as, 

                  
, ,

iNN

E i j i j S E
i j

y w g x n
-1-1

= 0 = 0

= +檍 %                  (37) 

where 
,i j

g Î £  is the channel between
i

R ’s jth antenna and E . 

Define 
, ,

[ ,...., ]
i

T

i i i N
w w

0 -1
=w , [ ,....., ]T T T

N0 -1
=w w w , 

i
=h  

, ,
[ ,...., ]

i

T

i i N
h h

0 -1
,  [ ,....., ]T T H

N0 -1
=h h h , 

, ,
[ ,...., ]

i

T

i i i N
g g

0 -1
=g , 

[ ,....., ]T T H

N0 -1
=g g g  and  HR =

h
hh , HR =

g
gg . Then we can 

still express the SNR at D and E  as /H

D D
d

2
2G = h w  and 

/H

E E
d

2
2G = g w  respectively. So the secrecy capacity for a 

given wcan still be shown as (4). 

In order to get the maximum achievable secrecy rate, in this 

section, the core optimization problem becomes 

w
maximize:   

subject to:  , ,...,

H

D

H

E

i i

R

R

p i N

s

s

2

2

2

+

+

? = 0 - 1

h

g

w w

w w

w

        (38) 

Here we still obtain a subproblem by fixing the denominator 

of (38)’s objective function as t and change the equality 

constraint of it by substituting " "£ for " "= to get another 

optimization problem. And then, we still denote ( )f t and ( )f t
1

as 

the optimal value of the two optimization problem above 

respectively and define *( )tw , ( )R t , *t ,
*( )w t
1

, ( )R t
1

, ( )tj , t
1
 

through the same way in section III. It can be seen that in this 

section we could have theorems similar with those stated in 

section III. For these theorems, what need to be noted is that (8), 

(10), (16) should be substituted by their counterpart, i.e. (38), 

(39), (40) respectively. 
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w

maximize:   

subject to:  

               , ,...,

H

H

E

i i

R

R t

p i N

s2

2

+ ?

? = 0 - 1

h

g

w w

w w

w

         (39) 

            
w

maximize:   Re( )

subject to:  

               , ,...,

H

H

E

i i

R t

p i N

s2

2

+ ?

? = 0 - 1

g

w h

w w

w

         (40) 

So the proposed algorithm can be easily generalized to tackle 

the multi-antenna case. 

 

VI. SIMULATION RESULT 

In this section, simulations are carried out to investigate the 

performance of the proposed algorithm. For simplicity, we use 

a one-dimensional system model, as illustrated in Fig. 2, where 

the source, relays, destination and eavesdropper are along a 

horizontal line. What’s more, because the source-relay distance 

and the distances between relays are very small compared to the 

source-destination distance and relay-destination distance, the 

source-destination distance and the distances between  different 

relays and the destination can be considered as the same. So are 

the source-eavesdropper distance and the distances between the 

different relays and eavesdropper. To emphasize the effect of 

distance, a simple line-of-sight channel model which contains 

the pass loss and a random phase is used. Generally, we can 

express the channels as /c jh d e q- 2=  where d is the distance, 

c is the path loss exponent chosen as 3.5 and random phase q is 

uniformly distributed over[ , )p0 2 . The number of relays is set 

to 6, i.e. N = 6and the eavesdropper are fixed at 60 m. For 

individual power constraints, we assume each relay has the 

same power budget: /
i T

p p N=  where 
T

p represents the total 

power constraint of the DF based system. And the noise power 

dBm
D

s2 = -55 and dBm
E

s2 = -65 . 

 
Figure 2.  Model used for simulation 

 
Figure 3.  Secrecy rate versus the position of source/relays. 

We will examine the maximum achievable secrecy rate of 

the DF based system calculated by the algorithm proposed in 

section III (labelled as CvxGld-DF) and the maximum secrecy 

rate under ZF constraint obtained by the simplified method 

discussed in section IV (labelled as ZF-DF). For comparison, 

we also examine the performance of direct transmission (DT) 

scheme and the SDP algorithm proposed in [16] (labelled as 

SDP-DF). 

Firstly, we fix the position of destination at 50m and move 

the source/relays from 0 m to 25m. The transmit power is set as 

10mdB for DT scheme. And for DF scheme
T

p  is also set as 

10dBm. We can observe from Figure 3 that the maximum 

achievable secrecy rate always stays at 0 for DT. This is 

because the source-destination channel is always worse than 

the source-eavesdropper channel. And for all DF based 

algorithms, the curves coincided. Maximum secrecy rates got 

by three DF-based algorithms increase when relays move to the 

destination. This can be explained by the fact that even through 

the relay-destination channel and relay-eavesdropper channel 

both become better when the relays move from 0 to 25, the 

improving trend of the former is more remarkable. 

Then we fix the source/relay location at 25m and move the 

destination from 40m to 100m with all other parameters 

unchanged. Figure 4 illustrate that there is a gap between the 

secrecy rate performances of the CvxGld-DF algorithm in this 

paper and the SDP-DF algorithm in [16] when the destination 

located at 90m and 100m.  This  means  that we cannot get the 
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Figure 4.  Secrecy rate versus the position of destiantion. 

 
Figure 5.  Secrecy rate versus total trasmit power/total transmit power 

constraint. 

optimal beamforming vector through the SDP-DF algorithm in 

[16] sometimes. This problem comes from the reason that the 

rank of the optimal solution of the SDP optimization problem in 

[16] may be larger than one under some situation. 

In Figure 5, we fix the destination and source/relays at 50m 

and 0m respectively and let 
T

p varies from 5dBm to 25dBm. 

Correspondingly, the transmit power of DT scheme also 

changes from 5dBm to 25dBm. Figure 5 shows that similar 

secrecy rate performances appear for all DF based algorithms 

with the increase of
T

p . It is easy to understand that the secrecy 

rate performances become better when more power is allowed 

for transmitting. While for DT scheme, the maximum secrecy 

rate always stays at 0 even we use more power to transmit 

signals. This reveals that just enhancing transmit power is 

meaningless when Wyner’s condition is not met for DT 

scheme. 

In Figure 3, Figure 4 and Figure 5, there exists an interesting 

result that ZF-DF can always achieve nearly optimal 

performance. Thus we conjecture that, while we want to reach 

the maximum secrecy rate of an DF-based system under 

individual power constraint, the ZF constraint may be a good 

choice to simplify the optimization problem without leading 

much degradation. However, quantifying the impact of the ZF 

constraint remains an open problem. 

 

VII. CONCLUSIONS 

In this paper, we have considered a DF-based cooperative 

protocol to improve the physical layer security with one 

eavesdropper. Our attention is focused on the design of 

beamforming weight of each cooperating node which is one 

antenna equipped to find out the maximum secrecy rate. 

However our problem formulation is different from others 

because we assume a more practical scenario where the 

beamforming vector is subject to individual power constraints 

and noise power at different node is different. Under the 

assistance of perfect CSI, we have solved the optimal problem 

by combining convex optimization and one-dimensional search 

together and rigorous proof is presented for the correctness of 

our method. Further more, a simplified problem with 

zero-forcing (ZF) constraint and generalization to cope with the 

more complicate multi-antenna case are considered. 
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