
Study on the Mobile Mashup WebApp Development
System

Yoon-Seop Chang*, Jae-Chul Kim*, Seong-Ho Lee*, Young-Jae Lim*
*ETRI(Electronics and Telecommunications Research Institute), Korea

ychang76@etri.re.kr, jckim@etri.re.kr, sholee@etri.re.kr, yjlim@etri.re.kr

Abstract— People now expect similar user experiences on mobile
devices as those on PCs, and mobile mashups are also required as
equivalents of existing web mashups. Well-organized systems and
tools are required for easier development of mobile mashups.
However, most of existing systems and tools are not easy because
they are designed for experts not for common users. Tools for
mobile mashups need to be differentiated for each user group.
The design of a new development system for mobile mashup
webapps was proposed considering these two user groups and it
has been implemented successfully in this study. Users can
mashup various useful mobile webapps using GUI tools on the
web browser. The system also includes many useful built-in
blocks for the usage by common users, and these blocks can be
shared and reused among users. It enables easier development of
mobile mashup webapps for both of experts and common users.

Keywords— Mobile Mashup, WebApp, Development System,
Experts, Common Users

I. INTRODUCTION
Mashup is a process of integrating several data and

functions from different sources [1]-[3] and it enables users to
make their own web applications. The web provides an
enormous amount of data as open formats (such as RSS and
Atom) and functions with various interfaces (such as REST,
Javascript and SOAP) for mashup [4]. The statistics on the site
“programmable web” show there are registered 7,770 sites
with published APIs at the time of writing.

Nowadays most people rarely stay in front of PCs, but they
are always carrying network-accessible mobile devices with
them. Emerging devices such as smartphones, pads (tablet-
PCs), PDAs, net-books and so on have taped the latest
technological breakthroughs in wireless networking and
leading market trends [5]. Smartphones and pads have become
necessities in their everyday life, and people use these devices
to access the network wherever they are wandering. For
instance, they search information immediately using their
mobile devices instead of turning on the power of PCs.
Smartphone sales had overtaken those of PCs for the first time
in 2011 according to the research firm “Canalysis”. “Cisco
Visual Networking Index” also shows that global mobile data
traffic grew 2.3-fold in 2011.

People now expect similar user experiences on mobile
devices as those on PCs. In the same manner, mobile mashups
are strongly required as equivalents of existing web mashups
on PCs. While web mashups integrate open web resources,

mobile mashups should also integrate device functionality and
user’s context information (such as location, schedules,
contacts etc.) on mobile devices. As a result, mobile mashups
are able to provide various useful context-aware mobile
applications [6], [7]. There are already a number of mobile
applications in Apple App Store and Google Play, and most of
them came from mashup ideas.

 There is an enormous amount of open resources such as
feeds, open APIs and light-weight programming techniques
(such as HTML, Javascript, CSS) that make it easier to
develop mashup applications. Well-organized systems and
tools are also required for easier development of mobile
mashups. However, most of existing systems and tools are not
easy because they are designed for experts, i.e. developers, not
for common users. Tools for mobile mashups need to be
differentiated for each user group by considering both of two
user groups. Mobile devices have limitations such as screen
size, user interactions and so on. Appropriate tools also should
be prepared for each environment of PC and mobile devices.

This study dealt with issues on easier development
environment for mobile mashups. The design of a new
development system for mobile mashup was proposed and it
has been implemented successfully. Challenges and results of
this study will be presented in following sections.

