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Abstract—In this paper, the superimposed training strategy ~ mation of block-fading frequency-selective channels. The relay
is introduced into the OFDM modulated amplify-and-forward  superimposes its own training signal over the received signal
(AF) two-way relay network (TWRN) to simplify the channel  pefore forwarding it out, which provides the separated channel
estimation at the destination, and the closed-form Bayesian information, and the total relay power is allocated between
Cfrag'l"erl;Rfado. 'Oerr bound (C'IQL?) IS (;I]enveoll for Lhehe_stlmatlgnt the two parts reasonably. Due to the self-interference in the
of block-fading frequency-selective channels, which is used to : o ;
guide the optimal training design. Through the superposition of TV:/hRNO,\;cSNBayﬁlea]n CR.LB IS t%lﬁerentl Iro_m. Its COl:nterfpart
an additional training vector at the relay under certain power In the » Which requires orthogonal training vectors from
allocation scheme, the separated channel information can be the two source nodes and more complex constraints for the
obtained directly at the destination. The Bayesian CRLB is Optimal training design. The simulation is provided to verify
derived for the random channel parameters, and orthogonal the Bayesian CRLB results by the MSE performance of a
training vectors from the two source nodes are required to keep  specific suboptimal channel estimation algorithm.
the Bayesian CRLB practical, due to the self-interference in the The structure of the rest of the paper is as follows. The
TWRN. A set of training vectors obtained from the minimization system model of superimposed training in the TWRN is given
of the Bayesian CRLB are applied in a specific suboptimal i gection II. In Section IlI, the Bayesian CRLB of superim-
channel estimation algorithm, and the mean-square error (MSE) e training based channel estimation is derived, the training
performance is provided to verify the Bayesian CRLB results. design from the Bayesian CRLB and a suboptimal channel

Keywords—Two-way relay, channel estimation, Bayesian estimation algorithm are described. Finally, the simulation
Cramér-Rao lower bound(CRLB), training design, mean-square results are provided in Section IV and conclusions are drawn
error. in Section V.

I. INTRODUCTION

With the combination of cooperative communication, two-
way relay network (TWRN) emerged a few years ago, and Consider a TWRN network where two nodés, and Ty,
has attracted a great deal of interest recently [1], [2], due t&Xchange information through one relay node as shown
its improved spectral efficiency over one-way relay networkin Fig. 1. The transmission is divided into two phases. During
(OWRN). In a TWRN, a major difficulty lies in how to ef- Phase I, botfl'; and T, send a signal frame . via an uplink
fectively recover the data transmitted over an unknown fadingnanner, whereas during Phase R, processes the received
channel from the other source terminal. Channel estimation ifignals and broadcasts themTg and Ts.
TWRN has been studied in [3]-[8]. Specifically, in [4] and

Il. SYSTEM MODEL

[5], the cascaded source-relay-source channels were estimated h g

using block-based training under the assumption of time-Phasel Y
invariant frequency-selective fading channels. Different from ~ ~ ~
[4] and [5], where the relay only amplifies and forwards the T T,
received signal, [6] allowed the relay to first estimate the,, . \e \ N
channel parameters and then allocated the powers for these

parameters. The channel estimation problem was extended to
the TWRN with multiple antennas at all the three nodes in™9- 1-
[7]. A blind channel estimation algorithm based on the second )
order statistics of the received signal was proposed in [8] for The baseband channe%l betwe#h and R is denoted by
AF TWRN. Inspired by the superimposed training in point-to-h = [ho, 1, hr,—1]", and the oneTbetweeiTg and
point communications, [9] and [10] designed a superimpose® is denoted byg = [go,gl, e ,gLrl] , where Ly, L,
training strategy in AF OWRN. represents the number of the taps of the corresponding channe
In this work, we introduce the superimposed training s-Both h andg are assumed as zero-mean circularly symmetric
trategy into OFDM modulated AF TWRN to simplify the complex Gaussian random vectors and remain unchanged a
channel estimation at the destination, and derive the closedeast for one round of data exchange. For simplicity, consider
form Bayesian Cramér-Rao lower bound (CRLB) for the esti-thath; € CN (0,07 ;) andg; € CN (0,02 ) are independent

Two-way relay network
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from each other. For time-division-duplexing (TDD), the chan-1l1l. TRAINING DESIGN FROM BAYESIAN CRAM ER-RAO
nel can be considered reciprocal. The average transmission BOUND AND SUBOPTIMAL CHANNEL ESTIMATION
powers of Ty, T2 and R are denoted as’,Ps; and P, A. Bayesian Cranér-Rao Bound

respectively.

