
 

Design of a Near-Minimal Dynamic Perfect Hash 

Function on Embedded Device 
 

Derek Pao, Xing Wang and Ziyan Lu 

Department of Electronic Engineering,  

City University of Hong Kong, HONG KONG 

E-mail: d.pao@cityu.edu.hk, {xingwang4, ziyanlu2}@student.cityu.edu.hk 

 

 
Abstract— There has been a general opinion that it is difficult to 

construct perfect hash tables with high load factor for large 

datasets having a million records. The problem is even more 

challenging if new records can be added to the hash table 

incrementally. In this article, we shall demonstrate the design of 

a dynamic perfect hash function on embedded device based on 

simple bit-shuffle and bit-extraction operations. The achievable 

load factor can be up to 100%, and the amortized memory cost of 

the hash function is about 7 to 15 bits per key for 32-bit keys. 

Incremental updates to the hash table are allowed. The perfect 

hash function for a dataset with 1 million keys can be constructed 

in a few seconds of CPU time. 

 

Keywords— Searching, Dynamic Perfect Hash Table, Embedded 

System, Pipelined Architecture. 

I. INTRODUCTION 

Searching is ubiquitous in computing. A dataset D is a 

collection of N records {ki,vi | 1  i  N}, where ki and vi are 

the key and data of the i-th record, respectively. All the keys 

in D are distinct. Let  = {ki | 1  i  N} be the set of keys in 

D. Given an input key , we want to determine if  is a 

member in . If  = ki, the search operation returns the data vi 

associated with ki in D. Searching is a core operation in many 

real-time packet processing tasks, e.g. IP lookup [11] and 

content inspection [3, 12, 13]. To meet the stringent 

processing requirements, high-end routers are equipped with 

special-purpose hardware accelerators built into the network 

processor [2] or implemented on FPGA/ASIC. 

Hashing [8] is a technique that can solve the searching 

problem in O(1) time on average. A hash function H is a 

mapping of  to integer values within the range from 0 to m1, 

i.e. H: {k1, k2, …, kN}  {0, 1, 2, …, m1}, where m is the 

size of the hash table and m  N. The ratio  = N/m is called 

the load factor, which represents the memory utilization. Two 

distinct keys ki and kj in  are said to have collided under H if 

H(ki) = H(kj). When collisions happen, a search operation may 

involve multiple probes to the hash table. In general, collision 

probability increases with . H is said to be a perfect hash 

function (PHF) if H(ki)  H(kj) for any two distinct keys ki, kj 

. A PHF is said to be a minimal perfect hash function 

(MPHF) if m = N.  

PHFs are highly desirable in hardware-based processing. 

First, the hardware needs not handle collision resolution and 

bucket overflow. Second, the search operation is completed in 

exactly one probe to the hash table. This property helps to 

simplify the control of the hardware pipeline and ensures 

deterministic throughput. There are three major challenges in 

the design of PHF in hardware, namely the memory efficiency, 

scalability and dynamic updates.  

 In this article, we shall present the design of a near-

minimal perfect hash function for dynamic datasets. We test 

our method using datasets with 10K to 2M records, and the 

achievable load factor can be up to 100%. The memory cost of 

the hash function is about 7 to 15 bits per key for 32-bit keys, 

and the logic circuits are fairly simple. Incremental updates to 

the hash table can be allowed.  

II. RELATED WORK 

Hashing is a fundamental concept in computing, and it has 

been studied extensively. However, none of the previously 

proposed methods on the construction of PHF in hardware can 

adequately address the three major issues on efficiency, 

scalability and dynamic updates. Effective algorithms to find 

MPHF for static datasets have been presented in [6], where 

the memory cost of the MPHF is O(log2N) bits per key.  

Whenever a new key is added, the hash table needs to be 

rebuilt completely. Also the MPHFs of [6] use multiplication 

and division operations making the hardware realization 

expensive in terms of logic elements and circuit delay time. 

A classical dynamic perfect hash table was proposed by 

Fredman and Komlos [4]. The search operation involves the 

evaluation of 2 multiplications and 4 divisions, and the 

achievable load factor for Fredman’s method is between 0.2 to 

0.3.  

