
GPU-based JPEG2000 Decoding Scheme for Digital
Cinema

Jeong-Woo LEE, Bumho KIM, Jungsoo LEE, and Ki-Song YOON
ETRI(Electronics and Telecommunications Research Institute), Korea

jeongwoo@etri.re.kr, mots@etri.re.kr, jslee2365@etri.re.kr, ksyoon@etri.re.kr

Abstract—For the digital cinema system specification released by
Digital Cinema Initiatives, it was decided to use 2K or 4K images
encoded by the JPEG2000 standard. JPEG2000 provides high
compression rates and error tolerance, but it is a burden for both
encoding and decoding. To improve the decoding performance, a
parallel computing architecture called CUDA has been receiving
a lot of attention recently. In this paper, we attempt to realize a
real-time JPEG2000 decoding scheme for digital cinema using
multiple CPU cores and GPUs. We present CUDA algorithms
that perform inverse quantization, inverse 2D discrete wavelet
transform and inverse irreversible color transform on a CUDA
device, which brings us significant performance gain on a general
CPU without extra cost.

Keywords—JPEG2000, CUDA, Digital Cinema, GPU, Parallel
Processing, 4K, coalesced memory access

I. INTRODUCTION
Digital Cinema Initiatives (DCI) established the

specifications of Digital Cinema [1], in which the quality of
the digital playback and display of a feature film is
commensurate with that of 35 mm film release prints. The
specifications require images with a 4,096 x 2,160 pixel
resolution at 24 fps, or a 2,048 x 1,080 pixel resolution at 48
or 24 fps, the pixel arrays of which are called 4K and 2K,
respectively. To maintain the quality of the master data, a
visually lossless encoder is required; JPEG2000 is therefore
employed to compress the images.

Compared with a traditional codec like JPEG [2], which
uses the discrete cosine transform as an orthogonal transform,
JPEG2000 adapts the wavelet transform, which considers the
temporal locality of the signals [3], [4]. JPEG2000 divides an
image into tiles, and processes the tiles independently. For this
reason, JPEG2000 has higher compression rates and error
tolerances than conventional codecs. Since JPEG2000 requires
massive processing, however, it seems impossible to realize
its real-time software codec for high-resolution images such as
4K on a general CPU.

Graphics Processing Units (GPUs), which include some
multi-processor units, have taken over the graphic processing
in current computer architectures. In the past, GPUs were only
used for accelerating the production of a rendered image [5].
As GPUs are rapidly developing, however, they are being
steadily used in various fields [6]. In this paper, we attempt to
take advantage of the GPU processing with the CUDA model

to improve the performance of the JPEG2000 encoding
algorithm for digital cinema.

The rest of this paper organized as follows. In section II, we
describe the use of JPEG2000 as a compression method within
the DCI specifications. Section III introduces the architecture
of GPUs and CUDA. Section IV expresses our proposed
GPU-accelerated JPEG2000 decoding method. Simulation
results are presented to evaluate the proposed method in
section V, and finally, some concluding remarks are given in
section VI.

II. JPEG2000 FOR DIGITAL CINEMA SYSTEM
The block diagram of a digital cinema system is illustrated

in Figure 1 [7]. As depicted in the figure, a digital cinema
system can be divided into four stages: mastering, distribution,
playback, and projection. At the mastering stage, the movie is
compressed, encrypted, and packaged for delivery to theaters.
The data are then distributed to the exhibition site, where they
are decrypted, uncompressed, and played back. The
encryption and decryption are optional and may be skipped.

Figure 1. Digital cinema system

The DCI standard defines the size of each cinema frame to
be as large as 4,096 x 2,160 pixels. Since large sizes make the
distribution of uncompressed data impractical, as mentioned
before, the DCI selected JPEG2000 as the compression format.
There are two JPEG2000 profiles for digital cinema. The 2K
digital cinema profile describes the parameter set for a 2K
DCP, whereas the 4K digital cinema profile describes the
parameters for a 4K DCP.

The output of the digital cinema post-production process is
referred to as the Digital Cinema Distribution Master
(DCDM). The image data in the DCDM are compressed using
JPEG2000. There are two image structures defined in DCDM:
2K resolution (up to 2160x1080 pixels) and 4K resolution (up
to 4096x2160 pixels). The bit depth of each color component
is 12 bits. The frame rate is set to 24 Hz. In addition, a frame
rate of 48 Hz is also allowed for 2K content.