II. MASHUP DEVELOPMENT ON THE PC AND MOBILE WEB
ENVIRONMENT

There are many cases of studies, suggestions, implemented
systems and final products of development system for web
mashups on PCs compared with mobile mashups. “Mash-o-
matic” is a utility which exploits superimposed information
(SI) referenced to fragments of existing information, and it
was implemented using the middleware and query processor
for SI [8]. “MashMaker” is a tool to edit, query, manipulate,
and visualize live data from web pages [9]. It exports useful
queries as widgets, and all query tasks can be
formulated through interactive browsing and exploration.
“Marmite” extracts contents from web pages and integrates
them in data flow manner [10]. It provides linked views of
program and data, and it suggests available operators based on
the data being processed. IBM “Sharable Code” takes its
domain-specific language (DSL) defined mashups then
generates codes for Ruby on Rails web applications [4]. The
platform contains creator and community applications to

ISBN 978-89-968650-0-1 847 January 27 ~ 30, 2013 ICACT2013

create and share mashups. Yahoo “Pipes” and Microsoft
“Popfly” let users to make mashups using predefined
components with drag-and-drop interfaces. IBM developed
“QEDWiki (Quick and Easily Done Wiki)” and “DAMIA
(Data Mashup Fabric for Intranet Applications)” for
combining user interface components and data mashup.

There were also several studies and experimental
architectures of development system for mobile mashups.
Maximilian [11] discussed challenges of mobile mashup such
as minimizing communication, making possible quick reading,
minimizing user inputs, and novel human interfaces etc.
Cramer et al. [12] also discussed advantages and tradeoffs of
using mobile mashup for research purposes. They mentioned
risks of API changes, service downtime, limit of available
contents and dependency on service strategies etc. Xu et al. [2]
suggested architecture of SOA based mobile mashup platform
which guarantees the quality of services by adopting self
adaptive management on each service level. AT&T developed
a speech mashup platform for multimodal mobile services [1].
The platform allocates speech processing resources on the
server and combines those resources with web contents into
multimodal mobile mashups. Peng et al. [13] suggested
semantic-based mobile platform. The platform recommends
possible links between components by semantic annotation of
input, output parameters and by the probability of links and
services in repository. “TELAR” is a mashup platform for
mobile devices such as the Nokia Internet Tablets [6], [7]. On
the server side, wrappers integrate data from web-based
services. On the client side, the platform integrates context
information of local sensors into context-aware mobile
mashups. Yahoo provides “Pipes” website for iPhone, and the
site has the list-centric interface which make it similar to
native applications [14].

However, former cases, i.e. development systems for web
mashups on PCs, were designed without any consideration of
mobile mashups executed on mobile devices. All of them
were aimed at the development and execution of mashups on
PC web environment. Existing systems for mobile mashups in
latter cases are not easy because those systems were not aimed
at common users. Those systems were designed without any
consideration for direct development of mobile mashups on
mobile devices. Instead, they only dealt with issues on the
development of mobile mashups in PC environment in which
mobile devices only manage the execution of mobile mashup
results. However, common users rarely stay in front of PCs as
mentioned previously. Development environment for mobile
mashups need to be differentiated for common users, and
appropriate tools also should be prepared for each
environment of PC and mobile devices.

III. A NEW DEVELOPMENT SYSTEM FOR MOBILE MASHUPS

A. Challenges for easier development of mobile mashups
A new development system for mobile mashups has been

proposed in this study. The system was designed and
implemented considering following challenges. All these
challenges are prerequisites of easier development
environment for end-users.

• experts vs. common users
• easier procedure of mashup development
• mobile mashups as a form of webapp

Common users almost always bring mobile devices with
them anywhere, and they use a number of mobile apps in daily
life. As a result, they are getting more familiar with those apps
and now have desires to make those apps by themselves using
their ideas. The number of open APIs on the web continues to
grow continuously, and mashup using these APIs is rather
easy to grasp the concept. However, most of existing mashup
systems and tools are aimed at the usage by experts instead of
common users. As a result, it is difficult for common users to
understand and to use those systems and tools. Tools for
mobile mashups need to be differentiated for each user group.
And mobile devices have limitations such as screen size, user
interaction method and so on, so appropriate tools are also
required for each environment of PC and mobile devices.

