
A Remote User Interface Framework for

Collaborative Services Using Interconnected Smart Devices

Bong-Jin Oh*, Jong-Youl Park*

* Social Computing Research Team, ETRI, 218 Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea

bjoh@etri.re.kr, jongyoul@etri.re.kr

Abstract— This paper introduces a remote user interface

framework which supports applications to share their view with

remote smart devices. Besides that, a virtual IO function is

provided to use mobile devices as remote controller. By thus,

users can control home networked devices and applications by

their smart devices with intuitive UI/UX. The proposed

framework provides collaborative application model, APIs of

sharing application view and virtual IO emulator.

Keywords— RUI framework; home network; collaborative

application; UI migration, virtual IO

I. INTRODUCTION

Smart devices are widely spread to users since the smart

phone with intuitive UI/UX has been introduced in January

2007. TV is known for the friendliest consumer device to

people. It also has evolved to smart device from a typical

passive device. The current TV provides users with various

interactive contents augmented from linear services and

downloaded from application servers [1-3]. Moreover, it is not

awkward for people to interoperate their smart devices with

smart TV for collaboration services [4-6].

Recently, many researches have been introduced to

interoperate the smart devices with other devices such as TV,

information appliances and various sensors in home network

area. Virtual Desktop Interface based user interfaces have

been used to control remote devices by local smart devices.

Virtual Network Control, Remote FX and streaming protocol

have been used to support those Virtual Desktop Interface

services [4, 5]. Many Remote User Interface standards such as

MIRACAST [7], DLNA-RVU [8] and Airplay [9] use

streaming protocols to provide remote device control or

collaborative services. They have some problems of using too

a lot of bandwidth and supporting only sharing of main

graphic user interface because they transmit video streams

using the sequences of images captured from frame buffer.

An HTML5 based collaborative application platform is

provided by MOVL UI [10]. It is independent of device

platform and based on a cloud server for collaboration

services. But it is time consuming for users to connect client

applications with host applications. Multiple applications

should be installed on smart devices, and users should

interconnect the devices by logging into allocated room with

room number displayed on TV screen by host applications.

This paper proposes a RUI framework based on sharable

GUI to support collaborative services among interconnected

smart devices. Virtual IO emulator is also provided to control

remote devices using virtualized device controllers.

The rest of this paper is organized as follows. Chapter II

describes the overview of the proposed RUI architecture, and

a reference implementation of the RUI framework with

exemplary RUI services is shown in chapter III. Lastly, we

conclude our research briefly in chapter IV.

II. THE PROPOSED RUI FRAMEWORK

A. RUI Framework Architecture

The proposed RUI framework consists of three RUI

components shown as Figure 1. RUI Manager is the one

component which runs on the server device. RUI Agent and

RUI Viewer are the components which run on every client

devices.

The RUI manager scans the RUI devices using the SSDP

(Service Discovery Protocol) of UPnP. Whenever a RUI based

smart device is turned on, the RUI Agent of the device finds

the RUI Manager using SSDP too. If the two devices are

connected, then the RUI Manager collects device profile of

client device.

Figure 1. RUI framework architecture

The device profile includes device name, service list,

address and device mode, and it is stored to RUI Status Table.

The RUI Manager monitors the status of each client devices in

real-time. Client devices get the global information about RUI

services from the RUI Manager. The status of client devices

including current running RUI application and connection

mode is stored to RUI Status Table together with device

profiles. The user can monitor the entire status of RUI devices

using the management screen provided by the RUI Manager.

The RUI Manager also supports service session management

among client devices. If a client device is gone, then the RUI

ISBN 978-89-968650-2-5 630 February 16~19, 2014 ICACT2014

mailto:bjoh@etri.re.kr
mailto:jongyoul@etri.re.kr

Manager notifies it to another client device bound to

disappeared client device using RUI messages.

The RUI Viewer is implemented by extension of the

WebKit to render HTML5 based UIs, and it handles user

events invoked locally or remotely. The user events are

transmitted to the RUI Viewer’s event queue by the RUI

Agent whenever users input events with local input device or

remote virtual input devices. The RUI Viewer is launched

automatically to render initial RUI Page by the RUI Agent.

The RUI Agent plays the most important role of RUI

framework to share UIs for remote control of devices and

applications among smart devices. The RUI Agent manages

Top Window, RUI Message layer, Device Page, Virtual IO

Page, RUI applications and local repository and so on.

