
Reconstruction of Data Type in Obfuscated Binary
Programs

 Wei Dingab, ZhiMin Gua, Feng Gaoa

a School of Computer Science Technology, Beijing Institute of Technology ,Beijing 100081,China

b College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001,china

orangeding@163.com,dingwei@bit.edu.cn，

Abstract- Recently, research community has advanced in type

reconstruction technology for reverse engineering, but emerging

with obfuscate technology, data type reconstruction is difficult

and obfuscated code is easier to be monitored and analyzed by

attacker or hacker. Therefore, we present a novel approach for

automatic establish data type inference rules and reconstruct

type from obfuscated binary programs using machine learning

algorithm.

Keywords- Type reconstruction, Obfuscated Binary,

Deobfuscation, Disassembly, Inference Rules

I. INTRODUCTION

Recent years have seen an increase in research of
disassemble for reverse engineering and forensics. They offer
variety techniques to lift low-level code to high level code.
However, they are typically weak in reverse engineering data
structures. Recover high-level program data type is a recurring
step in process of reverse engineering and decompile. Source
codes are translated down to operations on registers and one
globally addressed memory region, a number of data types of
high-level without symbol tables during compilation. In
executable file there are no symbol tables and type
information, therefore, reconstruction of data type depends on
memory allocation access and how memory is used.

Data type reconstruction aim to transform binary code
without data type symbol into meaning typing language easier
to understand and recover explicit type of anonymous byte
blocks in order to improve the readability and
understandability and be easier to program analysis.

More and more research community is aware of importance
and advances in the reconstruction of data structure have led
to significant research, including well-known type inference
algorithms Hindley-Milner[1]，cartesian product[2]，iterative
analysis[3], abstract type inference[4]. Yet they work on
source codes, we need analysis binary code.

The most common type reconstruction approaches are
based on static analysis techniques in binary code, like IDA

Pro[5], OllyDbg[6]. VSA[7] (Value Set Analysis) attempts to
identify location of like-variable and evaluate possible value
set, which use a-loc to find possible value set and track value
of data object. ASI[8](Abstract Structure Identification) tries
to statically partition array and variable in memory block
according to memory access. It use system call and famous
library function information types, the types of called
parameters are known, which are marked with according types
and propagate them. Then, Balakrishnan[9] combine VSA and
ASI to identify simple structure, array and the nest of array
and structure. But static analysis method is difficult in basic
aggregation structure.

REWAEDS[10] is a dynamic analysis method based on
PIN analysis technology, which infer variable type by means
of function parameters, return value and type signature
instruction. In other words, it marks each location with
timestamp type attribute and propagates it to other memory
addresses, registers with program executed data flow, yet it
can’t deal with control flowing limited to executed path and
can’t deal with obfuscated code. Howard [11] is
complementary with Rewards, it is more powerful. It supplies
assembler and debugger with data structure and type to relieve
reverses engineering. It can reveal data structure layout
according to memory access patterns and generates
automatically debugger symbol. Howard can recover fields of
aggregation structure, nested arrays, yet its results depend on
runtime path coverage like any other dynamic analysis
instruments.

TIE [12] develops a novel type inference system based on
type reconstruction rules, which can be applied in static and
dynamic analysis. The core of TIE is to infer type according
how the codes use, for example, in arithmetic operation, SF
flag is detected and it can infer two operands are signed int.

Laika[13] detects data syntactic structure through
unsupervised learning during program execution, but accuracy
of this technology is not enough for reverse engineer, it can
identify part of obfuscated code with virus detectors, which is
worthy for our reference.

Nevertheless, along with advance of data type
reconstruction, a number of obfuscation techniques [14-16]
are very effective against state-of-the-art disassembles,
preventing a substantial fraction of a binary program from
being disassembled correctly and reconstruct data structure.

