
A Flow Entry Management Scheme for Reducing

Controller Overhead

Eun-Do Kim*, Seung-Ik Lee**, Yunchul Choi**, Myung-Ki Shin**, Hyoung-Jun Kim**

* Broadband Network Technology, UST (University of Science and Technology), Korea

** Protocol Engineering Center, ETRI, Korea

{maniada, seungiklee, cyc79, mkshin, khj}@etri.re.kr

Abstract— In this paper, we advocate addressing the

communication overhead problem between OpenFlow

controllers and OpenFlow switches due to table-miss in a flow

table. It may cause the communication overhead between

controllers and switches because a switch has to send packet-in

message to a controller for processing table-missed flows. We

propose a simple flow entry management scheme for reducing

the controller overhead by increasing the flow entry matching

ratio. By using an LRU caching algorithm, a switch can keep the

flow entries in a flow table as many as possible, and then the flow

entry matching ratio can be increased.

Keywords— SDN, OpenFlow, Flow-based networking, Flow

entry, Performance

I. INTRODUCTION

Software-defined networking (SDN) provides network

operators to control and manage their own network in a simple

and programmable manner. OpenFlow is a communication

protocol that allows separation of control- and data-plane of

switch functionalities in SDN. Using this protocol, controllers

can manage the flow entries in a switch.

In OpenFlow networks, an incoming flow is forwarded

according to the action specified in the flow entry in a flow

table whose rule is matched with that flow. If an incoming

flow does not match one of the rules in the existing flow

entries called table-miss, the switch informs the controller

about the flow properties by sending packet-in message to

make the controller perform further actions (e.g., inserting a

new flow entry relevant to the incoming flow, dropping the

flow, etc.).

However, this packet-in procedure to deal with table-miss

may cause the communication overhead between controllers

and switches (i.e., controller overhead). So, it may need extra

processing time for forwarding packets. As a result, a buffer

of a switch may be full if the incoming flows are stayed in a

buffer for a long time.

In this paper, we advocate addressing the communication

overhead problem between OpenFlow controllers and

OpenFlow switches due to table-miss in a flow table. We

propose a flow entry management scheme for reducing the

controller overhead by increasing the flow entry matching

ratio with an enhanced but simple buffer management scheme

for a switch. Two key ideas of the proposed scheme are as

follows:

 A switch keeps the inactive flow entries in a flow table

temporarily rather than deleting them.

 A switch deletes the inactive flow entries in accordance

with the least-recently-used (LRU) caching algorithm.

With these two ideas, a switch can keep the flow entries in

a switch as many as possible, and the controller overhead can

be reduced by keeping the flow entry matching ratio high.

In Section 2, we define the controller overhead problem in

detail, and introduce the previous works. And then, we

propose a modified flow entry management scheme in Section

3. In this Section, the flow table overflow problem which is

mentioned in OpenFlow Switch Specification 1.4.0 [3] will be

addressed, and the solution applying an LRU caching

algorithm is proposed. In Section 4, we describe the tentative

simulation results of the proposed scheme which can reduce

the controller overhead. Then, the conclusions and the future

works are represented in Section 5.

II. PROBLEM DEFINITION

Table 1 shows the main components of a flow entry in a

flow table. As depicted, a flow entry contains a set of packet

fields to match (Match Fields) and the corresponding action

for the matched packets (Instructions). And it also has

Counters, Timeouts, etc.

A flow entry can be inserted, modified or deleted by a

controller, while a flow entry is automatically deleted if there

are no matching packets for idle_timeout seconds (i.e.,

inactive flow). Here we tackle two limitations in the current

flow entry management scheme for inactive flows:

 A switch may delete the flow entries even if they are

matched enough before but not matched recently.

 A switch may delete the flow entries even if a flow

table is not fully occupied.

TABLE 1. MAIN COMPONENTS OF A FLOW ENTRY IN A FLOW TABLE

Match

Fields
Priority Counters Instructions Timeouts Cookie

ISBN 978-89-968650-2-5 754 February 16~19, 2014 ICACT2014

Figure 1. Concept of the vacancy that we propose for applying an LRU caching algorithm

These limitations may result in a low ratio of flow entry

matching (i.e., high rate of table-miss), and it may cause the

communication overhead between controllers and switches.

To solve this communication overhead problem, following

approaches have been studied:

 DevoFlow [5] uses a selective packet-in method by

classifying the incoming flows according to their

patterns (e.g., significant flow, micro flow).

 DIFANE [6] uses authority switches (i.e., intermediate

switches) between controllers and switches which can

keep the flow entries temporarily.

While these approaches provide good alternatives to reduce

the communication overhead due to many table-misses, they

still require a sophisticated packet classification algorithm or

large changes in the OpenFlow network model. So, they may

cause other side effects.