In the OFDM modulated TWRN, the first block in one data 1€ €ramer-Rao bound (CRB) for the estimation of deter-
frame is devoted to training, as sﬁown in Fig. 2. ministic parameters is given by the inverse of the FIM, and

Van Trees derived an analogous bound to the CRB for random
variables, referred to as “Bayesian CRB” (BCRB) [11]. With
the assist of BCRB, the performance of the suboptimal esti-
mators in the TWRN can be assessed, and the optimal training
oLt [ da ] d ] d][d] design could be obtained. Lét= [h”, gT]T be the Gaussian
random vector to be estimated, and the FIM is defined as [11],

E J=E dlnp(y1,0) (0lnp (y1,0) " | Ju T2
o 00~ 06* T IR T |2

Fig. 2. Structure of one data frame with superimposed training

where the expectation is taken over the joint probability density
Suppose the OFDM block length isV, and denote funct|_onp(y1,9):TheABCRBJs th%Iower bound of any error
the training vectors fromT; and T, in frequency do- covariance matris{(6 —6)(0 —6)" }.

: p . - T T [
main as f., — [ts1,o,ts1,1, o 7tsl,N—1] and t., — The FIM is computed as
~ ~ ~ T . . .
[fs2.0, 52,1, ,Tso,n—1] , respectively. The training power Jii = 4a’ca®7, (ts1) @, (ts1) + ’0;c1P7, (bs) Pr, (bs2)
is constrained by 4 C1<I>fh (t,) @, (t,) + NotatesI + Rﬁl,

~pr~ ~ry~ _ 2 H
tht =T, < NP,  thtyw =t8E, < NP, (1) Ji2 =207, (ta) P, (t2),
Jo1 = 20&202@551 (ts2) @1, (ts1),
To avoid the inter-block interference (IBI), both, and 7. — (2¢,®H (t.,)®; (t.) + RI:
T, insert the cyclic prefix (CP) of lengthle, 1, > > 201, (8:2) 1, (8:2) + Ry
max {L;, — 1, L, — 1} in the front of the OFDM block before wherec;,i = 1,2,3 are defined in the followingRy andRg
transmission. RelalR superimposes a new trainig over the  are the covariance matrices bfandg, respectively.
received signal The following constraint should be satisfied for As we can seey;> and J>; are zero matrices as long tig
the training block, andtg, are orthogonal. Sinceé,; andtg, are known training
vectors fromT; andTs, the orthogonality can be guaranteed.
E{HrtHQ} . (Uitﬁts1 + Ugtgtﬂ +Nai)+tft,. < NP, Since 712 = 0 and J2; = 0, the BCRBs forh andg can be
@ separately expressed as
whereo? = Z?L:’lo’l o; ; ando; = zf;gl _afm-. We can prove BCRBy, = J,;', BCRBg = Jyy'
when the optimal channel estimation is achieved, both the _
equalities in (1) and (2) must hold, regardless of the channénd the channel error covariances are lower bounded by

estimation algorithm used. LeP, = %' pe the average Covi, = E {AhAh”} = BCRBj,
power assigned for superimposed traininrRatthen,

Covg = E {AgAg"”} = BCRBy.
P.=P. —a?(62P, + 02P, + 02). _ . _ .
k o (7P + oy + o) The optimal training vectors in the TWRN can be designed
. : from the Bayesian CRLB through the minimization MiSE},
,Pt can be segn as the function af while the range ol andMSE,, under the power constraints in (1) and (2) and the
is (0, \/W)- Relay R then adds a new CP that qrthogonality constraint of,; andt.s.
consists of the lasi;, — 1 entries inr; and forwards the
superimposed signal td@'; and Ty. For symmetry, only the

process aff, is discussed. Letv; — h @ h, andws — h @ g, B. Training Design From Bayesian Crarér-Rao Bound

then the received signal &t;, after CP removal, is The two optimizations oh andg from BCRB are formu-
lated as
yi=a®a 1 (b)) Wi+ a®r,n, -1 (62)W2 50 (ply. iy ¢ (BOCRBy)  (P2): mintr (BORBy)
+ &7, (t,) h+ aHn, + ny, s1obs2,ty too
st. tht, = NP, sit. thteo = NP,.

