
Complex Event Processing to Detect Congestions in
Mobile Network

Tatsuya TAKAHASHI*, Hiroshi YAMAMOTO*, Norihiro FUKUMOTO**, Shigehiro ANO**,

Katsuyuki YAMAZAKI*
*Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 Japan

**KDDI R&D Labs. Inc., 2-1-15 Ohara, FujiMino, Saitama, 356-8502 Japan
Contact: taka_tatsu@stn.nagaokaut.ac.jp

Abstract— With a wide spread of smartphones and tablets, a
mobile network becomes frequently congested when many users
concentrate to the same place. Especially when a large-scale
event is held, a heavy network congestion interferes with the
communication of the participants as well as local residents. In
order to detect the network congestion, a large amount of traffic
log should be analyzed in real time. In this paper, the proposed
system attempts to detect a sign of the congestion by using a CEP
(Complex Event Processing). First, by analyzing network status
when the large-scale event, Nagaoka Fireworks festival, is held, it
is observed that the network congestion can be effectively
detected from the combination of (1) the RTT, (2) the specific
type of TCP session termination (FIN-No-ACK) and (3) the
number of retransmission packets. Next, we develop our
proposed congestion detection system by using a CEP for
detecting these metric in real-time. Through the experimental
evaluation, it is concluded that the proposed system can scalably
analyze a large amount of traffic log in real-time.

Keywords— Network Congestion, Mobile Network, Congestion
Detection, Stream Data Processing, Complex Event Processing

I. INTRODUCTION

With a wide spread of smartphones and tablets, a mobile
network becomes frequently congested when many users
concentrate to the same place. The network congestion in a
specific and limited place may cause serious problem. In
particular, when a large-scale event is held, the total amount
of network traffic becomes much larger than usual. And, a
heavy network congestion interferes with the communication
of participants as well as local residents. In order to detect this
network congestion, a large amount of traffic should be
analyzed in real-time.

On the other hand, a stream data processing is widely
studied in order to handle a large amount of data in real-time.
In particular, we focus on a Complex Event Processing (CEP)
[1] which is one of the stream data processing, because the
network traffic is the typical streaming data consisting of
multiple events.

Therefore, this paper proposes a new real-time network
congestion detection system which attempts to detect a sign of
the congestion by using a CEP. We first analyze a traffic
captured on a mobile network when a large-scale event,

Nagaoka Fireworks festival [2], is held in order to decide
functional structure of the system [3]. As a result, it is
concluded that a RTT (Round-Trip Time), a specific type of
TCP session termination and that a retransmission packet are
extracted from the log, and the combination of the three
metrics is useful for detecting the congestion. Then, our
proposed distributed system is implemented using CEP so as
to detect these metrics in real-time. Through the experimental
evaluation, we evaluate the processing performance of our
proposed CEP-based system which is developed on a cloud
computing environment.

II. RELATED WORKS AND OBJECTIVES OF THIS STUDY

The detection method of network failure has been proposed
in order to provide high-quality and high-reliability services
[4], [5]. The network failure expresses a condition where a
communication is stopped due to failure of network
equipment or configuration errors. However, even if a
network failure does not exist, a network congestion occurs
when a large amount of traffic concentrates to a specific place.
Therefore, the network congestion detection method should be
considered in a different manner. In addition, the network
failure is sometimes caused by heavy network congestion [6],
[7]. Hence, the congestion detection is useful for avoiding the
network failure.

On the other hand, a stream data processing becomes
widely studied [8], [9], and is mainly utilized to analyze web
access [10], sensor data [11] and automotive driving [12]. The
processing technique can also be applied to the detection of
the network congestion, because a traffic log is the time series
data generated continuously from the measurement equipment
(e.g., routers, switches).

In particular, we focus on a CEP which is a suitable
technique for quickly analyzing a large amount of data [13],
[14]. By analyzing a combination of multiple data streams or
events, the CEP can extract more effective event from them.
The network traffic is the typical streaming data consisting of
multiple events. Furthermore, analysis of a large amount of
traffic log should be completed in a short time for detecting a
sign of the network congestion. Therefore, by using the CEP,
the network management system can rapidly and precisely
detect the occurrence of the congestion. In this research, we

ISBN 978-89-968650-2-5 900 February 16~19, 2014 ICACT2014

utilize an Oracle CEP [15] for building our proposed system.
Oracle CEP is free for prototyping, and has been applied to
various commercial systems.