ISBN 978-89-968650-2-5 393 February 16~19, 2014 ICACT2014

mailto:orangeding@163.com,dingwei@bit.edu.cn
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E7%AC%9B%E5%8D%A1%E5%B0%94%E4%B9%98%E7%A7%AF##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E7%AC%9B%E5%8D%A1%E5%B0%94%E4%B9%98%E7%A7%AF##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%8F%82%E6%95%B0##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%81%9A%E5%90%88%E7%BB%93%E6%9E%84##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%81%9A%E5%90%88%E7%BB%93%E6%9E%84##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E7%AE%97%E6%9C%AF%E8%BF%90%E7%AE%97##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%AF%AD%E6%B3%95%E7%BB%93%E6%9E%84##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%AF%AD%E6%B3%95%E7%BB%93%E6%9E%84##

In [16], Linn and Debray describe a novel obfuscation
technique that can be used to thwart binary static analysis.
Their techniques are independent of and complementary to
previous approaches to enhance software security by making
it harder for an attacker to steal intellectual property. On the
other hand, obfuscation technology could also be used by
virus writers to hide malicious code such as Trojan Horses
from virus scanners. The reason is that if relevant program
structures were incorrectly extracted and identified obfuscated
data type, malicious code could be classified as benign. test

This paper present a novel model for automatic establish
data type inference rules to reconstruct type from obfuscated
binary programs using machine learning algorithm.

The remainder of this paper is organized as follows.
Section II discusses background material on data type
reconstruction and decision tree model. Section III discusses
decision tree models for data type reconstruction rules.

II. KEY TECHNOLOGY AND DEFINITION

In this section we review background material on type
inference rules, relevant definitions and decision tree model.

A. Inference Rules Definitions

Lattices. A lattice is a partial order among the values in a

domain, which have a lowest bound element and a highest
bound element . Lattices conclude two operations. One is
the “join” operator ,which is the least upper bound, the
other is the “meet” operator ,which is the greatest lower
bound.


Τ





Inference Rules. General inference rules form is following:

1 2 . . . nP P P

C

The upper of inference rule formula is the premises P1,
P2 ,…, Pn. If all the premises are satisfied, then we can

conclude results C. For example, |

|

: :
:

t S s T
t T




  
 (T-Sub), it

shows rule relation of type and subtype, in where each
element in S is all in T, if S <: T.

 Typing. Every term t, whether it is a variable, value or

expression, has a type T. It is denoted by :t T   , which
means “t has type T under context  ”.

Subtyping[12]. Formula , where is read as “Type S
is a subtype of Type T”. Subtyping is transitive and reflexive,

such as

:S T

: :

:

S U U T

S T

  
 .

Array subtyping relation.

1 1 1

1

: :

:

S T S

1ArrayS ArrayT

  
 , which indicates

that subtyping S1 and sybtying T1 are equivalent.

B. Decision Trees

Decision trees are common classier algorithms, which are a
technique for supervised machine learning, for example,
learning an instruction from a training data set.

 Algorithm Decision tree Algorithm Description
DECISION-TREE-LEARNING(T, default)
INPUTS: T, set of training cases
{
if T is empty return default;
else if all cases in T have the same class return the class;
else {

test=PARTIION(T);//belong to different class and attribute
if N-TEST(test)=1 return MAJORITY-CLASS(T);
else{
 default= MAJORITY-CLASS(T);
 tree=a new decision tree with the root test;
 for each condition in the test{ itest
 Ti=elements in T which satisfy test;
Subtree= DECISION-TREE-LEARNING(Ti, default);
Add a branch with label to the tree and the subtree; itest
}
}
}

}

A collection of items S={ } is given, 1, ...,S Sk s Si

happens with probability ip , the entropy of S is denoted as

.
1

Entropy(S) - logi i

n

i

p p


 
For a collection of training items S ,which along with

features 1, ..., kF F , the information obtained from a feature iF

is specified by ,

where Vi means the value subset undertaken by features

(S,) Entropy(S) (|S | / | |)Entropy(i v

v Vi

Gain F S


 )S

i

v

F ,
similarly, is the subset of S, which have the value v for
features

Sv

iF .

III. IDENTIFYING OF DATA TYPE OF OBFUSCATED BINARY

In this section we expand [17] algorithm to deconfuscation
and use the decision tree to record the instruction information,
so that we can correctly reconstruct data type.

A. Instruction Feature Extraction

It is necessary to identify features of the disassembled
instructions so as to construct a decision tree for obfuscated
binary disassembly, Different disassemble instructions are
defined as different values and meaning, i.e. ‘opcode, source
addressing mode, destination addressing mode’, which infer
data type according instruction features. For each feature, the
operation mnemonic and repeat prefix are used to features set
with a vector of features for each operands. The features we
consider for operands are shown in [12].

ISBN 978-89-968650-2-5 394 February 16~19, 2014 ICACT2014

http://static.usenix.org/event/sec04/tech/full_papers/kruegel/kruegel_html/disassemble.html#linn03:obfuscation

Figure 1. Deobfuscated and train feature sets

We aim to train sets and identify the sets of features and
feature values of interest. As shown in Figure 1.