Cuckoo hashing [10] is another well-known method to 

construct dynamic perfect hash table. It uses 2 hash tables T1 

and T2. A key ki may be stored in one of the two possible 

locations, namely T1[H1(ki)] or T2[H2(ki)]. After the hash 

tables have been constructed, a query operation can be 

completed with at most 2 probes. Keys are inserted one by one 

into the initially empty hash tables. If the home bucket of the 

new key is occupied, the old key is knocked out and the 

insertion algorithm will be called recursive to insert the 

knocked-out key in the other hash table. If the insertion 

procedure gets into an infinite-loop, the hash tables are rebuilt 

by choosing larger table sizes and/or using two new hash 

functions. The allowable load factor is up to 0.5 in order to 

keep the probability of rehash within an acceptable level.  

This work was supported by a grant from the Research Council of the Hong 
Kong Special Administrative Region, China (Project No. CityU 119809). 

ISBN 978-89-968650-0-1 457 January 27 ~ 30, 2013  ICACT2013

mailto:d.pao@cityu.edu.hk


 

Bloom Filter (BF) [1] is an efficient method to determine if 

an input key  is a member of the dataset. A BF uses r hash 

functions, and contains an m-bit vector where m  rN. Let b[j] 

denotes the j-th bit of the m-bit vector. Initially all the bits in 

the bit-vector are set to zero. In the programming phase, for 

each ki  ,  b[Hj(ki)] is set to 1 for 1  j  r. In the query 

phase, for a given input key , if all the bits in the bit-vector 

indexed by Hj() for 1  j  r are equal to 1, then  is 

considered to be a member of . BF may generate false-

positive. The probability of false-positive can be tuned by 

adjusting the parameters r and m. According to the design 

guidelines of [3], the memory cost of the basic BF 

implemented in hardware with a false-positive probability of 

0.1% is about 14.5 bits per key. 

Besides the possibility of producing false-positive, a 

fundamental limitation of BF is that it does not identify the 

matching key. There have been a number of research efforts [7, 

9, 14] to extend BF such that the matching key can be located. 

Despite the sophistication of the extended methods, their 

memory efficiencies are suboptimal. First, multiple BFs or 

counting BFs are required and the on-chip memory cost is on 

the high side, e.g. about 50 bits per key. Second, the load 

factor of the resultant hash table is on the low side, e.g. about 

0.25 to 0.3. This is because the size of the hash table depends 

on the bit-vector length of the underlying BF.  

Ficara et al. [5] presented a method to construct PHF with a 

lower on-chip memory cost by introducing external 

discriminators. A fingerprint hash code for each key is 

evaluated, which will be used to access a discriminator table 

(DT). In a query operation, the system will first look up the 

DT and appends the discriminator bits retrieved from the DT 

to the input key before evaluating the hash function. The 

memory cost of the DT is about 2 to 4 bits per key for data 

sets with a few thousand keys. Ficara’s method has two major 

disadvantages. It takes very long computation time to set up 

the DT such that collisions (for the given dataset) are 

eliminated. Another disadvantage of this method is that 

incremental updates to the data set are not supported. 

III.  PERFECT HASHING WITH BIT-SHUFFLING 

The proposed method is a generalization of the bit-shuffled 

trie for IP lookup [11]. The motivation of our method is 

different from [5]. Since the keys are distinct, we do not see 

any needs to look for external discriminators to differentiate 

the keys. We shall instead apply a hierarchical approach to 

successively divide the dataset into smaller subsets by 

selecting appropriate discriminator bits within the key. When 

each non-empty subset contains one item, a PHF is obtained. 

We shall present a design with 4 processing steps 

implemented in a hardware pipeline. Let the size of the dataset 

be N, where 2
k
 ≤ N < 2

k+1
. A fixed number of bits are chosen 

in the first 3 steps, and the objective is to divide the dataset 

into 2
k-2

 non-empty subsets such that most of the subsets 

contain no more than 8 members. In the last processing step, 

individual members in a subset are mapped to unique 

addresses in the hash table. The proposed method has been 

applied in [13], and in this article we shall present more 

detailed designs and performance evaluations. 