Furthermore, in recent years, a web service that provides a
virtual cloud computing environment such as Amazon EC2
(Amazon Elastic Compute Cloud) [16] provided by AWS
(Amazon Web Services) [17] is attracting attention. By
utilizing Amazon EC2, computing resources can be prepared
on-demand for constructing high performance distributed
processing environment [18].

Considering these situations, we propose to use the Oracle
CEP on the virtual machine of an Amazon EC2 so as to detect
a sign of the network congestion in real-time.

III. PROPOSED CONGESTION DETECTION SYSTEM

A. Overview of Proposed System

Figure 1 shows an overview of the proposed CEP-based
congestion detection system. This system is composed of three
functions. First, this system captures data traffic on a
communication path between user terminals and a server on
the Internet. The capture point sends the traffic log to the
distributed processing server in a cloud computing
environment, and a large amount of data is analyzed by
utilizing the CEP. Second, the CEP server analyzes metrics for
congestion detection (i.e., RTT, a specific type of termination
of each TCP session and retransmission packet). Finally, the
CEP notifies a network administrator of a sign of network
congestion. The proposed system utilizes Amazon EC2
because the virtual server is useful for increasing the number
of distributed servers in the future.

Packet Capture Server

PCAP Data

Metric for Congestion Detection

Congestion Detection

Internet

Congestion Notification
with Locations

Network
Administrator

TCP Session
Reconstruction

Extracted TCP Packet

User TerminalServer

Complex Event Processing

Figure 1. Overview of the congestion detection system

B. Functional Detail of Proposed System

Figure 2 represents a functional structure and a flow of the
proposed system. First, the TCP session is reconstructed from
the original captured traffic in order to detect the metric for
network congestion. Next, these network metrics (RTT, a
specific type of TCP session termination (FIN-No-ACK), and
the number of retransmission packets) are derived from the
extracted data. The reason why these metrics are selected for
detecting network congestion is explained in sections IV and
V. Finally, the proposed system detects the network

congestion by analyzing time variation of these network
metrics.

Standard
Deviation

Filtering of the RTT

Average

Calculation of the
Statistical Value

Extraction of the
Close State

Original Data

RTT

Calculation
of the Ratio

FIN-No-ACK
Ratio

Congestion Detection

Input RTT Input
Close State

Reconstruction of TCP Session

Calculation
of the Ratio

Input
Retransmission

Packet

Retransmission
Packet Ratio

Metric for
Congestion
Detection

Figure 2. Functional structure

IV. ANALYSIS FOR EVALUATION METRICS OF CONGESTION

DETECTION

A. Format of the Original Captured Data from PCAP

In this study, the data traffic during the Nagaoka Fireworks
festival is compared with that during the usual day. The
Nagaoka Fireworks festival is ranked as one of the three
biggest Japanese firework festivals. The site of this festival is
Shinano riverside, Nagaoka-city, Niigata-prefecture, Japan,
and it has been held on August 2 (Thu.) and 3 (Fri.), 2012 and
2013. In this festival, more than 400,000 people participate
per one day. Therefore, during the festival, serious congestion
is expected to occur in Nagaoka-city. By analyzing the
captured data traffic, we attempt to extract the sign of the
network congestion.

 In the evaluation, the original data is captured on August 1
(normal day) and 2 (event day), 2012 and 2013. Table 1 shows
a format of the obtained data. The important elements of the
traffic log are summarized below;

 begin, end: Start time and end time of the TCP session.
 close state: Reason why the TCP session is closed. The

detail is explained in section IV-C.
 client_rtt: RTT of the communication path between

user terminals and a capture point. The RTT is
measured when three-way-handshake of TCP session
is performed.

