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Abstract—For the digital cinema system specification released by 
Digital Cinema Initiatives, it was decided to use 2K or 4K images 
encoded by the JPEG2000 standard. JPEG2000 provides high 
compression rates and error tolerance, but it is a burden for both 
encoding and decoding. To improve the decoding performance, a 
parallel computing architecture called CUDA has been receiving 
a lot of attention recently. In this paper, we attempt to realize a 
real-time JPEG2000 decoding scheme for digital cinema using 
multiple CPU cores and GPUs. We present CUDA algorithms 
that perform inverse quantization, inverse 2D discrete wavelet 
transform and inverse irreversible color transform on a CUDA 
device, which brings us significant performance gain on a general 
CPU without extra cost.  
 
Keywords—JPEG2000, CUDA, Digital Cinema, GPU, Parallel 
Processing, 4K, coalesced memory access 

I. INTRODUCTION 
Digital Cinema Initiatives (DCI) established the 

specifications of Digital Cinema [1], in which the quality of 
the digital playback and display of a feature film is 
commensurate with that of 35 mm film release prints. The 
specifications require images with a 4,096 x 2,160 pixel 
resolution at 24 fps, or a 2,048 x 1,080 pixel resolution at 48 
or 24 fps, the pixel arrays of which are called 4K and 2K, 
respectively. To maintain the quality of the master data, a 
visually lossless encoder is required; JPEG2000 is therefore 
employed to compress the images.  

Compared with a traditional codec like JPEG [2], which 
uses the discrete cosine transform as an orthogonal transform, 
JPEG2000 adapts the wavelet transform, which considers the 
temporal locality of the signals [3], [4]. JPEG2000 divides an 
image into tiles, and processes the tiles independently. For this 
reason, JPEG2000 has higher compression rates and error 
tolerances than conventional codecs. Since JPEG2000 requires 
massive processing, however, it seems impossible to realize 
its real-time software codec for high-resolution images such as 
4K on a general CPU. 

Graphics Processing Units (GPUs), which include some 
multi-processor units, have taken over the graphic processing 
in current computer architectures. In the past, GPUs were only 
used for accelerating the production of a rendered image [5]. 
As GPUs are rapidly developing, however, they are being 
steadily used in various fields [6]. In this paper, we attempt to 
take advantage of the GPU processing with the CUDA model 

to improve the performance of the JPEG2000 encoding 
algorithm for digital cinema. 

The rest of this paper organized as follows. In section II, we 
describe the use of JPEG2000 as a compression method within 
the DCI specifications. Section III introduces the architecture 
of GPUs and CUDA. Section IV expresses our proposed 
GPU-accelerated JPEG2000 decoding method. Simulation 
results are presented to evaluate the proposed method in 
section V, and finally, some concluding remarks are given in 
section VI. 

II. JPEG2000 FOR DIGITAL CINEMA SYSTEM 
The block diagram of a digital cinema system is illustrated 

in Figure 1 [7]. As depicted in the figure, a digital cinema 
system can be divided into four stages: mastering, distribution, 
playback, and projection. At the mastering stage, the movie is 
compressed, encrypted, and packaged for delivery to theaters. 
The data are then distributed to the exhibition site, where they 
are decrypted, uncompressed, and played back. The 
encryption and decryption are optional and may be skipped.  

 

 
Figure 1.  Digital cinema system 

The DCI standard defines the size of each cinema frame to 
be as large as 4,096 x 2,160 pixels. Since large sizes make the 
distribution of uncompressed data impractical, as mentioned 
before, the DCI selected JPEG2000 as the compression format. 
There are two JPEG2000 profiles for digital cinema. The 2K 
digital cinema profile describes the parameter set for a 2K 
DCP, whereas the 4K digital cinema profile describes the 
parameters for a 4K DCP.  

The output of the digital cinema post-production process is 
referred to as the Digital Cinema Distribution Master 
(DCDM). The image data in the DCDM are compressed using 
JPEG2000. There are two image structures defined in DCDM: 
2K resolution (up to 2160x1080 pixels) and 4K resolution (up 
to 4096x2160 pixels). The bit depth of each color component 
is 12 bits. The frame rate is set to 24 Hz. In addition, a frame 
rate of 48 Hz is also allowed for 2K content.  

The DCDM is required to use a common standardized file 
format for each element. The DCDM image file format is 
mapped into TIFF format. In reality, however, the DPX and 
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Cineon formats should be supported for the DCDM image file 
format. In general, the bit depth of the color component in 
DPX is 10 bits. In addition, the maximum number of 
horizontal and vertical pixels shall be constrained to fit within 
either a 2K or 4K resolution. For example, an image pixel size 
of 2,048 x 858 and 1,920 x 1,080 is possible. However, an 
image pixel size of 1,920 x 858 is not. 