The block diagram of the hardware pipeline is depicted in 

Fig. 1. The bits in the input key are shuffled in each pipeline 

stage according to the control data stored in some internal 

registers or index tables. The first stage bit-shuffle circuit 

(implemented by simple multiplexors controlled by internal 

registers) divides the input key into 3 chunks, A, B and C. 

Chunk A is used as the address to access table T1. Two bit 

indexes are stored in each entry of T1, and they are used to 

control the shuffling of B in the second stage. Chunk B is 

divided into B0 with the two specified bits and B1 with the 

remaining bits. B0 is then concatenated to A to access table T2 

to retrieve another pair of bit indexes. The indexes obtained 

from T2 will be used to control the shuffling of C in the next 

stage. Chunk C is divided into C0 with the two specified bits 

and C1 with the remaining bits. Again, C0 is concatenated to 

{A, B0} to access table T3, and {B1, C1} constitutes the residue 

key (remaining bits of the input key not yet matched). 

Three data fields are stored in T3, a mask-vector, an 8-bit 

block-vector, and a base address. The mask-vector is used to 

specify the bits in the residue key that would be chosen to 

uniquely differentiate the members in the corresponding 

subset. The offset generation circuit takes the residue key, 

mask-vector, and the block-vector as inputs and produces an 

offset value. The final hash address is obtained by adding the 

offset value to the base address retrieved from T3. The hash 

table can be on-chip or stored in external SRAM depending on 

the application requirements.  

We shall explain the operation of the pipeline with an 

example. To simply the discussion, we assume 12-bit keys and 

the system only contains 2 index tables T1 and T3. In this 

example, the key is divided into two chunks, A and B, in the 

first bit-shuffle operation. The selected bits in A are 

highlighted in Fig. 2. Let Tk[i] refer to the i-th entry of table Tk. 

All the keys shown in the example are mapped to T1[0]. Bits 

are numbered from right to left starting from 0. Assume the 

two bit indexes stored in T1[0] are {3, 0}. The second stage 

bit-shuffle circuit divides B into B0 (bits 3 and 0) and B1 (the 

residue key). The keys are mapped to T3 according to the 

value of {A, B0}.  Consider the group {a, b, c, d, e} mapped to 

T3[0]. By taking the 4 selected bits defined by the mask-vector 

to form a 4-bit offset value, the 5 items are mapped to 

addresses {0001, 1010, 1100, 0000, 1000} in the hash table. 

This group of 5 items occupy a block of size 16 in the hash 

table, and 11 out of 16 entries in the block are vacant. We 

shall use two strategies, namely block compaction and block 

overlaying, to improve the memory efficiency of the hash 

table.  

The block compaction strategy is as follow. If the number 

of selected bits in the mask-vector is equal to s, then the group 

is mapped to a logical block of size 2
s
 in the hash table. The 

logical block is said to be partially-filled if the number of 

members in that group is less than 2
s
. A partially-filled block 

of size 8 or below can be compacted to eliminate the empty 

slots. The 8-bit block-vector encodes the original offset 

positions of the members before compaction.  

ISBN 978-89-968650-0-1 458 January 27 ~ 30, 2013  ICACT2013



 

Input key

B
it
-S

h
u

ff
le

R
e

g
R

e
g

R
e

g

Shuffle

R
e

g
R

e
g

R
e

g

R
e

g
R

e
g

R
e

g

+

Offset 

generationBit

index

Bit

index

mask

Base

O
ff
s
e

t

T1 T2 T3

Shuffle

Hash

address

Hash

Table

(on-chip 

or 

external

SRAM)

°°

Data

A

B,C
B

C

B1

B0

C

C0

C1

B1, C1

A, B0

B1

ps

R
e

g
R

e
g

blk_vec

Residue

key

R
e

g

 
 

Figure 1.  Block diagram of the hardware architecture. T1, T2 and T3 are on-chip index tables. 

Consider the group {f, g, h}. Members in this group are 

mapped to a logical block of size 4 with offsets {01, 00, 11}. 

Hence, the block-vector of this group is equal to 0000-1011. 

The offset generation circuit will first extract the bits defined 

by the mask-vector to form the initial offset value i. If the 

block-vector is non-zero (i.e. the block is compacted), then the 

offset value is adjusted by counting the number of 1’s to the 

right of the i-th bit in the block-vector. For item h, its offset 

value is adjusted to 2 after compaction.  