The DCDM is required to use a common standardized file
format for each element. The DCDM image file format is
mapped into TIFF format. In reality, however, the DPX and

ISBN 978-89-968650-2-5 601 February 16~19, 2014 ICACT2014

Cineon formats should be supported for the DCDM image file
format. In general, the bit depth of the color component in
DPX is 10 bits. In addition, the maximum number of
horizontal and vertical pixels shall be constrained to fit within
either a 2K or 4K resolution. For example, an image pixel size
of 2,048 x 858 and 1,920 x 1,080 is possible. However, an
image pixel size of 1,920 x 858 is not.

III. PARALLEL PROCESSING
General-purpose computations on a GPU are generally

conducted during numerical simulations. General-purpose
computing on graphics processing units is the utilization of a
graphics processing unit (GPU) to perform computation in
applications traditionally handled by the central processing
unit (CPU). CUDA was offered from NVIDIA to program
along GPGPU principles [8]. A function executed on a GPU is
called a kernel function, and we therefore need to program the
kernel function and data transfer injunction between the CPUs
and GPUs to parallelize the computing.

A thread is a processing unit, and is programed by
developers using CUDA. The developers need to designate the
number of threads, and the threads are managed in a
hierarchical structure called a grid and block. A grid
principally corresponds to a GPU device. Starting from
CUDA compute capability 2.0, the maximal dimension of the
grid is 65,535 x 65,535 x 65535 blocks and the gpu can hold
up to 65536 x 65536 x 65536 kernels. The number may be
even higher with compute capability 3.x. In the last CUDA
version, the maximum number of threads per block is 1024.
To operate these threads efficiently, the developers also have
to maximize the number of threads within the restriction of the
GPUs.

The GPU calculations are processed in a warp having 32
threads. Hence, the number of parallel calculations should be
designed in multiples of 32. Note that a warp is applied within
the same SP. CUDA has some memory types that match the
hardware memories. Global memory can be accessed from all
threads, but the reference time is slow. The capacity of global
memory is several GBytes. At the first part of program, the
host (CPU) must transfer the data to global memory to process
on the GPUs. Only threads within a same block access shared
memory, and the reference time is about 200-times faster than
global memory. Thus, shared memory must be used to
improve the performance as soon as possible. However, the
size of the shared memory is small and restricted.
Consequently, all data are transferred to global memory, and
the smaller data, which are processed by each block, are only
deployed in shared memory. It should be emphasized that we
have to use these memories in a suitable way for efficient
calculations.

A stream function permits the GPUs to manage a single
kernel function and single data transfer pair simultaneously.
Using a stream function, the data transfer of the second stream
starts just after the data transfer of the first stream is finished;
the kernel function of the first stream and the data transfer of
the second stream then work at the same time.

The global memory bandwidth is used most efficiently
when simultaneous memory access by threads with half of the
warp size is guaranteed. That is, the global memory access by
16 threads is coalesced into a single memory transaction as
soon as the words are accessed by all threads. It should be
noted that we should maintain coalesced global memory
access for reads and stores to improve the performance in the
GPU kernels.

IV. GPU-ACCELERATED JPEG2000 DECODING METHOD
Load balancing between the CPU and the GPU is a key

performance factor for the JPEG2000 decoding. Here, we
decide which part of the work will be done in the GPU and
which part will be left to the CPU.

Figure 2. JPEG2000 Decoding in GPU and CPU

We assign the EBCOT task to the CPU and the other parts
to the GPU as shown in Figure 2. Each process of EBCOT for
component 0 to component2, and band 0 to band 2, is
performed simultaneously. As mentioned before, a stream
function can permit the GPUs to manage a one kernel function
and one data transfer part simultaneously. Using the stream
function, the data transfer of the second stream starts just after
the data transfer of the first stream is finished; the kernel
function of the first stream and the data transfer of the second
stream thus work at the same time. In the inverse ICT kernel
function, however, synchronization for the threads must be
performed because it uses the data in the other components. It
should be noted that the functions on the GPU and CPU are
performed independently.

A. Inverse Quantization
After the EBCOT, all of the resulting subbands are

dequantized. The inverse quantization step size can be chosen
differently for every subband. That is, the inverse quantization
kernel function must be applied to each subband separately.
As a result, the inverse quantization process has no coalescent
loads or stores at all in some cases.

B. Inverse DWT

ISBN 978-89-968650-2-5 602 February 16~19, 2014 ICACT2014

The intensive computation of DWT from multilevel
filtering/down-sampling, which is called the filter bank
scheme (FBS), does not introduce a serious problem when the
data size is small. However, this will become a significant
bottleneck in real-time applications when the data size is large.
Consequently, an efficient implementation of DWT operated
on CPU, known as a lifting scheme (LS), was proposed [9]. In
this paper, the lifting-based DWT algorithm is used to
calculate the inverse 2D-DWT. For optimization, shared
memory was also used, and the coalesced memory access was
maintained as much as possible.