III.  PARALLEL PROCESSING 
General-purpose computations on a GPU are generally 

conducted during numerical simulations. General-purpose 
computing on graphics processing units is the utilization of a 
graphics processing unit (GPU) to perform computation in 
applications traditionally handled by the central processing 
unit (CPU). CUDA was offered from NVIDIA to program 
along GPGPU principles [8]. A function executed on a GPU is 
called a kernel function, and we therefore need to program the 
kernel function and data transfer injunction between the CPUs 
and GPUs to parallelize the computing. 

A thread is a processing unit, and is programed by 
developers using CUDA. The developers need to designate the 
number of threads, and the threads are managed in a 
hierarchical structure called a grid and block. A grid 
principally corresponds to a GPU device. Starting from 
CUDA compute capability 2.0, the maximal dimension of the 
grid is 65,535 x 65,535 x 65535 blocks and the gpu can hold 
up to 65536 x 65536 x 65536 kernels. The number may be 
even higher with compute capability 3.x. In the last CUDA 
version, the maximum number of threads per block is 1024. 
To operate these threads efficiently, the developers also have 
to maximize the number of threads within the restriction of the 
GPUs. 

The GPU calculations are processed in a warp having 32 
threads. Hence, the number of parallel calculations should be 
designed in multiples of 32. Note that a warp is applied within 
the same SP. CUDA has some memory types that match the 
hardware memories. Global memory can be accessed from all 
threads, but the reference time is slow. The capacity of global 
memory is several GBytes. At the first part of program, the 
host (CPU) must transfer the data to global memory to process 
on the GPUs. Only threads within a same block access shared 
memory, and the reference time is about 200-times faster than 
global memory. Thus, shared memory must be used to 
improve the performance as soon as possible. However, the 
size of the shared memory is small and restricted. 
Consequently, all data are transferred to global memory, and 
the smaller data, which are processed by each block, are only 
deployed in shared memory. It should be emphasized that we 
have to use these memories in a suitable way for efficient 
calculations.  

A stream function permits the GPUs to manage a single 
kernel function and single data transfer pair simultaneously. 
Using a stream function, the data transfer of the second stream 
starts just after the data transfer of the first stream is finished; 
the kernel function of the first stream and the data transfer of 
the second stream then work at the same time. 

The global memory bandwidth is used most efficiently 
when simultaneous memory access by threads with half of the 
warp size is guaranteed. That is, the global memory access by 
16 threads is coalesced into a single memory transaction as 
soon as the words are accessed by all threads. It should be 
noted that we should maintain coalesced global memory 
access for reads and stores to improve the performance in the 
GPU kernels. 

IV. GPU-ACCELERATED JPEG2000 DECODING METHOD 
Load balancing between the CPU and the GPU is a key 

performance factor for the JPEG2000 decoding. Here, we 
decide which part of the work will be done in the GPU and 
which part will be left to the CPU.  
 

 
Figure 2.  JPEG2000 Decoding in GPU and CPU 

We assign the EBCOT task to the CPU and the other parts 
to the GPU as shown in Figure 2. Each process of EBCOT for 
component 0 to component2, and band 0 to band 2, is 
performed simultaneously. As mentioned before, a stream 
function can permit the GPUs to manage a one kernel function 
and one data transfer part simultaneously. Using the stream 
function, the data transfer of the second stream starts just after 
the data transfer of the first stream is finished; the kernel 
function of the first stream and the data transfer of the second 
stream thus work at the same time. In the inverse ICT kernel 
function, however, synchronization for the threads must be 
performed because it uses the data in the other components. It 
should be noted that the functions on the GPU and CPU are 
performed independently. 

A. Inverse Quantization 
After the EBCOT, all of the resulting subbands are 

dequantized. The inverse quantization step size can be chosen 
differently for every subband. That is, the inverse quantization 
kernel function must be applied to each subband separately. 
As a result, the inverse quantization process has no coalescent 
loads or stores at all in some cases. 

B. Inverse DWT 
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The intensive computation of DWT from multilevel 
filtering/down-sampling, which is called the filter bank 
scheme (FBS), does not introduce a serious problem when the 
data size is small. However, this will become a significant 
bottleneck in real-time applications when the data size is large. 
Consequently, an efficient implementation of DWT operated 
on CPU, known as a lifting scheme (LS), was proposed [9]. In 
this paper, the lifting-based DWT algorithm is used to 
calculate the inverse 2D-DWT. For optimization, shared 
memory was also used, and the coalesced memory access was 
maintained as much as possible. 