The block overlay strategy is as follow. Logical blocks of 

size 16 and above are called primary-blocks, and logical 

blocks of size 8 and below are called secondary-blocks. 

Primary-blocks (secondary-blocks) are mapped to disjoint 

address spaces with respect to other primary-blocks 

(secondary-blocks). To improve memory efficiency, we allow 

secondary-blocks to be overlaid onto the vacant spaces of 

primary-blocks. Members of the primary-block are 

distinguished from those of the secondary-blocks by the ps-bit. 

The hash table entries correspond to secondary-blocks will 

have the ps-bit equal to 0, whereas members of the primary-

block have the ps-bit equal to 1. In the example of Fig. 3, the 

three secondary-blocks of the groups {f, g, h}, {i, j}, and {k} 

are mapped to the vacant spaces of the primary-block at 

addresses 2, 5 and 7, respectively. The offset-generation 

circuit will also derive the ps-bit value from the mask-vector. 

The pipeline will output the triple (hash address, residue key, 

ps-bit). If the residue key and the ps-bit stored at the given 

address of the hash table match the outputs of the pipeline, 

then a matching key is found. 

IV.  HARDWARE DESIGN AND EVALUATION 

Implementation of the first stage bit-shuffle circuit is 

straightforward. We can use L multiplexors (MUXs), where L 

is the key length, to divide the input key into chunks A, B and 

C. The control bits of each MUX are pre-loaded to some 

internal registers during system initialization. Let the length of 

A, B and C be LA, LB and LC, respectively, and LB = (L – 

LA)/2, and LC = (L – LA)/2. The second and third stage bit-

shuffle circuits are essentially the same. Let B = { 01,...,bb
BL  } 

and the two indexes retrieved from table T1 are I1 and I0, 

where I1 > I0. The bit-shuffle circuit produces two sets of 

outputs B0 = {x1, x0} and B1 = { 03 ..., , yy
BL  }. B0 can be 

produced by 2 MUXs. The output yi is generated based on the 

equation:  





















iIb

IiIb

Iib

y

i

i

i

i

1 if

1 if

 if

12

101

0

 

Next we consider the offset generation circuit. Let’s consider a 

simple case for a 3-bit bit-extract circuit. The two inputs to the 

circuit are the mask-vector {m2, m1, m0} and the data bits {b2, 

b1, b0}, and the outputs bits are {x2, x1, x0}. The Boolean 

equations for the output bits are:  

)( 221110000 bmmbmmbmx   

22102211101 )( bmmmbmmbmmx   

22102 bmmmx   

count

Extract

C1[Lc-1,..,0]

maskB

B1[Lb-1,..,0]

Extract

Merge-circuit

maskC

Compact
block_vec

Z[2,1,0]

Z’ [2,1,0]

x[Lb-1,..,0]y[Lc-1,..,0]

Z[Lb+Lc-1,..,3]

Final offset
 

Figure 2.   Block diagram of the offset generation circuit. 

The number of terms in the Boolean equations for the basic 

bit-extract circuit increases rapidly with the length of the 

mask-vector. Hence, we adopt a hierarchical approach to 

implement the offset generation circuit as depicted in Fig. 2. 

We use two separate basic bit-extract circuits to extract the 

specified bits from B1 and C1, where the length of B1 and C1 

are no more than 10 bits for 32-bit keys. The outputs of the 

two bit-extract circuits are then merged. A bit-counting circuit 

is used to count the number of 1’s in the mask-vector maskB. 

The output bits of the merge-circuit are produced based on the 

equation shown below, where Lc is the length of the input y. 