1) Lift BIL: At first, we translate the binary code into
BIL (Binary Intermediate Language), which lift assembly by
BAP[12] and can be easier to understand.

2) Training Data Sets: We can extract feature of
instruction, operation, operands and other information, such as
jmp, call. Operand types are register, pointer, memory address,
immediate addresses, etc.

3) Classification and Report: Sequential report shows
features of a fraction of sequence, which will help reconstruct
data type.

B. Instruction n-Graph

In general, the common approach is to use adjacent
instructions as construct n-Graph. However, it can not work
well on transfer instruction, i.e. address that jmp or call
instruction would transfer is not sequence. So we take a novel
approach to set succs(P) denoted as the collections of all
possible control-flow successors of an instruction P. For their
possible successors are not known, we define succe(P)= .

denotes the set of all n-Graph at beginning of

instruction P. The definition is as follow.

()nng P

1

()

{ '| ' }

{ } 1 ()() ()n
n

J suss p

P P P

P if n or succsng P ng J otherwise
P 







       
�

Given a n-Graph S, () { () }S S      , ()S means

feature vector set for element of S.

C. Construct Decision Tree

In vector paces, the similarity of features can be expressed
by geometric. We use the appropriate feature vectors as
training input to construct a decision tree. How to identify the
obfuscated instruction is a difficult problem. Given an
arbitrary binary code and without any other auxiliary
information, we can only judge it with instructions that are
executed at different addresses.

In order to gain total assembly, rather than an executed path
instructions, we use gcc-compiler to gain binaries. A
mechanism is presented specifically tailored against the tool
implemented by Linn and Debray [16]. Therefore, we must
recognize code addresses, the targets of indirect jumps and
calls. For binary P, we extract the set of addresses of all the
instructions in P, denoted as InstAddrs(P) using BAP[12].
Assume binary section B span interval of addresses A. then
we compute the set of all n-graphs for P at the beginning of
addresses A.

() ()n n

a A

NG P ng a




Let addr(I) denote the address of an instruction I. For the
set of n-Graph for P, we set flag {1, 0} to indicate whether the
P is obfuscated. When flag is 1, then each instruction in the
n-Graph is at an address in InstAddrs(p):

(| 1) { () |

: () (),

n nNG P flag a NG P

I a addr I InstAddrs P flag 1}

  
   

For flag=1, training inputs set is given by the set of feature
vectors for good n-graphs:

() ((| 1))nPosInputs P NG P flag 

In the same way,
(| 0) (- (| 1n n nNG P flag NG P NG P flag  ） ）

Neg () ((| 0))- In ()nInputs P NG P flag Pos puts P 

D. Constraints rules and Type Reconstruction Algorithm

The type constraints are computed using properties of
assembly instructions.

Type reconstruction Algorithm

INPUTS:DECISION-TREE-LEARNING T
:: |

:: |

:: 1_ | 8 _ | 16 _ | 32 _

:: int | | | | |

(0...) | () |

{ _ }| { _

data base mem

base reg refined

reg

refined

T T T

T T T

T reg t reg t reg t reg t

T long char float double

array n of Type ptr T

}struct element list union element list






  


1 1, ...

:: { | : }

:: {var : var : }{ _ }

mem i i

F n n

T address i l T

T T T declarition list

  


Each type T, Generating Type Constraints;
{

() (_)

() 1_

x e

e

t f e

C T T

C goto e T ptr code t

C if e then goto e else goto e T reg t code t

 
  

         

（x:= e）

(_)

……
}
Constraint Solving
Match_type(T),OUTPUT type

IV. EXPERIMENTS

In experiments, to evaluate our approach, firstly, we use
BAP[12] (Binary Analysis Platform) to gain BIL(Binary
Intermediate Language). An experiment is example as
obfuscated binary code including control construct. Then we
will compare its result with IDA Pro and new type inference.
The following section source code and obfuscated assembly.

Figure 2. Obfuscated and Source code

For source code, we divide it into block A, the entry of B is
call instruction, the entry of C is jne instruction, the entry of D
is jmp instruction, and as a consequence, we construct a

ISBN 978-89-968650-2-5 395 February 16~19, 2014 ICACT2014

http://static.usenix.org/event/sec04/tech/full_papers/kruegel/kruegel_html/disassemble.html#linn03:obfuscation

decision tree. For TIE, if call instruction is obfuscated, it can
not detect the call instruction, so it can not reconstruct the
function type in other fun. We can take advantage of decision
tree to deobfuscate and gain correct data type.

