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Abstract—In this paper, the superimposed training strategy
is introduced into the OFDM modulated amplify-and-forward
(AF) two-way relay network (TWRN) to simplify the channel
estimation at the destination, and the closed-form Bayesian
Cramér-Rao lower bound (CRLB) is derived for the estimation
of block-fading frequency-selective channels, which is used to
guide the optimal training design. Through the superposition of
an additional training vector at the relay under certain power
allocation scheme, the separated channel information can be
obtained directly at the destination. The Bayesian CRLB is
derived for the random channel parameters, and orthogonal
training vectors from the two source nodes are required to keep
the Bayesian CRLB practical, due to the self-interference in the
TWRN. A set of training vectors obtained from the minimization
of the Bayesian CRLB are applied in a specific suboptimal
channel estimation algorithm, and the mean-square error (MSE)
performance is provided to verify the Bayesian CRLB results.

Keywords—Two-way relay, channel estimation, Bayesian
Cramér-Rao lower bound(CRLB), training design, mean-square
error.

I. I NTRODUCTION

With the combination of cooperative communication, two-
way relay network (TWRN) emerged a few years ago, and
has attracted a great deal of interest recently [1], [2], due to
its improved spectral efficiency over one-way relay network
(OWRN). In a TWRN, a major difficulty lies in how to ef-
fectively recover the data transmitted over an unknown fading
channel from the other source terminal. Channel estimation in
TWRN has been studied in [3]–[8]. Specifically, in [4] and
[5], the cascaded source-relay-source channels were estimated
using block-based training under the assumption of time-
invariant frequency-selective fading channels. Different from
[4] and [5], where the relay only amplifies and forwards the
received signal, [6] allowed the relay to first estimate the
channel parameters and then allocated the powers for these
parameters. The channel estimation problem was extended to
the TWRN with multiple antennas at all the three nodes in
[7]. A blind channel estimation algorithm based on the second
order statistics of the received signal was proposed in [8] for
AF TWRN. Inspired by the superimposed training in point-to-
point communications, [9] and [10] designed a superimposed
training strategy in AF OWRN.

In this work, we introduce the superimposed training s-
trategy into OFDM modulated AF TWRN to simplify the
channel estimation at the destination, and derive the closed-
form Bayesian Cramér-Rao lower bound (CRLB) for the esti-

mation of block-fading frequency-selective channels. The relay
superimposes its own training signal over the received signal
before forwarding it out, which provides the separated channel
information, and the total relay power is allocated between
the two parts reasonably. Due to the self-interference in the
TWRN, the Bayesian CRLB is different from its counterpart
in the OWRN, which requires orthogonal training vectors from
the two source nodes and more complex constraints for the
optimal training design. The simulation is provided to verify
the Bayesian CRLB results by the MSE performance of a
specific suboptimal channel estimation algorithm.

The structure of the rest of the paper is as follows. The
system model of superimposed training in the TWRN is given
in Section II. In Section III, the Bayesian CRLB of superim-
posed training based channel estimation is derived, the training
design from the Bayesian CRLB and a suboptimal channel
estimation algorithm are described. Finally, the simulation
results are provided in Section IV and conclusions are drawn
in Section V.

II. SYSTEM M ODEL

Consider a TWRN network where two nodes,T1 andT2,
exchange information through one relay nodeR, as shown
in Fig. 1. The transmission is divided into two phases. During
Phase I, bothT1 andT2 send a signal frame toR via an uplink
manner, whereas during Phase II,R processes the received
signals and broadcasts them toT1 andT2.
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Fig. 1. Two-way relay network

The baseband channel betweenT1 and R is denoted by
h = [h0, h1, · · · , hLh−1]

T , and the one betweenT2 and
R is denoted byg =

[

g0, g1, · · · , gLg−1

]T
, where Lh, Lg

represents the number of the taps of the corresponding channel.
Both h andg are assumed as zero-mean circularly symmetric
complex Gaussian random vectors and remain unchanged at
least for one round of data exchange. For simplicity, consider
that hl ∈ CN

(

0, σ2
h,l

)

andgl ∈ CN
(

0, σ2
g,l

)

are independent
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from each other. For time-division-duplexing (TDD), the chan-
nel can be considered reciprocal. The average transmission
powers of T1,T2 and R are denoted asPs, Ps and Pr,
respectively.