Procedure of mashup development consists of making an
idea, searching open APIs, wrapping into blocks (or
components), constructing workflow, authoring UIs and so on.
Creating a new block is the task in which common users feel
difficulties because it includes programming and experts also
spends most of time for this during the mashup development.
However, it may be rather easy to make mashups if there are
already all necessary blocks. It is necessary to differentiate
roles between experts and common users about the creation
and usage of these blocks.

Most of mashup developments in existing systems are
workflow-oriented, and users need to understand and predict
inner execution flows among many blocks. It is difficult for
common users who are not familiar with programming. If the
mashup development begins with UI authoring, then it will
become more intuitive for common users. The mobile mashup
development system in this study takes this UI-oriented
approach.

Nowadays a number of applications can be executed on the
web browser, and there are several webapp markets such as
Google’s “Chrome Web Store” and “Open Web App Store”
from Mozilla project. Webapp can be the most suitable form
of mobile mashup application because mobile mashups utilize
open web resources and should solve cross-platform problems.
The advance of standard web technologies such as HTML5,
CSS, and Javascript also promotes the adoption of mobile
mashups as a form of webapp.

B. Approaches in this study for problem solving
As mentioned before, user groups are divided into two

groups, i.e. experts and common users, and tools in the system
were implemented individually for each user group as shown
in Figure 1. Mashup tools for experts take the PC based form
because it should provide whole functionality such as
searching open APIs, making blocks, making webapps, other
managements and so on. These mashup tools were designed to
be executed on PC web browsers and these have richer user
interfaces than those on mobile devices for common users.

 Mashup tools for common users are executed on mobile
devices, i.e. smartphones and pads. These tools provide
limited functionality compared with those for experts. These

ISBN 978-89-968650-0-1 848 January 27 ~ 30, 2013 ICACT2013

tools provide functions for making webapps and partial
management. It is because of the limited programming skills
of common users and the limited hardware of mobile devices.

Figure 1. The mobile mashup development system which was designed
for both of experts and common users.

This study suggested that experts create previously plenty
of built-in blocks using the tools on the PC environment, and
then common users just make mashups using these blocks
without creating any additional blocks. Open APIs in top 10
categories cover over 90% of total usage in mashup
development as shown in Figure 2. It will be very useful if
built-in blocks are ready for these open APIs. The system of
this study already has many built-in blocks over 30 blocks and
continues adding additional blocks.

Figure 2. Open APIs in top 10 categories cover over 90% of total usage.

If the mashup development begins with UI authoring, then
it will become more intuitive for common users. This study
adopted UI-oriented approach instead of workflow-oriented
approach for easier development of mashups. For instance,
creating a new mashup begins with the edit of page layout for
block arrangement, and then user arranges blocks into the
page by drag-and-drop. User can preview the appearance of
each mashup and HTML codes of the mashup can be
generated automatically behind the block builder. All blocks
are posted into the workflow canvas coincidentally during the
above procedure, and the edit of mashup workflow is finally
carried out. Creating a new block also begins with drag-and-

drop UI controls to the canvas in the block builder, and
HTML codes of each block can be generated automatically.

The results from this system take the form of mobile
webapp instead of nativeapp or hybridapp, so those
applications from the system can be executed on various web
browsers in mobile devices. Webapp may be the most suitable
form of mobile mashup application because mobile mashups
utilize open web resources and should solve cross-platform
problems. HTML5, CSS, Javascript and jQuery Mobile library
were adopted in this study for easier development of mashup
applications as the form of mobile webapp.

C. System Architecture of PC based mashup tools
At the time of writing, the implementation of PC based

mashup tools for experts has been finished, and works for
mobile device based tools are going on now. The design of
mobile device based tools has been finished and implemented
results will be shown at the beginning of next year. Figure 3
shows the architecture of implemented system which consists
of three components. One is the mobile mashup engine, the
other is mobile mashup authoring interface, and another is the
mobile runtime environment.

Figure 3. The architecture of mobile mashup webapp development system.