V. CONCLUSIONS

In this paper, we presents an a novel approach for
automatic establish data type inference rules using machine
learning algorithm, On the other hand, we can remove
obfuscation during constructing the decision tree. Then we
reconstruct type operating on the type lattice.

Our approach can be applied to transfer transformation
obfuscation, however, it don’t work well on reconstruction of
obfuscated data type. In the future we can devote to research
how to reconstruct splitting arrays, matrix and so on.

ACKNOWLEDGMENT

This work has been supported by the National Natural
Science Foundation of China 61370062, the National High
Technology Research and Development Program of China
2012AA101608 and the Twelfth Five-year National Key
Technology Support Program 2013BAD17B04 and
Commonweal Research Project for Grain Industry
201313008.

REFERENCES

[1] R. Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348–375, 1978.

[2] O. Agesen. The cartesian product algorithm: Simple and precise type

inference of parametric polymorphism. In Proceedings of the 9th

European Conference on Object-Oriented Programming (ECOOP’95),

pages 2–26, London,UK, 1995.

[3] C. Chambers and D. Ungar. Iterative type analysis and extended message

splitting: Optimizing dynamically-typed object-oriented programs. In

Proceedings of the SIGPLAN Conference on Programming Language

Design and Implementation, pages 150–164, 1990.

[4] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic

inference of abstract types. In Proceedings of the 2006 international

symposium on Software testing and analysis (ISSTA’06), pages 255–265,

Portland, Maine, USA,2006. ACM.

[5] (2005)DataRescue. High level constructs width IDA Pro.

http://www.hex-rays.com/idapro/ datastruct/datastruct.pdf,.

[6] Ollydbg. http://www.ollydbg.de/.

[7] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 binary

executables. In Proc. Conf. on Compiler Construction (CC), April 2004.

[8] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and

its application to program analysis. In Proceedings of the 26th

ACMSIGPLAN-SIGACT symposium on Principles of Programming

Languages, 1999.

[9] Balakrishnan G, Reps T. Divine: Discovering variables in

executables.Verification, Model Checking, and Abstract Interpretation.

Springer Berlin Heidelberg, 2007: 1-28.

[10] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data

structures from binary execution. In Proceedings of the 17th Annual

Network and Distributed System Security Symposium (NDSS’10), San

Diego, CA, March 2010.

[11] Slowinska A, Stancescu T, Bos H. Howard: a dynamic excavator for

reverse engineering data structures, Proceedings of NDSS. 2011.

[12] Lee J, Avgerinos T, Brumley D. TIE: principled reverse engineering of

types in binary programs.Proceedings of the 18th Network and

Distributed System Security Symposium(NDSS).San Diego, USA:

Internet society,2011.

[13] Cozzie A, Stratton F, Xue H, et al. Digging for data structures.

Symposium on Operating Systems Design and Implementation (OSDI).

2008.

[14] C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and

Obfuscation - Tools for Software Protection. IEEE Transactions on

Software Engineering, 28(8):735-746, August 2002.

[15] C. Collberg, C. Thomborson, and D. Low. Taxonomy of Obfuscating

Transformations. Technical Report 148, Department of Computer

Science, University of Auckland, July 1997.

[16] LINN, C., AND DEBRAY, S. Obfuscation of executable code to improve

resistance to static disassembly. The 10th ACM Conference on Computer

and Communications Security (CCS 2003), 2003.

[17] Krishnamoorthy N, Debray S, Fligg K. Static detection of disassembly

errors. WCRE'09. 16th Working Conference on. IEEE, 2009: 259-268.

Wei Ding was born in Anhui province, china. After graduated from Henan

Institute of Technology in 2002, she entered into Zhengzhou University, and

gained Master Degree. Then she worked into Henan Universality of

Technology and became a doctorial student of Beijing Institute of Technology

in 2009. Her research area of interest is binary analysis and software security.

ISBN 978-89-968650-2-5 396 February 16~19, 2014 ICACT2014

http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://cn.bing.com/dict/clienttranslate?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E5%9B%BD%E5%AE%B6%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E5%9F%BA%E9%87%91##
http://www.hex-rays.com/idapro/
http://www.ollydbg.de/