III. PROPOSED SCHEME

We propose a modified flow entry management scheme

that increases the flow entry matching ratio. The goal of the

proposed scheme is to reduce the communication overhead

between controllers and switches by keeping the flow entries

in each switch as many as possible. In order to maximize the

number of the flow entry in a switch, we keep the flow entry

in a flow table as an inactive one even if a packet does not

match the flow entry while idle_timeout expires. We call this

undeleted flow entry inactive flow entry.

Whenever an inactive flow entry is matched by any packet

later, it becomes an active flow entry again by resetting the

idle_timeout and counter to their default values. In this case,

the controller overhead can be reduced because a switch can

insert flow entry without any communications between

controllers and switches.

A. Flow Table Overflow

In OpenFlow Switch Specification 1.4.0, the flow table

overflow problem is mentioned as follows:

 Most flow tables have finite capacity.

 In previous versions of the specification, when a flow

table is full, new flow entries are not inserted in the

flow table and an error is returned to the controller.

However, reaching that point is pretty problematic, as

the controller need time to operate on the flow table and

this may cause a disruption of service.

 Vacancy events add a mechanism enabling the

controller to get an early warning based on a capacity

threshold chosen by the controller (EXT-192). This

allows the controller to react in advance and avoid

getting the table full.

In OpenFlow networks, a switch sends an error message to

a controller when a flow entry has to be inserted, but cannot

because all the flow tables are full. If a controller wishes the

packet to be sent regardless of inserting a flow entry, then it

can also use a packet-out massage alternatively. However, it

cannot be a fundamental solution because of some problems

as follows:

 A new flow entry, which is very important, may not be

inserted due to flow table full.

 A controller does not know the flow table is full until it

receives an error message from a switch when a flow

entry cannot be inserted. So, a controller may need extra

processing time.

 After a flow table is full, a controller may receive more

and more error messages from a switch since new flows

income.

To avoid getting the flow table full in advance, we propose

a modified flow entry management scheme applying an LRU

caching algorithm.

B. Applying an LRU Caching Algorithm

To avoid the flow table overflow, a switch has to delete the

least important inactive flow entry. For this purpose, we

choose an LRU caching algorithm which shows the best

performance for increasing the flow entry matching ratio. The

performance comparisons between some caching algorithms

are described in [2].

For applying an LRU caching algorithm with simple

modifications on the switch, we use a concept of the vacancy

as shown in Figure 1. A concept of the vacancy is newly

added in OpenFlow Switch Specification 1.4.0 as follows:

 vacancy is current vacancy (%) of the flow table.

 vacancy_down is the vacancy threshold when space

decreases (%).

ISBN 978-89-968650-2-5 755 February 16~19, 2014 ICACT2014

Figure 2. Illustration of the (a) vacancy and the (b) occupancy of a flow table in a switch along the time with a cold start

 vacancy_up is the vacancy threshold when space

increases (%).

 The fields vacancy_down and vacancy_up are the

threshold for generating vacancy events that should be

configured on this flow table, expressed as a percent.

By using this concept of the vacancy, we can apply an LRU

caching algorithm for deleting the least important inactive

flow entry in a simple manner with a minor modification in

OpenFlow switches.

To apply this, inactive flow entries are maintained with

their ages by exploiting counter field in each flow entry which

is used to measure the number of flow matching for the

purpose of statistics. When a flow entry goes inactive, a

switch resets its counter to zero rather than deleting that flow

entry, and then a switch increments counter of the other

inactive flow entries. As a result, the least-recently-used

inactive flow entry may have the highest counter (i.e., highest

counter of the inactive flow entries means the number of the

inactive flow entry).

In the proposed scheme, the maximum number of the

inactive flow entry is set to the amount of vacancy_up minus

vacancy_down. Because the number of the inactive flow entry

increases, inserting different flow entries to the switch about

the previous flow may be problematic. To delete an inactive

flow entry based on LRU caching algorithm, a switch can

exploit counter field of each flow entry which indicates its age.

A switch deletes the inactive flow entry whose counter field

meets the amount of vacancy_up minus vacancy_down. By

doing this, a switch can keep the number of the inactive flow

entry as we set.

If vacancy becomes less than vacancy_down, however, a

switch has to delete some flow entries regardless of their

counter for avoiding the flow table overflow. In this case, the

target flow entries to delete are all of the inactive flow entries.

By doing this, a switch can increase vacancy again through a

simple manner.

IV. SIMULATION RESULTS

The controller overhead is to be reduced by applying the

proposed scheme. Figure 2 shows an illustration of both the

vacancy and the occupancy of a flow table in a switch along

the time with a cold start. These graphs are described based on

the tentative simulation with an LRU caching algorithm by

using Open vSwitch [7] and Mininet [8] which are open-

source tools for OpenFlow simulations. We implemented the

modified behavior of an OpenFlow switch by modifying the

source code of Open vSwitch roughly. And then, we construct

a topology and generate flows by using Mininet.

For a simple explanation, we represent as a view of the

occupancy as well as the vacancy of a flow table in a switch.