ISBN 978-89-968650-0-1 459 January 27 ~ 30, 2013  ICACT2013



 

Item 12-bit key value A B B0 B1 (residue key) Offset (underlined bits in B1) {A, B0} 

a 0000-0000-0010  000 0-0000-0010  00 000-0001 0001 000-00 

b 1000-0000-0100  000 1-0000-0100  00 100-0010 1010 000-00 

c 1000-0010-0000  000 1-0001-0000  00 100-0100 1100 000-00 

d 0000-1000-0000  000 0-0010-0000  00 000-1000 0000 000-00 

e 1001-0000-0000 000 1-0100-0000  00 101-0000 1000 000-00 

f 0000-0000-1010 000 0-0000-0101  01 000-0010 01 000-01 

g 1000-1000-0010  000 1-0010-0001 01 100-1000 00 000-01 

h 0000-1010-1010  000 0-0011-0101  01 000-1110 11 000-01 

i 0000-0001-0100  000 0-0000-1010  10 000-0001 0 000-10 

j 1001-0011-0100  000 1-0101-1010  10 101-0101 1 000-10 

k 0001-0011-0110  000 0-0101-1011  11 001-0101 0 000-11 

Sample set of keys, and the bit-chunks produced by the bit-shuffle operations. Bit indexes stored in T1[0] = {3, 0}.  

 

Table T3  Hash Table 

Address mask-vector block-vector base  Address ps-bit Residue key Item 

000-00 100-0111 0000-0000 0000  0000 1 000-1000 d 

000-01 000-0110 0000-1011 0010  0001 1 000-0001 a 

000-10 000-0100 0000-0000 0101  0010 0 100-1000 g 

000-11 000-0000 0000-0000 0111  0011 0 000-0010 f 

     0100 0 000-1110 h 

     0101 0 000-0001 i 

     0110 0 101-0101 j 

     0111 0 001-0101 k 

     1000 1 101-0000 e 

     1001 0 empty  

     1010 1 100-0010 b 

     1011 0 empty  

     1100 1 100-0100 c 

     1101 0 empty  

     1101 0 empty  

     1110 0 empty  

     1111 0 empty  

 
Figure 3.  Example to illustrate the organization of the hash table.

 















 

c

ccounti

i

i

Lcountiicount

Lcountiicounty

icountx

z

 and  if0

 and  if

 if  

 

 

The compact-circuit is used to support the block compaction 

strategy, which is essentially a bit-counting circuit that count 

the number of 1’s in the block-vector to the right of the given 

index position. For longer key length, e.g. 48  L  64, the 

residue key is divided into 4 to 6 logical partitions, and the 

extracted bits of individual partitions are then merged.  

We evaluate the feasibility of the proposed architecture by 

implementing it using the Xilinx Virtex-5 XC5VSX240T 

device model with speed grade -2. The hardware resource 

utilization and system clock frequency for different system 

configurations are summarized in Table 1. From the design 

reports generated by the design tools, we observe that the 

system clock frequency is limited by the third pipeline stage, 

where T3 is constructed using a relative large number of block 

RAMs. 

 

V. CONSTRUCTION OF LOOKUP TABLES AND MEMORY COST 

EVALUATION 

We start with a data set of N keys. If the average number of 

items mapped to each T1 entry is expected to be about 64, the 

number of selected bits in chunk A is LA = log2(N/64). A 

simple algorithm is used to select the LA bits of A. We will 

first perform a bit-counting for each bit position. Let Ci denote 

the number of keys whose i-th bit is equal to 1. The score of 

the i-th bit is Scorei = min{NCi, Ci}. Chunk A is obtained by 

selecting the LA bits with the highest scores. The remaining 

bits are divided into two equal-sized chunks B and C. In the 

second and third pipeline stage, each group of keys is further 

divided into 4 subgroups. We shall try to balance the size of 

the subgroups in selecting the 2 discriminator bits. The 

computer program developed in C language can construct the 

hash function for data sets with 1 million 32-bit keys in about 

5 seconds when running on a Window XP system with Intel 

Core2 6400 CPU @2.13GHz.  

The memory cost of the proposed method is evaluated 

using randomly generated key sets. In the following 

discussion we shall assume generic key-value pairs, where 

both the key and the value are 32-bit entities.  

ISBN 978-89-968650-0-1 460 January 27 ~ 30, 2013  ICACT2013



 

TABLE 1. SUMMARY OF HARDWARE DESIGN EVALUATION. 