In the OFDM modulated TWRN, the first block in one data
frame is devoted to training, as shown in Fig. 2.
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Fig. 2. Structure of one data frame with superimposed training

Suppose the OFDM block length isN , and denote
the training vectors fromT1 and T2 in frequency do-
main as t̃s1 =

[

t̃s1,0, t̃s1,1, · · · , t̃s1,N−1

]T
and t̃s2 =

[

t̃s2,0, t̃s2,1, · · · , t̃s2,N−1

]T
, respectively. The training power

is constrained by

tHs1ts1 = t̃Hs1t̃s1 ≤ NPs, tHs2ts2 = t̃Hs2t̃s2 ≤ NPs. (1)

To avoid the inter-block interference (IBI), bothT1 and
T2 insert the cyclic prefix (CP) of lengthLcp,T1,T2

≥
max {Lh − 1, Lg − 1} in the front of the OFDM block before
transmission. RelayR superimposes a new trainingtr over the
received signal The following constraint should be satisfied for
the training block,

E
{

‖rt‖2
}

= α2
(

σ2
ht

H
s1ts1 + σ2

gt
H
s2ts2 +Nσ2

n

)

+tHr tr ≤ NPr,

(2)
whereσ2

h =
∑Lh−1

i=0 σ2
h,i andσ2

g =
∑Lg−1

i=0 σ2
g,i. We can prove

when the optimal channel estimation is achieved, both the
equalities in (1) and (2) must hold, regardless of the channel
estimation algorithm used. LetPt =

tHr tr
N

be the average
power assigned for superimposed training atR, then,

Pt = Pr − α2
(

σ2
hPs + σ2

gPs + σ2
n

)

.

Pt can be seen as the function ofα while the range ofα
is

(

0,
√

Pr

σ2

h
Ps+σ2

gPs+σ2
n

)

. Relay R then adds a new CP that

consists of the lastLh − 1 entries in rt and forwards the
superimposed signal toT1 and T2. For symmetry, only the
process atT1 is discussed. Letw1 = h⊗ h, andw2 = h⊗ g,
then the received signal atT1, after CP removal, is

y1 = αΦ2Lh−1 (ts1)w1 + αΦLh+Lg−1 (ts2)w2

+ΦLh
(tr)h+ αHnr + n1,

(3)

wheren1 is the N × 1 AWGN vector with varianceσ2
n on

each entries. The task of channel estimation in the TWRN is
to find h andg from y1.

III. TRAINING DESIGN FROM BAYESIAN CRAM ÉR-RAO
BOUND AND SUBOPTIMAL CHANNEL ESTIMATION

A. Bayesian Craḿer-Rao Bound

The Cramér-Rao bound (CRB) for the estimation of deter-
ministic parameters is given by the inverse of the FIM, and
Van Trees derived an analogous bound to the CRB for random
variables, referred to as “Bayesian CRB” (BCRB) [11]. With
the assist of BCRB, the performance of the suboptimal esti-
mators in the TWRN can be assessed, and the optimal training
design could be obtained. Letθ =

[

hT ,gT
]T

be the Gaussian
random vector to be estimated, and the FIM is defined as [11],

J = E

{

∂ ln p (y1, θ)

∂θ∗

(

∂ ln p (y1, θ)

∂θ∗

)H
}

=

[

J11 J12

JH
12 J22

]

,

where the expectation is taken over the joint probability density
functionp (y1, θ). The BCRB is the lower bound of any error
covariance matrixE{(θ̂ − θ)(θ̂ − θ)

H}.
The FIM is computed as

J11 = 4α2c2Φ
H
Lh

(ts1)ΦLh
(ts1) + α2σ2

gc1Φ
H
Lh

(ts2)ΦLh
(ts2)