The Top Window is displayed as an overlay window on the

screen for interaction between users and RUI components.

Users can request RUI operations of the RUI Agent by long

touch on the top window for about 3 seconds. The RUI Agent

shows the functions such as virtual IO on the Top Window,

and then users select one of them to process.

Figure 2. The protoco stack of the RUI Agent

The software elements of RUI Framework except the RUI

Viewer interoperate with each other using HTTP based

messages. The RUI Agent provides the software elements

with RUI Communicator APIs based on JSON message

system (Refer to Figure 2). On the contrary, The RUI Viewer

is tightly coupled with the RUI Agent on every client devices,

and they interoperate with each other using local procedure

calls to invoke user’s input events and to render application’s

or RUI initial UI page.

Virtual IO Page is also described as an HTML5 document

including the key map of physical controllers such as remocon,

mouse and keyboard provided locally. Virtual IO Page is

transmitted to other Remote Agents for virtual IO mode. The

Remote Agent shows the received Virtual IO Page to users by

the RUI Viewer to control remote devices using the similar

user interface of physical controller.

The Device Page is changed according to current mode of

client’s device. When the RUI framework is launched, the

page is set with the RUI Initial Page. If the device is bound to

other device as virtual IO mode, then the page is set with the

Virtual IO Page. Lastly, the page can be set with UIs of RUI

applications launched locally or remotely. If the RUI

applications are running on a remote client, then the UI to be

set is moved to local device from the remote client.

The RUI Agent installs RUI applications to the repository

of client devices, and manages their life-cycles. It also request

remote RUI Agents to launch RUI Applications installed on

the remote devices. The UIs of RUI Applications are able to

be migrated into other devices for remote control. The UIs and

Virtual IO Pages are distributed to remote RUI Agents using

OSGI’s core APIs. In this paper, the UIs and Virtual IO Pages

are handled as sub-apps included in a service bundle.

B. Collaboration Model of RUI Application

RUI based services are installed on one of inter-connected

smart devices by users. Users can browse the service list

regardless of local service or remote service by RUI service

browser. When users select a service, the selected service will

be launched on the device which it is installed on. Users can

control the remote service by the proposed RUI protocol based

on migratable UI as Figure 3.

Figure 3. The concept diagram of the propsed sharable UI

In this paper, the RUI services are implemented as Web

App or Hybrid App. Therefore, their UIs are described as

HTML5 document to be rendered on various kinds of device

platform by the RUI Viewer as Figure 4. RUI service bundle

consists of a service description, several UI segments and a

logic app, and the UI Segments can be distributed into smart

devices according to user’s requests.

Figure 4. The collabroation model of RUI applications

The Sub-description of each UI segments includes

attributes such as segment ID, sharing mode, URL and input

event model etc. Three kinds of the UI sharing modes are

provided as follows.

ISBN 978-89-968650-2-5 631 February 16~19, 2014 ICACT2014

(1) Mirror

The UI of the original application which runs on the

remote device is duplicated, and the UIs are

transmitted to multiple devices. If an input event is

invoked in the original UI, then all the duplicated UIs

also receive the invoked event at the same time.

(2) Migration

The original UI of local device is moved to selected

devices. This mode is needed to display the local UI on

the bigger screen. The local UI is automatically

changed into virtual IO mode to control the migrated

UI with local device.

(3) Segmentation

The parts of Remote UIs are pulled and rendered on

the display of local device. The UIs may be displayed

on multiple devices according to the requests of several

users at the same time.

The shared UIs and logic communicated to each other with

RUI messages which have the following format.

Figure 5. The Structure of RUI Message

The Address of RUI message consists of device UUID,

software element ID and segment ID to distinguish software

elements. The kinds of software elements are classified into

RUI applications (UI segments, logic apps) and RUI

components (RUI Manager, RUI Agents).

The IP address of RUI message is decided by the related

information stored to the RUI Status Table such as the

composition of device ID, application ID and UI segment ID

(application ID is allocated per RUI service and included in

service descriptions).

C. Virtualized Input devices

The proposed RUI framework provides two virtual IO

modes for users to utilize smart devices as remote controllers

as shown in Figure 6.