Figure 3. Inverse 2D-DWT on CPUs and GPUs

Figure 3 shows the inverse 2D-DWT method used on CPUs
or GPUs. Figure 3(a) shows the conventional inverse 2D-
DWT algorithm operated on CPUs. The parameters wi and hi
represent the width and height of an image at the ith level of
approximation, respectively. To calculate the inverse 2D-
DWT for an image, the lifting processes should be performed
for all levels between 0 and 4. After the whole horizontal line
is loaded into shared memory and the lifting steps for the
horizontal line are first performed, the whole vertical line is
loaded into shared memory, and the lifting steps for the
vertical line are performed. Finally, all data are stored back
into global memory. In this case, the vertical transform has no
coalescent reads and writes at all, because the successive
pixels in one column are transferred into shared memory,
which degrades the performance significantly.

 To avoid this problem, the transposed matrix has been used
as shown in Fig. 10(b). The lifting-based inverse wavelet
transform is applied to each horizontal line of the image. Two
different lifting kernels were identified in this method: a
lifting-based wavelet transform and a matrix transposition.
The horizontal block size should be a multiple of 16, such that
coalesced access is not broken by a thread block misalignment.
As mentioned before, however, a 2K image is decomposed
from 0 to 4 levels. As a result, the width and height of an
image at each level may not be a multiple of 16. Therefore,
the kernel function for the transposing matrix has no
coalescent reads and stores in certain blocks. To support the
coalesced access for reads and writes in the transpose kernel,
we utilize another global memory for the transposed matrix,
which stores the result of the transpose kernel. The width and
height of the global memory are set to the multiples of 16. The

coalesced memory access for the reads and writes is achieved
because of the sequentially computation order. In addition,
there is no conditional statement for checking the boundary of
the data compared to the matrix transpose example from the
CUDA development kit.

Lifting-based implementation is very suitable for GPU
processing because every calculation on one line depends only
on the lines above. On the other hand, it seems to be necessary
to have whole samples in one single thread block, because
synchronization is necessary after each lifting step. To adapt
the four lifting steps to the subband of each layer, the samples
in a subband must be joined as shown in Figure 4. The join
and lifting processes are also performed in one kernel.

Figure 4. Join Operation

C. Inverse ICT and Clipping
For optimization, coalesced memory access should also be

achieved during this process. The sequential computation
order allows a coalesced memory access, that means, thread
one processes pixel one, thread two processes the pixel that is
saved directly after pixel one, and so forth.

The inverse irreversible color transform and clipping
process are both also realized in one kernel. To take advantage
of the parallelization, every pixel has its own thread. Even if
the x-axis length of the image is less than the multiplies of the
number of threads, the read and store processes satisfy the
coalesced access because the length of the x-axis is extended
to the value of stride_x.

V. SIMULATION RESULTS
To evaluate the performance of the proposed algorithms,

we consider images with 2K and 4K resolution for DCI
JPEG2000 profiles. The proposed schemes are implemented
in the reference software, called “JasPer” [10], which is
defined in Part 5 of the JPEG2000 standard.

TABLE 1. TEST ENVIRONMENTS

Options Values
Processor W5590 x 2

Cores 8 Cores
Clock frequency 3.33GHz

GPU NVIDIA GTX680 x 2
CUDA version 5.0

Table 1 summarizes the hardware and software parameters

of our evaluation environment and their corresponding values.
In our experiments, we used two CPUs with an Intel Xeon

ISBN 978-89-968650-2-5 603 February 16~19, 2014 ICACT2014

w5590 at 3.33GHz. The GPU platform used for evaluation
purposes was an NVIDIA GTX 680. For the GPU
implementation, we used CUDA as the development
environment.

Table 2 shows the encoding time of Jasper and the
proposed algorithm for the digital cinema profile. As shown in
Table 2, the proposed method is about 20 times faster the
reference software. The reference software fully used dual
CPU with 8 cores. Otherwise, the proposed algorithm just
used single GPU.

TABLE 2. DECODING TIME OF JASPER AND THE PROPOSED ALGORITHM
(SEC)

Image Size Jasper Proposed
Algorithm

2048x1080 (2K Profile) 0.6414 0.0163
4096x2160 (4K Profile) 2.5974 0.0307

Table 3 shows the proposed JPEG2000 decoding

performance for the cinema 4K profile. We used Intel Xeon 2-
way CPUs and two GPUs. As shown in Table 3, the proposed
method supports 30 fps. Our method can be adapted to a
digital cinema decoding server, whose minimum frame rate is
at least 24fps.