+ c1Φ
H
Lh

(tr)ΦLh
(tr) +Nσ4

nα
4c3I+R−1

h ,

J12 = 2α2c2Φ
H
Lh

(ts1)ΦLg
(ts2) ,

J21 = 2α2c2Φ
H
Lg

(ts2)ΦLh
(ts1) ,

J22 = α2c2Φ
H
Lg

(ts2)ΦLg
(ts2) +R−1

g ,

whereci, i = 1, 2, 3 are defined in the following,Rh andRg

are the covariance matrices ofh andg, respectively.
As we can see,J12 andJ21 are zero matrices as long asts1

andts2 are orthogonal. Sincets1 andts2 are known training
vectors fromT1 andT2, the orthogonality can be guaranteed.
SinceJ12 = 0 andJ21 = 0, the BCRBs forh andg can be
separately expressed as

BCRBh = J −1
11 , BCRBg = J−1

22 ,

and the channel error covariances are lower bounded by

Covh = E
{

∆h∆hH
}

� BCRBh,

Covg = E
{

∆g∆gH
}

� BCRBg.

The optimal training vectors in the TWRN can be designed
from the Bayesian CRLB through the minimization ofMSEh

andMSEg, under the power constraints in (1) and (2) and the
orthogonality constraint ofts1 andts2.

B. Training Design From Bayesian Craḿer-Rao Bound

The two optimizations ofh and g from BCRB are formu-
lated as

(P1) : min
ts1,ts2,tr

tr (BCRBh) (P2) : min
ts2

tr (BCRBg)

s.t. tHs1ts1 = NPs, s.t. tHs2ts2 = NPs.

tHs2ts2 = NPs,

tHr tr = NPt.
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Lemma 1: The training sequences satisfying

(C1) : ΦH
Lh

(ts1) ΦLh
(ts1) = NPsI,

(C2) : ΦH
max{Lh,Lg}

(ts2)Φmax{Lh,Lg} (ts2) = NPsI,

(C3) : ΦH
Lh

(tr)ΦLh
(tr) = NPtI,

(C4) : ΦH
Lh

(ts1) ΦLg
(ts2) = 0,

are optimal solutions to (P1) and (P2).
Proof: For any positive-definite matrixX, there is

tr
(

X−1
)

≥
N−1
∑

i=0

1

[X]ii
,

and the equality holds whenX is diagonal. For (P1),
R−1

h is a constant diagonal matrix, and the diagonal
elements ofΦH

Lh
(ts1) ΦLh

(ts1), ΦH
Lh

(ts2)ΦLh
(ts2), and

ΦH
Lh

(tr)ΦLh
(tr) are constantNPs, NPs, andNPt, respec-

tively. Therefore,

tr (BCRBh) ≥
Lh−1
∑

i=0

1

N
[

Ps

(

4α2c2 + α2σ2
gc1

)

+ c1Pt + σ4
nα

4c3 +
1

Nσ2

h,i

] ,

and the RHS is the lower bound of thetr (BCRBh), s-
ince it is not related with any training vector. The low-
er bound is achieved whenΦH

Lh
(ts1)ΦLh

(ts1) = NPsI,
ΦH

Lh
(ts2)ΦLh

(ts2) = NPsI andΦH
Lh

(tr)ΦLh
(tr) = NPtI.

Similarly, as for (P2), the lower bound is achieved when
ΦH

Lg
(ts2)ΦLg

(ts2) = NPsI. From the two proofs we can
obtain (C1), (C2) and (C3). (C4) is required to keep the BCRB
compact.

An example of such training sequences is provided here.
∣

∣t̃s1,i
∣

∣

2
= Ps,

∣

∣t̃s2,i
∣

∣

2
= Ps,

∣

∣t̃r,i
∣

∣

2
= Pt,

i = 0, · · · , N − 1,

t̃∗s1,i t̃s2,i = Ps

√
N [F]ik = Pse

−j2πik/N ,

∀k ∈ {(Lh + Lg − 1) , · · · , (N − Lg)} ,

t̃∗s1,i t̃r,i =
√
PsPtN [F]ik =

√
PsPte

−j2πik/N ,

∀k ∈ {(2Lh − 1) , · · · , (N − Lh)} ,

t̃∗s2,i t̃r,i =
√
PsPtN [F]ik =

√
PsPte

−j2πik/N ,

∀k ∈ {(Lh + Lg − 1) , · · · , (N − Lh)} .