Figure 6. Virtual IO action model

The first mode is the device virtual IO mode which user

device plays the role as same as physical controller of other

smart devices. Each RUI Agent manages Virtual IO Page

which describes control UI of local device’s physical

controller such as remocon or control panels. The Virtual IO

Page is described as HTML5 based application which can be

rendered by the RUI Viewers of other devices. The Virtual IO

Page is transmitted to other devices and launched by RUI

Viewers of the devices, when users want to control remote

devices by virtual IO mode. user input events are transmitted

to remote RUI Agent, and the user events will be consumed

by system event handler.

The second mode is the application virtual IO mode which

RUI applications can select necessary type of virtual

controller dynamically. Each RUI Agent manages embedded

virtual IO emulators to be launched by only local RUI Viewer,

not by remote RUI Viewers. Virtual IO emulators are

predefined and installed in the repository of the RUI Agent

according to the capabilities of local devices.

User device is virtualized into the emulator which can

process the event model described in sub-description for each

UI segment. If an event model contains keyboard and mouse,

then the icon of keyboard and mouse is displayed in the virtual

IO menu to be selected by users. Moreover, RUI applications

control the layout of virtual IO pages by send RUI messages

which contains the event list. user input events are transmitted

as user events which will be invoked to RUI application's

event queue by the RUI Viewer.

III. REFERENCE IMPLEMENTATION

Figure 7. Network configuration of a reference implementation

A reference platform is implemented to show the

functionalities of the proposed RUI framework together with

an exemplary RUI application. The network configuration of

the reference platform is shown as Figure 7 and Table 1.

Android based a set-top box; a smart phone and a smart pad

are interconnected by an AP connected to a Giga-bit switch. A

VOD server is connected directly to switch as an UPnP AV

server. VOD client is installed the set-top box as an UPnP AV

Renderer. The RUI Manager runs on the smart pad to manage

the status of RUI framework. Some HTML5 games found on

websites by the keyword of “HTML5 games” are installed on

both of set-top box and smart pad. The smart phone is only

ISBN 978-89-968650-2-5 632 February 16~19, 2014 ICACT2014

used to control other devices as a virtual IO or remote UI

sharing mode.

TABLE 1. THE DETAILS OF DEVICE AND SOFTWARE

Item details

Hardware

 Set-top box, smart phone, smart pad

Android 2.x.x, dual core, RAM:2GB

 Contents Server (PC)

Windows 7, quad core: i-7, RAM: 4GB,

HDD: 1T, 5400RPM

Networks
 AP (WiFi n/g, Ethernet 100Mbps)

 Switch (1Gbps)

Software

 VideoTube RUI application (VOD client)

media player, contents guide, media control

functionalities (UPnP AV renderer)

 VideoTube server

UPnP AV architecture

Directory service, HTTP based streamer

 HTML5 based web apps

VideoTube RUI service was implemented for remote UI

sharing functionality among home-networked devices as

Figure 8. VideoTube is composed of a contents server and a

media player to provide users with a VOD-like service.

(a) Segmenting RUI mode

(b) Mirroring RUI mode

Figure 8. A Exemplary RUI service (Segmenting & Mirroring)

The UI of media player is able to be fragmented into Media

Display UI, Control Panel UI and Contents Navigation UI. In

the (a) of Figure 8, a user pulled the Contents Navigation UI

together with Control Panel UI from TV. Only Media Play UI

remains on the screen of TV with full screen mode

automatically. There are 2
^3

 kinds of layout templates are

provided for various status of RUI sharing for VideoTube.

The mirroring RUI mode is shown in the (b) of Figure 8.

The UIs of VideoTube are duplicated to smart pad, and users

can control the VideoTube by local smart pad or remote TV.

The user input events are multicast to all of mirrored devices

as well as TV which launches the VideoTube.

Figure 9. An Exemplary Virtual IO service (Mouse & Keyboard)

Some HTML5 based web apps deployed on websites are

used to verify our proposed virtual IO functionalities. Some of

them are developed for PC, and the others are developed for

mobile devices. Therefore, user’s smart device should be

virtualized into keyboard for PC version and virtualized into

mouse for mobile device version according to user’s selection.

An Entanglement game [11] is launched in PAD. When

user requests the game migrate to TV, the UI of user’s PAD is

changed to the virtual Keyboard automatically. The phone is

also bound to TV as a virtual mouse mode. Two users can

play the game together simultaneously.