ISBN 978-89-968650-2-5 901 February 16~19, 2014 ICACT2014

TABLE 1. DATA FORMAT OF THE CAPTURED TRAFFIC

8-1_16:59:29.35 8-1_16:59:36.80 clt_fin/srv_fin x.x.x.x a.a.a.a 37238 80 1106 516 8 7 79682
8-1_16:59:45.02 8-1_16:59.49.72 timeout y.y.y.y b.b.b.b 57972 443 839 2348 11 8 77283
8-1_16:59:46.02 8-1_17:01.02.98 srv_fin/clt_fin x.x.x.x c.c.c.c 36028 443 869 34228 26 29 99712
8-1_17:00:52.02 8-1_17:01.30.10 clt_fin/srv_fin z.z.z.z a.a.a.a 58326 80 1141 3069 14 8 186060
8-1_17:01:54.46 8-1_17:02.02.10 clt_fin/timeout z.z.z.z d.d.d.d 57977 443 0 0 2 1 99450

upload
n_packets

download
n_packets

dst ipaddr client rttbegin end close state src ipaddr src port dst port
upload
size

download
size

Server Capture Point User Terminal

② SYN+ACK

① SYN

③ ACK

Acquiring Time-Stamp

Calculating RTT
Figure 3. Metric-1: RTT

FIN-No-ACK
Termination

Server Capture Point User Terminal

① FIN

② ACK

Response
Packet Loss

Figure 4. Metric-2: FIN-No-ACK termination

Server Capture Point User Terminal

ACK

Packet Loss

ACK
Retransmission

Packets in
Download
Direction

Figure 5. Metric-3: Retransmission packet

B. Metric-1:RTT

In this study, the RTT is round-trip time of the
communication path between user terminals and a capture
point as shown in Figure 3. As illustrated in this figure, the
capture point obtains a time-stamp when capturing
“SYN+ACK” packet from the server and “ACK” packet from
the user terminal. The RTT between the capture point and the
user terminal (i.e., mobile access network) is a difference
between these time-stamps. The proposed system measures
RTT of mobile access networks where the network resources

are shared by many users. Therefore, the RTT can represent
the congestion condition of the access network.

C. Metric-2:FIN-No-ACK Termination

We attempt to evaluate whether or not the type of TCP
termination is also useful to detect the congestion. The “close
state” of Table 1 represents a type of the TCP session
termination. Some examples of the close state are as follows:

 srv,clt/fin: the server or client has requested the session
termination.

 srv,clt/rst: the TCP session has been reset by the server
or client

 timeout: Any packet has not been transmitted for a given
time interval.

In this study, we focus on the case of “timeout” after
“srv_fin” event is occurred, because the congestion of the
access network may cause the loss of the response packets as
represented in Figure 4. In this study, the “FIN-No-ACK”
termination is referred to as a case where the timeout is
occurred after “FIN” packet is sent from the server.

D. Metric-3: Retransmission Packets

In recent years, SACK (Selective ACKnowledgement
information) option is set to almost all the TCP sessions.
Therefore, the number of retransmission packets is equivalent
to the number of packet losses. Main reason of the packet loss
is network congestion. The number of packet losses in
download direction is large compared with that in upload
direction because the number of packets in download direction
is larger than that in upload direction. Accordingly, we focus
on the retransmission packet in download direction to detect
the network congestion of the access network.

E. Procedures of each Metric for Congestion Detection

Procedures of analyzing the RTT are described below.
1) Data including the RTT is extracted from the original

captured traffic.
2) The average and the standard deviation of RTT

during each one minute are calculated. Here, a
distribution of the RTT is assumed as a normal
distribution for simplicity, and an upper threshold of
the RTT is decided so that a confidence level
becomes 1%.

3) The average of the RTT values that are smaller than
the threshold are calculated.

Next, procedures of analyzing FIN-No-ACK termination
and the number of retransmission packets are described below.

ISBN 978-89-968650-2-5 902 February 16~19, 2014 ICACT2014

1) The FIN-No-ACK termination and retransmission
packets are extracted from the captured data.

2) The ratio of the FIN-No-ACK termination and the
number of retransmission packets are calculated per
one minute. The calculated value is used to estimate
the degree of the network congestion.

V. EVALUATION OF METRIC FOR CONGESTION DETECTION

A. Time Valuation of the Metrics for Congestion Detection

We evaluated whether the network congestion can be
detected by analyzing the average RTT, the ratio of the FIN-
No-ACK termination and the number of retransmission
packets. Figure 6 shows the time valuation of (a) the average
RTT, (b) the ratio of the FIN-No-ACK termination and (c) the
ratio of the retransmission packet in each minute during 19:30
to 21:00 on August 1 (normal) and 2 (event day), 2012, in
Nagaoka-city. In this figure, the RTT is normalized by the
average value for the two days. People had been the most
concentrating to the venue of fireworks because the fireworks
had been displaying on this period of time.