 

 
Figure 3.  Inverse 2D-DWT on CPUs and GPUs 

Figure 3 shows the inverse 2D-DWT method used on CPUs 
or GPUs. Figure 3(a) shows the conventional inverse 2D-
DWT algorithm operated on CPUs. The parameters wi and hi 
represent the width and height of an image at the ith level of 
approximation, respectively. To calculate the inverse 2D-
DWT for an image, the lifting processes should be performed 
for all levels between 0 and 4. After the whole horizontal line 
is loaded into shared memory and the lifting steps for the 
horizontal line are first performed, the whole vertical line is 
loaded into shared memory, and the lifting steps for the 
vertical line are performed. Finally, all data are stored back 
into global memory. In this case, the vertical transform has no 
coalescent reads and writes at all, because the successive 
pixels in one column are transferred into shared memory, 
which degrades the performance significantly.  

 To avoid this problem, the transposed matrix has been used 
as shown in Fig. 10(b). The lifting-based inverse wavelet 
transform is applied to each horizontal line of the image. Two 
different lifting kernels were identified in this method: a 
lifting-based wavelet transform and a matrix transposition. 
The horizontal block size should be a multiple of 16, such that 
coalesced access is not broken by a thread block misalignment. 
As mentioned before, however, a 2K image is decomposed 
from 0 to 4 levels. As a result, the width and height of an 
image at each level may not be a multiple of 16. Therefore, 
the kernel function for the transposing matrix has no 
coalescent reads and stores in certain blocks. To support the 
coalesced access for reads and writes in the transpose kernel, 
we utilize another global memory for the transposed matrix, 
which stores the result of the transpose kernel. The width and 
height of the global memory are set to the multiples of 16. The 

coalesced memory access for the reads and writes is achieved 
because of the sequentially computation order. In addition, 
there is no conditional statement for checking the boundary of 
the data compared to the matrix transpose example from the 
CUDA development kit.  

Lifting-based implementation is very suitable for GPU 
processing because every calculation on one line depends only 
on the lines above. On the other hand, it seems to be necessary 
to have whole samples in one single thread block, because 
synchronization is necessary after each lifting step. To adapt 
the four lifting steps to the subband of each layer, the samples 
in a subband must be joined as shown in Figure 4. The join 
and lifting processes are also performed in one kernel.  

 

 
Figure 4.  Join Operation 

C. Inverse ICT and Clipping 
For optimization, coalesced memory access should also be 

achieved during this process. The sequential computation 
order allows a coalesced memory access, that means, thread 
one processes pixel one, thread two processes the pixel that is 
saved directly after pixel one, and so forth. 

The inverse irreversible color transform and clipping 
process are both also realized in one kernel. To take advantage 
of the parallelization, every pixel has its own thread. Even if 
the x-axis length of the image is less than the multiplies of the 
number of threads, the read and store processes satisfy the 
coalesced access because the length of the x-axis is extended 
to the value of stride_x. 

V.  SIMULATION RESULTS 
To evaluate the performance of the proposed algorithms, 

we consider images with 2K and 4K resolution for DCI 
JPEG2000 profiles. The proposed schemes are implemented 
in the reference software, called “JasPer” [10], which is 
defined in Part 5 of the JPEG2000 standard. 

TABLE 1. TEST ENVIRONMENTS 

Options Values 
Processor W5590 x 2 

Cores 8 Cores 
Clock frequency 3.33GHz 

GPU NVIDIA GTX680 x 2 
CUDA version 5.0 

 
Table 1 summarizes the hardware and software parameters 

of our evaluation environment and their corresponding values. 
In our experiments, we used two CPUs with an Intel Xeon 
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w5590 at 3.33GHz. The GPU platform used for evaluation 
purposes was an NVIDIA GTX 680. For the GPU 
implementation, we used CUDA as the development 
environment. 

Table 2 shows the encoding time of Jasper and the 
proposed algorithm for the digital cinema profile. As shown in 
Table 2, the proposed method is about 20 times faster the 
reference software. The reference software fully used dual 
CPU with 8 cores. Otherwise, the proposed algorithm just 
used single GPU. 

TABLE 2. DECODING TIME OF JASPER AND THE PROPOSED ALGORITHM  
(SEC) 

Image Size Jasper Proposed 
Algorithm 

2048x1080 (2K Profile) 0.6414 0.0163 
4096x2160 (4K Profile) 2.5974 0.0307 

 
Table 3 shows the proposed JPEG2000 decoding 

performance for the cinema 4K profile. We used Intel Xeon 2-
way CPUs and two GPUs. As shown in Table 3, the proposed 
method supports 30 fps. Our method can be adapted to a 
digital cinema decoding server, whose minimum frame rate is 
at least 24fps. 

TABLE 3. PERFORMANCE THE PROPOSED ALGORITHM  (FPS) 

Decoder # 1 2 4 6 8 10 12 
fps 10.1 16.4 18.5 27 31 32.5 31 

VI. CONCLUSION 
CUDA is a new hardware and software architecture for 

issuing and managing computations on a GPU. It promises to 
simplify the development of applications that take full 
advantage of current and future powerful GPUs. In this paper 
we described the development of a GPU implementation of 
JPEG2000 decoding, intended for supporting digital cinema 
service. Specifically, we proposed a new method to maintain 
the coalesced global memory access. 