This process is classified as three stages as follows:

 In stage (i), flow entries are inserted in a switch with a

cold start. When a switch starts, default flow entries

which are calculated by applications (e.g., firewall, QoS,

etc.) are inserted from a controller. And then, the flow

entries which set the routing path are also inserted as

flows income. As time goes by, the flow entries whose

idle_timeout expires go inactive, then the number of the

inactive flow entry increases. As a result, the flow table

occupancy increases (i.e., flow table vacancy decreases)

along the time.

 In stage (ii), the number of the inactive flow entry is

fixed when it reaches the amount of vacancy_up minus

vacancy_down. It is because a switch deletes the

ISBN 978-89-968650-2-5 756 February 16~19, 2014 ICACT2014

inactive flow entry whose counter field meets the

amount of vacancy_up minus vacancy_down (i.e., least-

recently-used inactive flow entry). However, the

number of total flow entry changes continuously

because new flows may income frequently. A switch is

usually maintained in this stage.

 In stage (iii), if the number of the flow entry becomes

more than the amount of vacancy_down (i.e., vacancy

becomes less than vacancy_down), a switch has to

prevent the flow table overflow. In this case, a switch

deletes all of the inactive flow entries. The reason to

delete all of them at once is for simplifying a switch in

accordance with one of the philosophies of OpenFlow

networks. After deleting them, a switch is returned to

the stage (i) but warm start because it already has

enough flow entries to forward packets. By doing this, a

switch can avoid the flow table overflow in a simple

manner.

V. CONCLUSIONS

In OpenFlow networks, there is the communication

overhead problem between OpenFlow controllers and

OpenFlow switches due to table-miss in a flow table. And the

flow table overflow problem is also mentioned in OpenFlow

Switch Specification 1.4.0.

In order to reduce the communication overhead from many

packet-in messages, we proposed a modified flow entry

management scheme for increasing the flow entry matching

ratio. For this purpose, a switch temporarily keeps inactive

flow entries rather than deleting them.

If a flow table is fully occupied with flow entries, a switch

deletes the inactive flow entry in accordance with an LRU

caching algorithm using a concept of the vacancy of a flow

table in a switch which is newly added in OpenFlow Switch

Specification 1.4.0. By applying the proposed scheme for

increasing the flow entry matching ratio, we can reduce the

communication overhead from many packet-in messages.

As our future work, we will consider additional issues as

follows:

 It is required to evaluate the proposed scheme with

realistic packet flows. For this purpose, we will simulate

our modified flow entry management scheme by using

Open vSwitch and Mininet more detailed. Consequently,

we will show the enhanced performance of our

proposed scheme as comparing with current scheme.

 If a flow table is fully occupied with active flow entries,

a switch has to prevent the flow table overflow in other

ways. For this purpose, we will develop a careful

replacement algorithm to provide a high flow entry

matching ratio by using an LRU caching algorithm with

a concept of the vacancy as a threshold.

ACKNOWLEDGMENT

This research was funded by the MSIP (Ministry of Science,

ICT & Future Planning), Korea in the ICT R&D Program

2013.

REFERENCES

[1] Eun-Do Kim, Seung-Ik Lee, Yunchul Choi, Myung-Ki Shin, and
Hyoung-Jun Kim, “An Enhanced Flow Entry Management Scheme for

OpenFlow,” in Proc. CFI’13, 2013.

[2] Adam Zarek, “OpenFlow Timeouts Demystified,” Univ. of Toronto,
Toronto, Ontario, Canada, 2012.

[3] OpenFlow Switch Specification Version 1.4.0, ONF (Open Networking

Foundation), Available: https://www.opennetworking.org/, October.
2013.

[4] Software-Defined Networking: The New Norm for Networks, ONF

(Open Networking Foundation), Available:
https://www.opennetworking.org/, April. 2012.

[5] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, and Praveen

Yalagandula, “DevoFlow: Scaling Flow Management for High-
Performance Networks,” in Proc. SIGCOMM’11, 2011.

[6] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang,

“Scalable Flow-Based Networking with DIFANE,” in Proc.
SIGCOMM’10, 2010.

[7] Open vSwitch: An Open Virtual Switch. [Online]. Available:

http://openvswitch.org/
[8] Mininet: An Instant Virtual Network on your Laptop (or other PC).

[Online]. Available: http://mininet.org/

Eun-Do Kim was born in Seoul, Korea, in 1987.

He received the B.S. degree in Applied Physics
from the Hanyang University, Ansan, Korea, in

2012, and he is an integrated M.S. and Ph.D.

student in Broadband Network Technology of
the UST (University of Science and Technology),

Daejeon, Korea, since 2012.

In 2012, he joined the Protocol Engineering
Center, ETRI, Korea, as an UST graduate

student and his current research interests include

SDN and OpenFlow protocol.

ISBN 978-89-968650-2-5 757 February 16~19, 2014 ICACT2014

https://www.opennetworking.org/
https://www.opennetworking.org/
http://openvswitch.org/
http://mininet.org/