TABLE 3. PERFORMANCE THE PROPOSED ALGORITHM (FPS)

Decoder # 1 2 4 6 8 10 12
fps 10.1 16.4 18.5 27 31 32.5 31

VI. CONCLUSION
CUDA is a new hardware and software architecture for

issuing and managing computations on a GPU. It promises to
simplify the development of applications that take full
advantage of current and future powerful GPUs. In this paper
we described the development of a GPU implementation of
JPEG2000 decoding, intended for supporting digital cinema
service. Specifically, we proposed a new method to maintain
the coalesced global memory access.

The real-time JPEG2000 decoding for large data sizes such
as 4K (4,096 x 2,160) and 8K (8,192 x 4,320) are not possible
because the global and shared memories of the GPUs are
limited. In this paper, we have therefore proposed a new
JPEG2000 algorithm that considers GPUs and multi-CPUs.
Compared with other digital cinema solutions, our JPEG2000
solution also provides high-speed mastering and playback
service.

ACKNOWLEDGMENT
This work was supported by MSIP (Ministry of Science,

ICT and Future Planning) (10041539 High Compression, Low
Loss Content Creation /Distribution /Display Technology
Development for 8K-Video Service).

 REFERENCES
[1] DCI Std., Digital Cinema System Specification ver. 1.2, DCI, 2008.
[2] G. K. Wallace, “The JPEG still picture compression standard,” IEEE

Trans. Consum. Electron., vol. 38, no. 1, pp. 18–34, Feb. 1992.

[3] ISO/IEC 15 444-1: Information Technology—JPEG 2000 Image
Coding System—Part 1: Core Coding System, 2000.

[4] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000
stillimage coding system: an overview,” IEEE Trans. Consum.
Electron., vol. 46, no. 4, pp. 1103–1127, Nov. 2000.

[5] D. Ko, J. Lee, S. Lim, et al., "Construction and Rendering of Trimmed
Blending Surfaces with Sharp Features on a GPU," ETRI Journal, vol.
33, no.1, Feb. 2011, pp. 89-98.

[6] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit
implementation of JPEG2000 for hyperspectral image compression,”
Journal of Applied Remote Sensing, vol. 6, 2012.

[7] A. Bilgin and M. Marcellin, “JPEG2000 for Digital Cinema,” SMPTE
Motion Imaging Journal, vol. 114, pp. 202-209, 2005.

[8] J. Sanders and E.Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison-Wesley, 2011

[9] W. Sweldens, “The lifting scheme: A construction of second
generation wavelets,” SIAM Journal on Mathematical Analysis, vol. 29,
no. 2, pp. 511-546, 1998.

[10] M. D. Adams and F. Kossentini, “JasPer: a software-based JPEG-
2000codec implementation,” in Proc. IEEE Int. Conf. Image
Processing, vol. 2, Oct. 2000, pp. 53–56.

Jeong-Woo Lee received the B.S. degree in
information and telecommunication engineering from
Jeonbuk National University, Jeonju, Korea, in 1996,
and the M.S. degree in information and
communications engineering from Gwangju Institute of
Science and Technology (GIST), Gwangju, Korea, in
1998. He received the Ph.D. degree in the Information
and Communications Department from GIST in 2003.
He is currently working in Electronics and

Telecommunications Research Institute (ETRI). His research interests
include digital video coding algorithms, implementations for H.264 and
HEVC, rate control algorithms for video coding, scalable video
compression, and gpu-based coding algorithms.

Bumho Kim received the BS degree in computer
science from Sogang University in 2000 and MS degree
in information technology from Information
Communication University in 2002, respectively.
Currently, he is a senior researcher in the Creative
Content Research Lab. at ETRI, Daejeon, Korea. His
research interests include multimedia, video codec,
digital cinema, and digital contents distribution.

Jungsoo Lee received his B.S. and M.S. degrees from
Jeonbuk University, Korea in 1995 and 1997,
respectively and his Ph.D. degree in Electronic
Engineering from Hanyang University, Seoul Korea in
2005. From 2000 to 2005, he was a senior member
of MarkAny Research Institute. Currently, he is a
senior member of Electronics and Telecommunications
Research Institute(ETRI). His research interests are
digital watermarking, fingerprinting, image processing,

digital rights management, digital cinema and digital signage.

Ki-Song Yoon received his M.S. and Ph.D. degrees in
Computer Science from New York City University in
1988 and 1993 respectively. From 1993, he was
a principal member of Electronics and
Telecommunications Research Institute (ETRI). His
research interests are digital contents
distribution, digital rights management and digital
cinema/signage.

ISBN 978-89-968650-2-5 604 February 16~19, 2014 ICACT2014

	4P-04-0065-O
	pdf
	로컬 디스크
	F:\21 ICACT2014 CD\pdf\tech\pdf.txt

