
SPDY Accelerator for Improving Web Access Speed

Gen Mineki, Satoshi Uemura, and Teruyuki Hasegawa

KDDI R&D Laboratories Inc., 2-1-15 Ohara, Fujimino-shi, Saitama, 356-8502 Japan
E-mail: {ge-mineki, uemura, teru}@kddilabs.jp

Abstract—It was decided that the next-generation protocol SPDY
proposed by Google would be used as a basis of the technical
specification of the HTTP/2.0 protocol, which has been studied in
the IETF standardization process. SPDY is a protocol to realize
high-speed Web access by using the SPDY session that has been
established between the client and the Web server for
transmitting and receiving page resources. Since a modern Web
page usually consists of multiple page resources that are stored in
multiple domains (multi-domain configuration), the client has to
establish multiple SPDY sessions with multiple Web servers. In
this case, SPDY is not able to realize high-speed Web access since
it takes several seconds to establish multiple SPDY sessions in a
mobile environment with high latency. In this paper, we propose
a SPDY accelerator that can considerably accelerate Web access
speed by combining the SPDY protocol and cache system even in
a multi-domain configuration. We confirmed that the proposed
system can reduce the page-loading time by one-third compared
to the existing SPDY.

Keywords—SPDY, Web contents delivery, cache, reverse proxy

I. INTRODUCTION
Mobile Internet, referred to as Internet access with mobile

terminals via cellular networks, has enabled us to enjoy
various communication services through the Internet anytime
and anywhere. In particular, in accordance the explosive
growth of smartphone users, Web access based on HTTP
using a Web browser has become an indispensable service,
taking their usage trend into account [1]. Following extensive
research, it is found that user satisfaction with her/his Web
access heavily depends on the page-loading time, which is
defined as the time interval from sending a request to
displaying the corresponding Web page [2]. Although “8
seconds [3]” is a well-known threshold below which users will
wait, a shorter page-loading time is now eagerly anticipated as
cellular networks become broadband. For example, the
literature [11] reported that an e-commerce site will lose 1.6
billion dollars if its page-loading time is increased by only 1
second. Since “making Web access faster in order to shorten
the page-loading time” is a crucial issue for not only content
providers but also mobile operators, there have been various
research and development activities [8][9] to tackle this issue.

 Google has proposed SPDY (pronounced speedy) [4] as a
next-generation protocol for Web access. At the 84th IETF
meeting, the HTTPbis Working Group officially decided that
HTTP/2.0, the next version of the HTTP protocol, would be
standardized based on SPDY. In SPDY, a client establishes a
SPDY session with a Web server, which is identified by
FQDN (fully qualified domain name; we call it simply
“domain”), in order to exchange the content through the
session. In other words, a SPDY session is established by the
client with each domain. On the other hand, a modern Web
page usually consists of multiple page resources that are
stored in multiple domains, where, for example, a main
HTML file and other files such as image and movie files (page
resources) are stored separately in different domains. In this
case, the client has to establish multiple SPDY sessions with
multiple Web servers. Therefore, SPDY would not be able to
realize high-speed Web access since it takes several seconds
to establish multiple SPDY sessions in mobile Internet with
high latency.

In this paper, we propose a novel method of realizing faster
Web access with SPDY even in a multi-domain configuration
by reducing the number of SPDY sessions utilizing cache
systems. We newly introduce a SPDY accelerator as a proxy
cache system between Web servers and clients. When a client
requests a main HTML file on a Web server, the SPDY
accelerator analyzes it online. If the URIs (unified resource
identifiers) of page resources listed in the main HTML file
belong to different domains, the SPDY accelerator rewrites
them as if these page resources are stored in the same domain
as the main HTML file. Since the client considers that all the
page resources are stored in a single domain and can thus
obtain them through a single SPDY session, faster Web access
can be achieved even in such multi-domain configurations.

The rest of this paper is organized as follows. Section II
summarizes some related works to improve page-loading
time: extensions of existing HTTP, frontend optimization, and
also SPDY to which our proposal applies. Section III explains
the details of our proposal where the SPDY protocol is
combined with a cache system. Section IV shows the results
of our performance evaluation using our prototype
implementation to verify the effectiveness of our proposal.
Section V concludes this paper and envisions our future works.