 L = 32 bits L = 48 bits L = 64 bits 

Size of T1   1K 2K 4K 8K 4K 8K 4K 8K 

No. of 

registers 

310 309 308 306 491 492 615 620 

No. of  

LUTs 

607 627 751 905 1390 1689 2129 2484 

No. of  

BRAM 
(36Kb) 

22.5 43.5 85 170 116 227.5 140 279.5 

Clock freq. 

(MHz) 

280 262 200 168 188 156 168 147 

 

Fig.4 shows the load factor of the hash table when the size of 

the dataset is increased while the sizes of the index tables T1 to 

T3 are kept constant. For the static curve, tables T1 to T3 are 

computed from sketch with each dataset instance of the given 

size. For the dynamic curve, the initial size of the dataset is 

equal to 120K in Fig. 4(a) and 240K in Fig. 4(b). The plots 

show the performance when the dataset is increased to the 

given size by dynamic insertions. The contents of T1 and T2 

remain unchanged when new keys are added. In general, the 

achievable load factor with dynamic insertions is slightly 

lower than the static data sets. However, the two become 

almost the same when the size of the data set grows to 2 times 

the initial value. One explanation for this observation is that 

the distribution of keys to T3 is less even when dynamic 

insertions are allowed. As a result, there can be a higher 

number of smaller blocks of sizes 1 to 4, and it is easier to 

overlay these smaller blocks to the empty spaces of the 

primary-blocks.  

 

(a)  

(b)  

Figure 4.  Load factor versus dataset sizes. (a) |T1| = 2K entries,  
(b) |T1| = 4K entries. 

 

(a)  

(b)  

Figure 5.  Overall memory cost (bits per record) versus dataset sizes.  
(a) |T1| = 2K entries, (b) |T1| = 4K entries. 

 

 

(a)  

(b)  
Figure 6.  Dynamic update cost (max. no. of records moved per update)  

versus dataset sizes. (a) |T1| = 2K entries, (b) |T1| = 4K entries. 

ISBN 978-89-968650-0-1 461 January 27 ~ 30, 2013  ICACT2013



 

TABLE 2. COMPARISON OF PERFECT HASH FUNCTIONS

 Fox [6] Fredman [4] Cuckoo 

hashing [10] 

Extended BF 

[14] 

Extended BF [9] Ficara [5] Proposed 

method 

Memory cost of 

the hash function 

Log2N bits/key N/A N/A 40 bits/key 50 bits/key 2 to 4 

bits/key 

7 to 15 

bits/key 

Processing logic 

(implementation 

in hardware) 

Complex,  

2 multiplications 

and 1 division 

Complex,  

2 multiplications 

and 4 divisions 

Depends on 

 the hash 

functions 

Moderate Moderate Simple Simple 

Load factor 100% 20% to 30% Up to 50% 25 to 30% About 25%  

(100% if the table 

is  compacted) 

About 50% 80% to 

100% 

Scalability Good Good Good Good Good Limited Good 

Incremental 

updates 

No Yes Conditional 

(may require 

rehash) 

Yes  

(if there is no 

counter overflow) 

Yes 

(if the hash table is 

not compacted) 

No Yes 

The memory cost of the hash function is fixed for a given 

hardware configuration, i.e. sizes of T1 to T3 are fixed. Fig. 5 

shows the overall memory cost per record taking into account 

the memory space of the hash table. If the key-value pairs are 

stored in a linear list, 64 bits are required per record. The 

overall memory cost of the proposed method can be less than 

64 bits per record when N/|T1| is between 60 to 90. The 

reduction in length for the residue keys stored in the hash table 

contributes to the memory savings.  

Incremental updates to the hash table can be allowed. 

Contents of T1 and T2 remain unchanged in the insertion 

procedure. When new members are added to a T3 entry, the 

mask-vector and the block-vector of the given T3 entry may be 

modified. Members mapped to the given T3 entry will be 

relocated to new locations in the hash table. From Fig. 6, we 

see that up to 19 records may be moved in an insertion 

operation.  