0

5

10

15

20

19:30 20:00 20:30 21:00Time

N
o
rm

al
iz

e
d

A
ve

ra
ge

 R
T
T

2012_08_01

2012_08_02

Big Fireworks EventFireworks Start

Detected by RTT

(a) Metric-1: RTT

. 00

. 20

. 40

. 60

. 80

100

19:30 20:00 20:30 21:00

Time

R
a
ti
o
 o

f
F
IN

-
N

o-
A
C

K
T
e
rm

in
at

io
n

[%
]

2012_08_01

2012_08_02

Detected by
FIN-No-ACK

(b) Metric-2: FIN-No-ACK termination

. 00

. 20

. 40

. 60

. 80

100

19:30 20:00 20:30 21:00

Time

R
at

io
 o

f
R
e
tr

an
sm

is
si

on
 P

ac
ke

t
[%

]

2012_08_01

2012_08_02
Detected by

Retransmission
Packet

(c) Metric-3: Retransmission packet

Figure 6. Time Valuation of the Metrics for Congestion Detection

The network congestion was not detected on August 1
because Nagaoka Fireworks Festival was not held on this day.
On the other hand, these metrics have increased when big
fireworks event are held on August 2. The average RTT has
increased approximately 20 times, and the ratio of FIN-No-
ACK termination and retransmission packet have increased
50% compared with the usual day. This result indicates that
the communication traffic increased because many
participants may send e-mails and/or use SNS for expressing
impression of the fireworks to their friends or family.

In Figure 6, it should be emphasized that there is the time
when only either the RTT, the FIN-No-ACK termination or
the retransmission packet increases. Therefore, it should be
concluded that the network congestion can be effectively
detected by analyzing the combination of the RTT, the FIN-
No-ACK termination of TCP session and the retransmission
packet.

B. Analysis of each Metric on the Event Date

Figure 7 shows each metric during 19:30 to 21:00 on
August 1 and 2 in 2012 and 2013. As a result, all metrics on
August 2 became larger than that of August 1 in both years.
Therefore, it is concluded that the selected metrics indicate a
sign of the network congestion.

0

100

200

300

400

500

600

Average RTT

A
ve

ra
ge

 R
T

T
 [

m
s]

2013

2012

8/1

8/2

8/1

8/2

(a) Metric-1: RTT

0

1

2

3

4

FIN-No-ACK Termination

R
at

io
 [

%]

2013
2012

8/1

8/2

8/2
8/1

0

1

2

3

4

FIN-No-ACK Termination

R
at

io
 [

%]

2013
2012

8/1

8/2

8/2
8/1

(b) Metric-2: FIN-No-ACK termination

ISBN 978-89-968650-2-5 903 February 16~19, 2014 ICACT2014

0

2

4

6

8

10

Retransmission Packet

R
a
ti
o

[%
]

2012

2013
8/1

8/2

8/1 8/2

(c) Metric-3: Retransmission packet

Figure 7. Each metric measured on August 1(normal day) and 2(event day)

VI. EVALUATION OF PROPOSED CEP FOR CONGESTION

DETECTION

A. Experimental Environment

In this section, effectiveness of our proposed system is
clarified by evaluating whether or not the network congestion
can be detected in real-time. As a performance measure, we
adopt the processing time required for processing one-minute
traffic log. Table 2 shows the evaluation environment. Here,
in order to evaluate feasibility of the cloud-based system, the
evaluation server was deployed on a local host, and virtual
servers of an Amazon EC2 provided by AWS. The virtual
server on Amazon EC2 provides the CPU capacity equivalent
of a 2.0-2.4 GHz 2007 Opteron® or 2007 Xeon® processor
[19].

TABLE 2. EVALUATION ENVIRONMENT.

 Local host
Amazon EC2

(Micro Instance)

OS Ubuntu 12.04 LTS

CPU Clock 2.27GHz * 4 Equivalent of 2GHz

Memory 3.7GB 615MB

B. Block Diagram of CEP

(a) (b) (c)

(d) (e)
Figure 8. Overview of Block Diagram of CEP Application

Figure 8 represents an overview of block diagram of our
developed CEP application. These application components are
invoked when receiving events from others. Since the
analyzed data traffic was already extracted in Nagaoka-city, a
filtering process is omitted from this application. Procedures
for detecting the network congestion are described below.

(a) The “fileReadAdapter” component reads PCAP files
including traffic logs and sends each packet to the
next component as an event.