ISBN 978-89-968650-0-1 540 January 27 ~ 30, 2013 ICACT2013

II. RELATED WORK
There are several approaches to improving the page-loading

time of a given Web page. Here, we summarize conventional
approaches from the viewpoints of enhancing the protocol and
frontend optimization.

A. HTTP/1.0 and HTTP/1.1
The HTTP protocol is generally utilized when a client

communicates with a Web server to obtain a main HTML file
and its page resources composing the Web page such as image
files, style sheets, and JavaScript. In HTTP/1.0 [5], the client
has to establish a new TCP connection with the Web server
whenever the client is about to obtain a page resource from the
server. In the case where a number of page resources are
included in the Web page, the client has to establish and
terminate the TCP connection with the Web server iteratively.
Since establishing/terminating the TCP connection wastes
time, it is difficult for the client to obtain all the page
resources efficiently in a short period of time. Since the client
can establish Ntcp TCP connections with one Web server, if
the number of page resources to be obtained from a certain
Web server is fewer than Ntcp, the above problem hardly
occurs. However, as Web access becomes a popular and
indispensable communication service, a Web page tends to
include various types and a number of page resources. The
literature [6] reports that one modern Web page includes 44
page resources on average. Therefore, in the case where the
client utilizes HTTP/1.0, it is difficult to achieve high-speed
Web access, since there is an inherent bottleneck caused by
iterative establishment/termination of TCP connection.

In HTTP/1.1 [7], on the other hand, since the client can use
a persistent connection that enables the client to keep one TCP
connection, through which the client can obtain several page
resources from a certain Web server. Thanks to the persistent
connection, the overhead caused by iterative
establishments/terminations of the TCP connection can be
considerably reduced. When the client obtains several page
resources from a certain Web server using this persistent TCP
connection, the client sends a GET request to the Web server
and then receives a response to the request from the Web
server. After that, the client sends a GET request for the next
page resource. Although the client is also allowed to send
multiple GET requests to the Web server continuously without
receiving a response, i.e., HTTP pipelining, the client has to
receive one response after another.

B. Frontend optimization
In order to improve the page-loading time of a given Web

page, frontend optimization is effective [8]. Here, three typical
techniques, domain sharding, use of a content delivery
network (CDN), and CSS sprite, are summarized.

1) Domain sharding
As described in the previous subsection, the existing HTTP

protocol allows the client to establish multiple TCP
connections whose maximum number is Ntcp with one Web
server. Thus, by splitting the page resources of the Web page
across Ndom domains of Web servers, the client can obtain Ntcp

x Ndom page resources concurrently by establishing Ntcp x Ndom
TCP connections. Since the number of DNS lookups increase
as the number of sharded domains increases, the page-loading
time is not always reduced when the number of domain
shardings increases. In the literature [8][9], although the
optimum number of domain shardings depends on the number
of page resources and their volume, it is empirically known
that using two domains yields better results.

2) Use of CDN
The round-trip time (RTT) deeply affects the time needed

to establish a TCP connection between the client and the Web
server. The RTT also affects the downloading time of the page
resources. Thus, it follows that the page-loading time can be
reduced if the client communicates with the Web server in a
shorter RTT. In the CDN, the duplicate of the content
originally stored in the Web server is stored in the cache
servers located near clients: note that the server that possesses
original content is called the “origin server” and the server
located near clients is called the “edge server.” When a
request is generated from a certain client, the CDN processes
the request so that the client can communicate with the nearest
edge server in the minimum RTT. Therefore, by using CDN,
the page-loading time of the client can be reduced.

3) CSS sprite
CSS sprite [10] is a technique to show a part of an image by

using the background position of CSS after consolidating
multiple small image files such as icons into one large image
file. Suppose a certain Web page includes 10 small image files.
The client then has to send HTTP requests to the Web server
10 times. While a CSS sprite is used and the image files are
consolidated into one, the client sends only one HTTP request
to the Web server. By using a CSS sprite, the number of
HTTP requests can be reduced. As a result, the page-loading
time is greatly reduced.