With reference to the above evaluation results, a general 

design guideline based on the ratio w = N/|T1| is proposed. A 

suitable range for w is between 50 to 100, where the load 

factor of the hash table would be between 0.8 to 1. When the 

value of w grows beyond 100, it would be more efficient to 

reorganize the hash function with 2 times the original size of 

T1 if on-chip hardware resources can be available. For a given 

value of w, we can estimate the memory cost of the hash 

function as follows. Two indexes of log2L bits are stored in 

each entry of T1 and T2. The total storage of T1 and T2 is equal 

to (10N log2L)/w bits. An entry in T3 has 3 data fields, mask-

vector, block-vector and the base address. The length of the 

mask-vector is equal to Llog2|T1|4. The base address field 

has log2N bits. The total storage of T3 is equal to 

16N(L+log2w+4)/w bits. The memory cost of the hash function 

is CM = 16(L+log2L+log2w+4)/w bits per key. With w between 

50 to 100, the values of CM are 7.5 to 15, 10 to 20, and 13 to 

25, for L = 32, 48, and 64, respectively.  

VI.  CONCLUSION 

We have demonstrated a practical design of a near-minimal 

dynamic perfect hash function on embedded device. A 

comparison with existing methods is shown in table 2. Our 

method has better overall performance in terms of memory 

efficiency, scalability and dynamic updates. The proposed 

method can be applied to real-time applications that require 

high-speed table lookup, e.g. IP address lookup, packet 

classification, pattern matching, and Named Data Networking.  

 

REFERENCES 

[1] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable 
Errors”, Communications of ACM, Vol. 13, No. 7, pp. 422-426, 1970. 

[2] J. D. Brown, S. Woodward, B. M. Bass, C. L. Johnson, “IBM Power 
Edge of Network Processor: A Wire-Speed System on a Chip”, IEEE 
Micro, Vol. 31, Issue 2, pp. 76-85, 2011. 

[3] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, J. W. Lockwood, 
“Deep Packet Inspection Using Parallel Bloom Filters”, IEEE Micro, 
Jan/Feb 2004. 

[4] M. L. Fredman and J. Komlos, “Storing a Sparse Table with O(1) 
Worst Case Access Time”, Journal of the ACM, Vol. 31, No. 3, pp. 
538-544, 1984. 

[5] D. Ficara, S. Giordano, S. Kumar and B. Lynch, “Divide and 
Discriminate: Algorithm for Deterministic and Fast Hash Lookups”, 
ACM/IEEE ANCS, pp. 133-142, 2009.  

[6] E. A. Fox, L. S. Heath, Q. F. Chen and A. M. Daoud, “Practical 
Minimal Perfect Hash Functions for Large Databases”, Comm. of ACM, 
Vol. 35, No. 1, pp. 105-121, 1992. 

[7] J. Hasan, S. Cadambi, V. Jakkula, S. Chakradhar, “Chisel: A Storage-
Efficient, Collision-free Hash-based Network Processing Architecture”, 
ACM/IEEE Int. Symp. on Computer Architecture, 2006. 

[8] T. G. Lewis and C. R. Cook, “Hashing for Dynamic and Static Internal 
Tables”, IEEE Computer, Vol. 21, Issue 10, pp. 45-56, 1988. 

[9] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect Hashing for Network 
Applications”, IEEE Symp. on Information Theory, pp. 2774-2778, 
2006. 

[10] R. Pagh and F. F. Rodler, “Cuckoo Hashing”, J. of Algorithm, Vol. 51, 
No. 2, pp. 122-144, 2004. 

[11] D. Pao, Z. Lu, Y. H. Poon, “Bit-Shuffled Trie: IP Lookup with Multi-
Level Index Tables”, IEEE Int. Conf. on Communications, 2011. 

[12] D. Pao, X. Wang, X. Wang, C. Cao, Y. Zhu, “String Searching Engine 
for Virus Scanning”, IEEE Trans. on Computers, Vol. 60, No. 11, pp. 
1596-1609, 2011. 

[13] D. Pao and X. Wang, “Multi-Stride String Searching for High-Speed 
Content Inspection”, The Computer Journal,  Vol. 55, No. 10, pp. 
1216-1231, 2012. 

[14] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash 
Table Lookup Using Extended Bloom Filter: An Aid to Network 
Processing”, ACM SIGCOMM, pp. 181-192, 2005. 

 

ISBN 978-89-968650-0-1 462 January 27 ~ 30, 2013  ICACT2013