IV. CONCLUSIONS

The proposed RUI framework supports collaborative

services using decomposable and sharable UIs among

interconnected smart devices. The framework consumes less

network bandwidths than the typical streaming based RUI

protocols because the RUI framework uses HTML5 based UI

and message driven interoperation between multiple devices,

Moreover, users can use local devices as intuitive remote

controllers of other devices using virtual IO emulators.

TABLE 2. THE COMPARISON OF RUI PROTOCOLS

Item Proposed MIRACAST Airplay MOVL UI

Bandwidth Low High High Low

Mirroring OK OK OK NO

Collaboration OK NO OK OK

Virtual IO OK NO NO NO

Device Paring Easy Easy Easy Difficult

Platform
Independent

OK OK NO OK

ISBN 978-89-968650-2-5 633 February 16~19, 2014 ICACT2014

Table 2 shows that the proposed framework is better than

other RUI standards for various RUI functionalities.

ACKNOWLEDGMENT

This work was supported by the IT R&D program of

MKE/KEIT, [KI10039202, Development of SmartTV Device

Collaborated Open Middleware and Remote User Interface

Technology for N-Screen Service].

REFERENCES

[1] Bumsuk Choi, Junghak Kim, Soonchoul Kim, Youngho Jeong, Jin
Woo Hong, and Won Don Lee , “A Metadata Design for Augmented

Broadcasting and Testbed System Implementation,” ETRI Journal,

vol.35, No.2, pp. 292–300, Apr. 2013.
[2] Hyori Jeon, Yonghee Shin, Munkee Choi, Jae Jeung Rho, and

Myungseuk Kim, “User Adoption Model under Service Competitive

Market Structure for Next-Generation Media Services,” ETRI Journal,

vol. 33, No.1, pp.110–120, Feb. 2011.

[3] Steven Morris, Anthony Smith-Chaigneau, Interactive TV Standards,

Elsevier Inc., 2005.
[4] Yusoek Bae and Jongyoul Park, “A Seamless Remote User Interface

System Supporting Multi-Screen Services in Smart Devices,” in Proc.

ICCE2013, pp. 462–463, Jan. 2013.
[5] Bong-Jin Oh and Jong-Youl Park, “Design and Implementation of

HTML5 based Collaborative N-Screen Contents Platform for Smart

TV,” in Proc. ICCC2013, paper 038, pp.225–226.
[6] JeaWon Moon, Tae-Beom Lim, Kyung Won Kim, Seok Pil Lee,

SeWoom Lee, “Advanced Responsive Web Framework based on
MPEG-21,” in Proc. ICCE-Berlin2012, paper 7.1(3), pp.192–194.

[7] Miracast. [Online]. Available: https://www.wi-fi.org/

[8] RVU Alliance. [Online]. Available: http://www.rvualliance.org/

[9] Apple AirPlay. [Online]. Available: http://www.apple.com/airplay/

[10] MOVL UI. [Online]. Available: http://connect.movl.com/
[11] Entanglement HTML5 based web app. [Online]. Available:

http://entanglement.gopherwoodstudios.com

Bong-Jin Oh received B.S. and M.S. degrees in
computer science from Pusan National University,

Busan, Korea in 1993 and 1995 respectively, and the

Ph.D. degree from Chungnam National University,
Daejeon, Korea in February 2012. Since 1995, he has

been with the Electronics and Telecommunications

Research Institute (ETRI), where he develops home
network middleware and data broadcasting middleware. His research interests

are home network middleware, data broadcasting middleware, IPTV,

pervasive computing, and big data analytics.

 Jongyoul Park received the B.S. degree in computer
engineering from Chungnam National University, Korea,

in 1996, the M.S. and Ph.D. degrees in information and

communication engineering from the Gwangju Institute of
Science and Technology (GIST), Korea, in 1999 and 2004,

respectively. From 2001 to 2002, he was a visiting
researcher at the school of computing, University of Utah.

Since 2004, he has been a Research Staff and Director of Analytics SW

Research Section of Electronics and Telecommunications Research Institute
(ETRI), Korea. His research interest includes IP broadcasting, software

middleware, mobile code, distributed computing, big data and analytics platform.

ISBN 978-89-968650-2-5 634 February 16~19, 2014 ICACT2014

https://www.wi-fi.org/
http://www.rvualliance.org/
http://www.apple.com/airplay
http://connect.movl.com/
http://entanglement.gopherwoodstudios.com/

	4P-11-0270-O
	pdf
	로컬 디스크
	F:\21 ICACT2014 CD\pdf\tech\pdf.txt