C. SPDY
SPDY [4] is a protocol proposed by Google for the purpose

of improving Web access speed. At the 84th IETF meeting
held in Vancouver, the meeting decided to use SPDY as a
basis of the technical specification of HTTP/2.0, which has
been studied in the IETF standardization process. In SPDY,
the client establishes one SPDY session per domain and
communicates with the Web server using the SPDY session.
The SPDY has the following features:

• Concurrent content receiving with request multiplexing,
• HTTP header compression,
• Content compression,
• Server push.

Thanks to the above features, it can be expected that SPDY
will improve Web access speed compared with the existing
HTTP protocol.

III. SPDY ACCELERATOR
In this section, we describe the method of high-speed Web

access that combines the SPDY protocol and cache system. As
mentioned in Section 2.3, the client has to establish multiple

ISBN 978-89-968650-0-1 541 January 27 ~ 30, 2013 ICACT2013

SPDY sessions with multiple Web servers in a multi-domain
configuration. In this case, SPDY is not able to realize high-
speed Web access since it takes several seconds to establish
multiple SPDY sessions in a mobile environment with high
latency. In this paper, we propose the SPDY accelerator,
which can considerably accelerate Web access speed by
reducing the number of SPDY sessions in a multi-domain
configuration. Figure 1 shows an overview of the proposed
system. The proposed system is composed of a client, Web
servers, DNS servers, and a SPDY accelerator. The SPDY
accelerator plays the role of a reverse proxy cache system.

Figure 2 shows the sequence flow of the proposed system,
where the client receives a main HTML file from Web server
A and subsequently its page resources from Web server B.

1. The client performs DNS lookup of Web server A to
DNS1. DNS1 responds with the IP address of the
SPDY accelerator in response to the client's query.

2. The client sends the request of the maim HTML file
on Web server A to the SPDY accelerator according
to the response from DNS1.

3. On receiving the client's request, the SPDY
accelerator checks whether the main HTML file has
been already cached or not. If not, the SPDY
accelerator accesses Web server A to obtain the main
HTML file.

4. The SPDY accelerator sends the main HTML file to
the client. At that time, if its page resources belong to
domains different from the domain to which the main
HTML file belongs, the SPDY accelerator rewrites
the file itself so that its page resources (site-b.com)
belong to the same domain as the main HTML file
(site-a.com).

5. The client parses the main HTML file and then
understands that all resources included in the Web
page are in a single domain. Therefore, the client can
send and receive all page resources through the single
SPDY session established between the client and the
SPDY accelerator.

Consequently, we were able to realize high-speed Web access
without the unnecessary TCP connection established between
the Web server and the client.

Figure 3 shows the URL rewriting rules in the proposed
system. As shown in Figure 3, the SPDY accelerator adds the
FQDN of the main HTML file as a prefix to the URLs of the
page resources if the FQDNs of the page resources are
different from that of the main HTML file. Thereby, the
SPDY accelerator can easily identify the original URLs by
only removing the FQDN part of the main HTML file.

Figure 1 Overview of the proposed system

Figure 2 Sequence flow

Figure 3 URL rewrite rules

ISBN 978-89-968650-0-1 542 January 27 ~ 30, 2013 ICACT2013

IV. PERFORMANCE EVALUATION
In order to verify the efficiency of the proposed system, we

conducted a performance evaluation by using the prototype
system. Table 1 shows the specifications of the server that
implemented the prototype system.