(b) The “AnalyzePacketBean” extracts the necessary
information for reconstructing TCP session from
received packets and send that to the next component.

(c) The TCP session is reconstructed from the received
events (packets) in the “ReconstructBean”
component. When the RTT is calculated and a type
of TCP session termination is detected, these metrics
are sent to next component with the packet captured
time.

(d) In “DataCacheBean”, the received metric is cached
for one minute in order to detect network congestion.

(e) The “DetectCongestionBean” component executes
congestion detection as described in Section IV-E.

We have completed to implement the application which can
detect only two metrics, the RTT and the ratio of FIN-No-
ACK termination. In the future study, we will implement a
detection method of the number of retransmission packets.

C. Performance Evaluation Results

0

200

400

600

800

1000

0 100 200 300 400 500

Time Step

P
ro

c
e
ss

in
g

T
im

e
[m

se
c
] Local EC2

Figure 9. Time step of the processing time

0

200

400

600

800

1000

0 200 400 600 800 1000

Number of TCP session

P
ro

c
e
ss

in
g

T
im

e
[m

se
c
] Local EC2

Figure 10. Relationship between number of TCP session and processing time

Figure 9 shows the time valuation of the processing time.
As shown in this figure, the processing time on the Amazon
EC2 is slower than that on the local host. Next, Figure 10
represents relationship between the number of TCP sessions
extracted from the traffic log and the processing time. As

ISBN 978-89-968650-2-5 904 February 16~19, 2014 ICACT2014

shown in this figure, the processing time becomes large with
the increase in the number of TCP sessions. However, it is
observed that both systems can detect the network congestion
in real-time because the processing time is kept within only 1
[sec].

Finally, we consider the processing power required to
detect congestion of all areas in Japan. Here, the processing
time does not exceed 1 [sec] when the system analyzed a one-
minute traffic log captured in Nagaoka-city. The processing
load of all areas in Japan may become 300 times larger than
Nagaoka-city because the population of Japan is
approximately 300 times as the population of Nagaoka
Fireworks festival. Thereby, this system needs 5 minutes in
order to detect the network congestion of all areas in Japan.
Furthermore, it is envisaged that detection of retransmission
packets needs further processing power. As a further study, we
will distribute the processing load to multiple servers in order
to improve the performance in the future.

VII. CONCLUSIONS AND FUTURE WORK

In this study, a new network congestion detection system
has been proposed, which analyzes a large amount of network
traffic in real-time by using a CEP (Complex Event
Processing) on the virtual server of Amazon EC2.

We have first evaluated whether the analysis of the RTT,
the type of TCP session termination (FIN-No-ACK) and the
number of retransmission packets are useful for detecting the
congestion. As the analytical result, compared with the usual
day, the average RTT has increased about 20 times, and the
FIN-No-ACK termination and the download retransmission
packet has increased 50% on the event day. Therefore, it has
been concluded that the network congestion can be effectively
detected by analyzing the combination of (1) the RTT, (2) the
FIN-No-ACK termination of TCP session and (3) the number
of retransmission packets.

Next, we have developed the proposed system by using a
CEP on a local host and virtual servers of Amazon EC2. As a
result of evaluation, the process of one-minute traffic log can
be completed no later than 1 [sec], so it has been concluded
that the proposed system can detect congestion in real-time.

In the future work, we will implement a distributed
processing method of our proposed system in order to improve
the performance.

REFERENCES
[1] D. Luckham, “The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems,” May 2002.
[2] Nagaoka Fireworks Festival, http://nagaokamatsuri.com/index.html
[3] T. Takahashi, H. Yamamoto, N. Fukumoto, S. Ano, K. Yamazaki,

“Congestion Detection in Mobile Network towards Complex Event
Processing,” Proceedings IEEE Annual International Computers,
Software & Applications Conference 2013, pp.459-462, July 2013

[4] M. Thottan and C. Ji, “Anomaly detection in IP networks,” IEEE Trans.
Signal Processing, vol.51, no.8, pp. 2191– 2204 (2003).

[5] T. Kihara, N. Tateishi and S. Seto, “A Study on a Fault Detection
Method with Relation Analysis of Network Data,” The Institute of
Electronics, Information and Communication Engineers Technical
Report. Technical Committee on Information and Communication
Management, vol.110, no.466, pp.17-22, March 2011.