The mobile mashup engine was implemented on the server
side using Java and MySQL. The engine’s main role is to
generate mashup codes, and manage mashup blocks and
webapps in the system. The mobile mashup authoring
interface was implemented on the client side using
HTML5(HTML, CSS, Javascript) and it can be executed on
web browsers such as Chrome, Safari and Internet Explore 9
etc. This interface is a kind of user client which provides
front-end tools for mashup development. It interacts with
mashup engine on the server through DWR (Direct Web
Remoting) interface which enable the interaction between
Java on the server and Javascript on the web browser. User
can make mashups by drag-and-drop and WYSWYG
interfaces. The mobile runtime environment is a kind of
custom web browser with additional runtime library. This
mobile runtime library enables mobile mashup webapps to
access the functionality of mobile devices such as camera,
gallery and so on.

Figure 4 shows components of the mobile mashup engine.
The layout code generator analyzes layout information from
webapp metadata then generates integrated HTML codes. It
optimizes layout for mobile environment by adopting jQuery
Mobile library. Workflow code generator analyzes workflow
information from webapp metadata, and it generates

ISBN 978-89-968650-0-1 849 January 27 ~ 30, 2013 ICACT2013

Javascript codes which controls logical execution of the
mashup. Core and common libraries on the server provide
functions such as Ajax call, proxy generation, data validation,
lifecycle management and so on. These libraries also support
the mashup of REST and Javascript open APIs, and it will be
extended for RSS/Atom, SOAP and so on.

Figure 5 shows components of the mobile mashup
authoring interface. Block builder of the client includes UI
forms for metadata input, Javascript editor for block’s logic,
and HTML editor which supports jQuery Mobile controls.
Webapp builder includes page layout editor and workflow
editor. The client also provides menus to inquiry, preview,
share blocks and webapps in the system.

Figure 4. Components of the mobile mashup engine.

Figure 5. Components of the mobile mashup interface.

IV. IMPLEMENTED RESULTS AND MASHUP EXAMPLES

A. Implemented Results of the System
The user client on the web browser was implemented

using HTML, Javascript and CSS without any plug-in
extension such as Flash, ActiveX and Java Applet. As a result,
the web client can be accessible on various web browsers. The
client supports Google Chrome, Apple Safari and Microsoft
Internet Explorer 9 at this time. The client consists of three

parts; block builder, webapp builder, and the management
menu for blocks and webapps,

The management menu for blocks and webapps consists of
“My Page”, “WebApps” and “Blocks”. “My Page” shows lists
of blocks and webapps of each user (Figure 6). “WebApps”
and “Blocks” each shows list of blocks and webapps open to
all users in the system. Users can inquiry with categories or
can search by keywords for blocks and webapps. Users can
share their blocks and webapps each other among users.
Signed keys for open API usage are also managed and users
can also create, modify and delete their own CSS themes.

Figure 6. Management menu for blocks and webapps.

Blocks in the system consist of three main resources; xml
metadata, HTML codes, and Javascript codes. Block builder
also consists of four editors for these resources (Figure 7).
XML metadata includes the whole information of each block.
This information can be used during edit on the webapp
builder and also used by server components for mashup codes
generation. HTML codes includes UIs layout of each
displayable block. HTML codes can be generated
automatically by drag-and-drop jQuery Mobile controls into
the block builder. Users can also write their own HTML codes
into the HTML editor for more complicated and customized
contents. Javascript codes of each block contain the execution
logic of operations. Skeleton of these script codes can be
generated from the block metadata and this reduces much of
time and costs during the block editing.

Figure 7. Block builder of the mobile mashup web client.

ISBN 978-89-968650-0-1 850 January 27 ~ 30, 2013 ICACT2013

When all necessary blocks are ready, then mobile mashup
webapp can be built from these blocks using the webapp
builder on the web client. The webapp builder consists of
layout editor and workflow editor (Figure 8).