Table 1 Specifications of the prototype system

Figure 4 shows the system configuration of the
performance evaluation. In this evaluation, we arranged a
client, a SPDY accelerator, two DNS servers, a physical
server operated by 7 VM Web servers, and a dummynet server.
In the literature [6], the average Web page has been
configured with seven DNS lookups and 44 resources whose
total size is 320 Kbytes. According to the literature [6], we
originally created the Web page shown in Figure 5. The Web
page includes 42 image files, which are stored in seven
different domains, a CSS file, and an HTML file; the total size
of this Web page is 320 Kbytes. In this evaluation, we
measured the page-loading time with the SPDY accelerator. In
addition, we also measured the page-loading time of HTTP,
HTTPS, and SPDY. In the case of using HTTP, HTTPS, and
SPDY, the client sends requests to the origin server directly.
Here, a dummynet was used to emulate the mobile
environment. The parameters of the dummynet were set as
follows: the upload bandwidth is set to 1024 kpbs; the
download bandwidth is set to 128 kbps, 256 kbps, 512 kbps,
1024 kbps, 2048 kbps, and 4096 kbps; and the RTT is set to
150 ms. Figure 6 shows the results of measuring the page-
loading time for each condition. As we can see from Figure 6,
the proposed system is significantly faster than SPDY. In this
evaluation, we confirmed that the page-loading time can be
shortened by about a third. Consequently, we confirmed that
by using the proposed system, the page-loading time can be
significantly reduced even when the Web page consists of a
multi-domain configuration.

Figure 4 Evaluation environment

Figure 5 HTML file used in this evaluation

Figure 6 Page-loading time

V. CONCLUSIONS
This paper presented the SPDY accelerator, which is a Web

acceleration system by combining the SPDY protocol and a
cache system. With the current SPDY protocol, the client has

CPU Intel Xeon E5506 (2.13 GHz)
Memory DDR3 16 GB

HDD SATA 2.5 inches 500 GB
NIC 1000BASE
OS CentOS5.8 64 bits

Linux 2.6.18
Application Apache2.2

(mod_spdy,mod_proxy,mod_ssl)

ISBN 978-89-968650-0-1 543 January 27 ~ 30, 2013 ICACT2013

to establish multiple SPDY sessions with multiple Web
servers, when the client is about to load a Web page that
includes several page resources stored in multiple domains
(multi-domain configuration). Since it takes several seconds to
establish multiple SPDY sessions in a mobile environment
with high latency, SPDY is not able to realize high-speed Web
access. In the proposed system, in order to reduce unnecessary
SPDY sessions, the FQDN of the page resource is rewritten so
as to correspond with the FQDN of the Web page. To verify
the effectiveness of the proposed system, we developed a
prototype system and evaluated the page-loading time by
using the prototype system. We confirmed that by using the
proposed system, the page-loading time can be significantly
reduced even when the Web page consists of a multi-domain
configuration.

ACKNOWLEDGMENTS
If needed, one or more (all) author(s) may thank or

acknowledge other people's or organization's helps or support.

REFERENCES
[1] Ministry of Internal Affairs and Communications, 2012 White Paper

Information and Communications in Japan, 2012.
[2] A. Bouch, M.A. Sasse, and H. DeMeer, “Of Packets and People: A

User-centered Approach to Quality of Service,” proc. IEEE
International Workshop on Quality of Service (IWQoS 2000), pp. 189-
197, June 2000.

[3] Zona Research, “The Need for Speed II,” Zona Market Bulletin, no. 5,
April 2001.

[4] R. Peon and M. Belshe, Spdy draft-mbelshe-httpbis- spdy-00, IETF
Internet Draft, Feb 2012.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer
Protocol―HTTP/1.0” IETF RFC1945, May 1996.

[6] S. Ramachandran, “Web Metrics: Size and Number of Resources,”
https://developers.google.com/speed/articles/web-metrics?hl=ja.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol―HTTP/1.1,” IETF
RFC2616, June 1999.

[8] S. Souders, “High Performance Web Sites,” O'Reilly Media, 2007.
[9] S. Souders, “Even Faster Web Sites,” O'Reilly Media, 2009.
[10] Shea, Dave: CSS Sprites: Image Slicing's Kiss of Death, March 2004,

http://www.alistapart.com/articles/sprites, visited on 2010-06-25.
[11] OnlineGraduatePrograms, Instant America, March 2012

http://www.onlinegraduateprograms.com/instant-america/.
[12] Tenni Theurer, “Performance Research, Part 4: Maximizing Parallel

Downloads in the Carpool Lane,” April 2007,
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/.

ISBN 978-89-968650-0-1 544 January 27 ~ 30, 2013 ICACT2013

https://developers.google.com/speed/articles/web-metrics?hl=ja
http://www.onlinegraduateprograms.com/instant-america/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/