[6] News Releases from NTT docomo:
http://www.nttdocomo.co.jp/info/news_release/2011/06/14_00.html

[7] News Releases from KDDI:
http://www.kddi.com/corporate/news_release/2013/0610a/

[8] Apache S4, http://incubator.apache.org/s4/
[9] Strom, http://storm-project.net/
[10] T. Imai, T. Ebiyama, K. Kida and K. Fujiyama and N. Nakamura, “A

Web Access Analysis System Using Data-Stream Processing
Technique,” Forum on Information Technology, vol.8, no.2, pp.207-
208, August 2009.

[11] K. Kida, K. Fujiyama, T. Imai and N. Nakamura, “Development and
Evaluation of High Performance Floating Car Data System Based on
Data-stream Processing,” The Institute of Electronics, Information and
Communication Engineers Technical Report. Intelligent Transport
Systems, vol.108, no.200, pp.1-8, September 2008.

[12] K. Sato, “Sensor Data Processing System for Automotive Driving
Environment Recognition,” The Institute of Electronics, Information
and Communication Engineers Technical Report. Data Engineering
vol.110, no.107, pp.51-56, October, 2010.

[13] S. Kuwata, Y. Inaba, M. Yokogawa, T. Namatame and K. Nakagawa,
“Stream Data Analysis Application for Customer Behavior with
Complex Event Processing,” The Institute of Electronics, Information
and Communication Engineers Technical Report. Data Engineering,
vol.110, no.107, pp.13-18, June 2010.

[14] T. Tanaka, “Evidence-Based Execution Realized by Algorithmic
Trading,” Journal of the Japanese Society for Artificial Intelligence,
vol.24, no.3, pp. 376-384, May 2009.

[15] Oracle CEP, http://www.oracle.com/technetwork/middleware/
complex-event-processing/overview/index.html

[16] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
[17] Amazon Web Service , http;//aws.amazon.com/
[18] S. Toyoshima, S. Yamaguchi and M. Oguchi, “Development of

middleware for data processing load distribution using cloud
computing resource,” The Institute of Electronics, Information and
Communication Engineers Technical Report. Computer Systems,
vol.110, no.167, pp.91-96 July 2010

[19] AWS documentation - EC2 User Guide, “Micro Instances,”
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts_mic
ro_instances.html

Tatsuya Takahashi received B.E. degree from
Nagaoka University of Technology in '12. He is
currently a graduate school student in Nagaoka
University of Technology. His research interests
include computer networks and network managemant.

Hiroshi Yamamoto received M.E. and D.E. degrees
from Kyushu Institute of Technology, Iizuka, Japan in
'03 and '06, respectively. From April '06 to March '10,
he worked at FUJITSU LABORATORIES LTD.,
Kawasaki, Japan. Since April '10, he has been an
Assistant Professor in the Department of Electrical
Engineering, Nagaoka University of Technology. His
research interests include computer networks,
distributed applications, and networked services. He is

a member of the IEEE.

Norihiro Fukumoto received B.E. and M.E. degrees
in Information and Computer Science from Waseda
University, Tokyo in '99 and '01, respectively. He
joined KDDI R&D Laboratories, Inc. in '01, and has
been engaged in research and development on speech
application services and voice packetization system
over IP networks. He is currently a research engineer of
the Speech Processing Laboratory of KDDI R&D
Laboratories Inc.

ISBN 978-89-968650-2-5 905 February 16~19, 2014 ICACT2014

Shigehiro Ano received B.E. and M.E. degrees
electronics and communication engineering from
Waseda University, Japan in '87 and '89, respectively.
Since joining KDD in '89, he has been engaged in the
field of ATM switching system and ATM networking,
His current research interests are traffic routing,
control and management schemes over the next
generation IP networks. He is currently the Senior
Manager if Communications Network Planning
Laboratory in KDDI R&D Laboratories Inc.

Katsuyuki Yamazaki received B.E. and D.E degrees
from the University of Electro-communications and
Kyushu Institute of Technology in '80 and '01,
respectively. At KDD Co. Ltd., he had been engaged
in R&D and international standardization of ISDN, S.S.
No.7, ATM networks, L2 networks, IP networks,
mobile and ubiquitous networks, etc., and was
responsible for R&D strategy of KDDI R&D Labs. He
is currently a Professor of Nagaoka University of
Technology.

ISBN 978-89-968650-2-5 906 February 16~19, 2014 ICACT2014