Figure 8. WebApp builder of the mobile mashup web client.

Mobile mashup webapps from the system take the multi-
pages structure using jQuery Mobile library. The layout editor
on the webapp builder supports the edit of multiple pages;
pages creation and modification, toggle and edit of header and
footer, setting navigation buttons and its transition, placement
of grid cell for layout, applying CSS themes to contents,
header and footer.

After finishing the layout edit for all pages, users can
construct workflow for actual execution of the mashup using
the workflow editor. Users drag and drop blocks into cells in
pages, then those blocks are also posted into the workflow
canvas. Users can complete their mashup webapp by linking
input and output parameters of operations among related
blocks. Block’s properties, signed keys for open APIs and
event-listener mapping between blocks also can be configured
in this workflow canvas. Mashup workflows in this study also
include conditional branch blocks, so users can make more
dynamic mashup webapps using these blocks.

B. Mashup Examples using the System
There are already many blocks in the system within

categories such as location, multimedia, social, search,
operators, user inputs and so on. These blocks also can be
shared and modified among users in the system. As a result,
users can make a number of mobile mashup examples using
these blocks and the system. Some typical examples of mobile
mashups using the system are presented below, and there are
already many other mobile mashup webapp examples and
demonstrations in the system.

Figure 9 shows an example of mobile webapp which
mashups Flickr and Google Maps open APIs. “TextInput”
block get a search keyword from user and pass it to the next
“Flickr” block. “Flickr” block search geotagged photos using
the keyword passed from previous block and pass it to the
next. Finally, “Google Maps” block adds markers on the map
using geotagged photos array from the previous block. This
webapp example consists of two pages; one for user input and
the other for map display. “Flickr” block is a kind of

processing block which processes requests and responses for
Flickr open API.

Figure 9. Mobile WebApp example which mashups Flickr and Google
Maps Open APIs.

Other mobile mashup webapps can be made quickly and
easily by replacing “Flickr” block or “Google Maps” block
each to the other image block or map block without additional
works. Appearance of the webapp also can be modified
quickly and easily just using the layout editor on the webapp
builder.

Next example is a mobile webapp which mashups Twitter
open API, one of typical social services (Figure 10). “Twitter”
block searches twits for the keyword input from users. This
mashup webapp displays searched results on the “Listview”
block. The workflow of this mashup includes “ListItems”
block which is an example of operator block which
manipulates items to the suitable format for output on the
“Listview” block. In this example, “Twitter” block can be
replaced with other social blocks like “Facebook” block.
Display of searched results also can be changed quickly by
replacing “Listview” block with other appropriate blocks.

Figure 10. Mobile WebApp example which mashups Twitter Open API.

ISBN 978-89-968650-0-1 851 January 27 ~ 30, 2013 ICACT2013

Last example is a mashup webapp which mashups mobile
device resources in addition to mashable web resources
(Figure 11). The workflow of this webapp includes “Camera”
block which accesses device’s camera functions by using
mobile runtime library. Mobile runtime library has been
implemented within the custom web browser developed in this
study, and webapps using mobile devices functions can be
executed on this custom browser. A number of mobile mashup
webapps can be made by integrating device functions and user
information on mobile devices. If major web browsers become
to support the access of mobile device functions in standard
manner, this custom web browser can be thrown away.

Figure 11. Mobile WebApp example which mashups functions of camera
in smartphone.

C. Further Evaluation of User Experiences
The concept and results of this system have been

introduced in the event “DevOn 2012” which is an annual
event for both of developers and common users hosted by
Daum Communication, one of major portal companies in
Korea. There were positive responses for the system and
useful feedbacks for mobile based system and tools. The
system and more results of it will be shown again to public in
another event “DevDay” and it is expected to become a good
chance for further evaluation of user experiences using the
system.