The real-time JPEG2000 decoding for large data sizes such 
as 4K (4,096 x 2,160) and 8K (8,192 x 4,320) are not possible 
because the global and shared memories of the GPUs are 
limited. In this paper, we have therefore proposed a new 
JPEG2000 algorithm that considers GPUs and multi-CPUs. 
Compared with other digital cinema solutions, our JPEG2000 
solution also provides high-speed mastering and playback 
service. 

ACKNOWLEDGMENT 
This work was supported by MSIP (Ministry of Science, 

ICT and Future Planning) (10041539 High Compression, Low 
Loss Content Creation /Distribution /Display Technology 
Development for 8K-Video Service). 

 

 REFERENCES 
[1] DCI Std., Digital Cinema System Specification ver. 1.2, DCI, 2008. 
[2] G. K. Wallace, “The JPEG still picture compression standard,” IEEE 

Trans. Consum. Electron., vol. 38, no. 1, pp. 18–34, Feb. 1992. 

[3] ISO/IEC 15 444-1: Information Technology—JPEG 2000 Image 
Coding System—Part 1: Core Coding System, 2000. 

[4] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 
stillimage coding system: an overview,” IEEE Trans. Consum. 
Electron., vol. 46, no. 4, pp. 1103–1127, Nov. 2000. 

[5] D. Ko, J. Lee, S. Lim, et al., "Construction and Rendering of Trimmed 
Blending Surfaces with Sharp Features on a GPU," ETRI Journal, vol. 
33, no.1, Feb. 2011, pp. 89-98. 

[6] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit 
implementation of JPEG2000 for hyperspectral image compression,” 
Journal of Applied Remote Sensing, vol. 6, 2012. 

[7] A. Bilgin and M. Marcellin, “JPEG2000 for Digital Cinema,” SMPTE 
Motion Imaging Journal, vol. 114, pp. 202-209, 2005. 

[8] J. Sanders and E.Kandrot, CUDA by Example: An Introduction to 
General-Purpose GPU Programming, Addison-Wesley, 2011 

[9] W. Sweldens, “The lifting scheme: A construction of second 
generation wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, 
no. 2, pp. 511-546, 1998. 

[10] M. D. Adams and F. Kossentini, “JasPer: a software-based JPEG-
2000codec implementation,” in Proc. IEEE Int. Conf. Image 
Processing, vol. 2, Oct. 2000, pp. 53–56. 

 
Jeong-Woo Lee received the B.S. degree in 
information and telecommunication engineering from 
Jeonbuk National University, Jeonju, Korea, in 1996, 
and the M.S. degree in information and 
communications engineering from Gwangju Institute of 
Science and Technology (GIST), Gwangju, Korea, in 
1998. He received the Ph.D. degree in the Information 
and Communications Department from GIST in 2003. 
He is currently working in Electronics and 

Telecommunications Research Institute (ETRI). His research interests 
include digital video coding algorithms, implementations for H.264 and 
HEVC, rate control algorithms for video coding, scalable video 
compression, and gpu-based coding algorithms. 

 
Bumho Kim received the BS degree in computer 
science from Sogang University in 2000 and MS degree 
in information technology from Information 
Communication University in 2002, respectively.  
Currently, he is a senior researcher in the Creative 
Content Research Lab. at ETRI, Daejeon, Korea. His 
research interests include multimedia, video codec, 
digital cinema, and digital contents distribution.  
 

 
Jungsoo Lee received his B.S. and M.S. degrees from 
Jeonbuk University, Korea in 1995 and 1997, 
respectively and his Ph.D. degree in Electronic 
Engineering from Hanyang University, Seoul Korea in 
2005. From 2000 to 2005, he was a senior member 
of  MarkAny Research Institute. Currently, he is a 
senior member of Electronics and Telecommunications 
Research Institute(ETRI). His research interests are 
digital watermarking, fingerprinting, image processing, 

digital rights management, digital cinema and digital signage. 
 

Ki-Song Yoon received his M.S. and Ph.D. degrees  in 
Computer Science from New York City University in 
1988 and 1993 respectively. From 1993, he was 
a principal member of  Electronics and 
Telecommunications Research Institute (ETRI). His 
research interests are digital contents 
distribution,  digital rights management and digital 
cinema/signage. 

ISBN 978-89-968650-2-5 604 February 16~19, 2014 ICACT2014


	4P-04-0065-O
	pdf
	로컬 디스크
	F:\21 ICACT2014 CD\pdf\tech\pdf.txt