C. Suboptimal Channel Estimation

Using the optimal training vectors, we refer to the subop-
timal estimators to verify the Bayesian CRLB results, since
channel statistics are assumed known. Consider the case when
the training length is sufficiently large,N ≥ 4Lh + Lg − 2.

Define the new(4Lh + Lg − 2)× 1 channel vector asu =
[

wT
1 ,w

T
2 ,h

T
]T

, whose covariance matrixRu is a diagonal
matrix

Ru = Eθ

{

uuH
}

=

[

Rw1
0 0

0 Rw2
0

0 0 Rh

]

,

whereRw1
, Rw2

, Rh are the covariance matrix ofw1, w2

andh, respectively. The received training atT1 is then

y1 = Σu+ n,

where Σ =
[

αΦ2Lh−1 (ts1) , αΦLh+Lg−1 (ts2) , ΦLh
(tr)

]

.
The standard Linear MMSE (LMMSE) estimate ofu is,

û = RuΣ
H
(

ΣRuΣ
H +Rn

)−1
y1,

whose error covariance is

Covu =
(

R−1
u +ΣHRnΣ

)−1
,

and the corresponding MSE isMSEu = tr (Covu).
With the estimateŝw1, ŵ2 and ĥ, the initial estimate of̂g

can be computed from the de-convolution approach as

ĝ = Ψ†
Lg

(ĥ)ŵ2,

whereΨ†
Lg

(ĥ) is the(Lh + Lg − 1)×Lg column-wise circu-

lant matrix with the first column[ĥT 01×(Lg−1)]
T .

After obtaining the initial channel estimates, an iterative
method is applied to updateŝh and ĝ by turns. In each
iteration, first ĥ is substituted back into (3) to update the
LMMSE estimateĝ using interference cancellation, and then
the updatedĝ is substituted back into (3) to update the
LMMSE estimateĥ using interference cancellation. The it-
eration goes on until a certain stopping criterion is satisfied.

IV. SIMULATIONS

In this section, we provide some numerical results to il-
lustrate our studies. The optimal training sequences are used
and only the channel estimation atT1 is considered. Let
Lh = Lg = 6, all channel taps have unit variances, and the
noise variance is also set as 1. For simplicity,Ps = Pr is
assumed and the SNR is defined asPs

/

σ2
n = Ps. The total

training power is the same in all the scenarios. The OFDM
block lengthN is taken as 64, following IEEE 802.11a.
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Fig. 3. Bayesian CRLBs versus SNR
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Fig. 5. channel estimation NMSEs versusα at SNR = 10 dB

The theoretical Bayesian CRLBs is calculated forh andg as
the function of both SNR andα, as in Fig. 3. We can see that
the Bayesian CRLB ofh is always smaller than the Bayesian
CRLB of g for any givenα.

The NMSE performance of the suboptimal estimator ver-
sus SNR is displayed together with the theoretical Bayesian
CRLBs in Fig. 4 for channel estimation ofh and g with α
fixed as 0.25. The NMSE performance of channel estimation
for h is always better than the counterpart forg, which is
consistent with the comparison between the two CRLBs.
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Fig. 4. Channel estimation NMSEs versus SNR forα = 0.25

It is also found that the iterative algorithm converges in three
iterations, as Fig. 5, the NMSE curve after the third iteration

almost coincides with the NMSE curve after the previous
iteration.

V. CONCLUSION

In this paper, we have introduced the superimposed training
strategy into OFDM modulated AF TWRN, which superim-
poses a new training vector at the relay, and provides the
separated channel information at the destination to simplify the
channel estimation. Under the circumstances that the random
parameter vector to be estimated contains only fading channel
coefficients, the closed-form Bayesian CRLB has been derived
for the estimation of the block-fading frequency-selective
channels, and then used to guide the optimal training design,
which is more complicated than OWRN due to the self-
interference in TWRN.
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