V. CONCLUSIONS
A new mobile mashup webapp development system has

been designed and implemented for both of experts and
common users. The system is available on various web
browsers, and it provides GUI environment with simple
interactions for easier development. Users can create useful
mobile webapps that mashups open web resources and mobile
device resources. There are already many useful built-in
blocks for mashups and theses blocks can be shared easily
among users in the system. This enables more efficient
development of mobile mashups in the various fields.

PC based system has been implemented at the time of
writing, and additional works for the mobile based system for
smartphones and pads will be completed soon. Users will be
able to make their own mobile mashup webapps on mobile
devices directly and the system will adopt further easier
interfaces for this.

ACKNOWLEDGMENT
This research is supported by Ministry of Culture, Sports

and Tourism (MCST) and Korea Creative Contents Agency
(KOCCA) in the Culture Technology (CT) Research &
Development Program 2011.

REFERENCES
[1] G.D. Fabbrizio, T. Okken, and J.G. Wilpon, “A Speech Mashup

Framework for Multimedia Mobile Services,” Proceedings of the
International Conference on Multimodal Interfaces/Workshop on
Machine Learning for Multimodal Interfaces, pp.71-78, November 2009.

[2] H.Y. Xu, M. N. Song, H. Chen, and J. D. Song, “Research on SOA
based mobile mashup platform for telecom networks,” Journal of China
Universities of Posts and Telecommunications, vol. 15, pp. 31-36, 2008.

[3] K. H. Cheung, K. Y. Yip, J. P. Townsend, and M. Scotch, “HCLS
2.0/3.0: Health care and life sciences data mashup using Web 2.0/3.0,”
Journal of Biomedical Informatics, vol. 41, pp. 694-705, 2008.

[4] E. M. Maximilien, A. Ranabahu, and K. Gomadam, “An Online
Platform for Web APIs and Service Mashups,” IEEE Internet
Computing, vol. 12, pp. 32-43, 2008.

[5] Y.J. Kim and J.B. Sim, “Acceptance-Diffusion Strategies for Tablet-
PCs: Focused on Acceptance Factors of Non-Users and Satisfaction
Factors of Users,” ETRI Journal, vol. 34, pp. 245-255, 2012.

[6] A. Brodt, D. Nicklas, S. Sathish, and B. Mitschang, “Context-Aware
Mashups for Mobile Devices,” Lecture Notes in Computer Science, vol.
5175, pp. 280-291, 2008.

[7] A. Brodt and D. Nicklas, “The TELAR mobile mashup platform for
Nokia Internet Tablets,” Proceedings of International Conference on
Extending Database Technology, pp. 700-704, March 2008.

[8] S. Murthy, D. Maier, and L. Delcambre, “Mash-o-matic,” Proc. of ACM
Symposium on Document Engineering, pp. 205-214, August, 2006.

[9] R. Ennals and M. Garofalakis, “MashMaker: Mashups for the Masses,”
Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 1116-1118, June 2007.

[10] J. Wong and J. I. Hong, “Making Mashups with Marmite: Towards End-
User Programming for the Web,” Proceedings of Conference on Human
Factors in Computing Systems, pp. 1435-1444, April 2007.

[11] E. M. Maxmimilien, “Mobile Mashups: Thoughts, Directions, and
Challenges,” Proceedings of IEEE International Conference on
Semantic Computing, pp. 597-600, August 2008.

[12] H. Cramer, M. Rost, and L. E. Holmquist, “Services as Materials: Using
Mashups for Reasearch,” Proceedings of International Conference on
Ubiquitous Computing, pp. 9-12, September 2011.

[13] Z. Peng, H. Chen, J. Rao, Y. Liu, L. Wang, and J. Chen, “Semantic-
based Mobile Mashup Platform,” Proceedings of International Semantic
Web Conference, November 2010.

[14] J. Trevor, “Doing the Mobile Mash,” IEEE Computer, vol. 41, pp. 104-
106, 2008.

ISBN 978-89-968650-0-1 852 January 27 ~ 30, 2013 ICACT2013