wheren; is the N x 1 AWGN vector with variancesZ on tht.0 = NP,

each entries. The task of channel estimation in the TWRN is 2 ®

to find h andg from y;. t, t. = NP,
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Lemma 1: The training sequences satisfying where Ry, , Rw,, Rn are the covariance matrix of;, wo
andh, respectively. The received training &t is then
(Cl): @ (ta) @y, (ts1) = NP, P

(C2) : q)gax{L;“Lg} (tSQ) cI)max{Lh,Lg} (t$2) = NPFI,
(C3):  @f (t,) @y, (t,) = NPI,
(C4):  @F (ta)®L, (ts2) =0,

are optimal solutions to (P1) and (P2).
Proof: For any positive-definite matriX, there is

Y1 :Eu+na

where ¥ = [a@th,l (tsl) , aCIDLthLg,l (tsg), @Lh (tr)].
The standard Linear MMSE (LMMSE) estimate wafis,

it = RyS" (SRuSY + Ra) ™ 1,
whose error covariance is

_ H —1
N1 Covy = (Ry' + 7 Ry%) |
(X >y —, and the corresponding MSE MSE, = tr (Covy).
i=0 X1, With the estimatesv,, W, andh, the initial estimate of
and the equality holds wherX is diagonal. For (P1), ¢an be computed from the de-convolution approach as
R;l is a constant diagonal matrix, and the diagonal g = \IJTL (ﬁ)w%
g9

elements of & (t.) Py, (ts1), F (te) Pr, (ts2), and b o
ol (t,) @y, (t,) are constanV Py, NP;, and NP, respec- WhereV; (h)is the(Ly + Ly — 1) x L, column-wise circu-

tively. Therefore, lant matrix with the first columdh” 0y, ;. 1)]”.

tr (BCRB.) > After obtaining the initial channel estimates, an iterative
g( ) h) > method is applied to updateds and § by turns. In each
e

1 iteration, firsth is substituted back into (3) to update the
LMMSE estimateg using interference cancellation, and then
the updatedg is substituted back into (3) to update the
LMMSE estimateh using interference cancellation. The it-
eration goes on until a certain stopping criterion is satisfied.

D

i—o N [Ps (404%2 + a20§cl) +c1 Py + ohates + 2 }

No?

hi

and the RHS is the lower bound of the (BCRB4), S-
ince it is not related with any training vector. The low-
er bound is achieved whe@fﬁ (ts1) @r, (ts1) = NP, IV. SIMULATIONS

q’%,(t;z) Dr, (ts2) = NP Iand®f (t,) @, (t,) = NAL In this section, we provide some numerical results to il-

E imilarly, as for (P2), the lower bound is achieved whenysirate our studies. The optimal training sequences are use

P, (ts2) p, (bs2) = NPI. From the two proofs we can ang only the channel estimation &t is considered. Let

obtain (C1), (C2) and (C3). (C4) is required to keep the BCRBf,, — 1,_ — 6, all channel taps have unit variances, and the

compact. o _ _ B noise variance is also set as 1. For simplici}, = P, is

An example of such training sequences is provided here. 3ssumed and the SNR is deﬁnests/a-% = P,. The total

-2 -2 -2 training power is the same in all the scenarios. The OFDM
o] = IZ_DS; boa|” = P, [tri]” = B, block length N is taken as 64, following IEEE 802.11a.

T T T T T

52171‘7?52,1‘ = Ps\/ﬁ [F]zk = Pse_ﬂmk/Nv
Vk € {(LhJFLg*l)a"' v(N*Lg)};

t2) itri = VPPN [F];, = /P Pe 327 k/ N, 107}
Vk € {(2Lh—1),--- ,(N—Lh)},

fﬁzﬁ,‘?i =+/P,PN [F], = /P, Pe—32mik/N
Vke{(Lh+Lg—1),... ,(Nth)}'

107

C. Suboptimal Channel Estimation

Using the optimal training vectors, we refer to the subop-
timal estimators to verify the Bayesian CRLB results, since
channel statistics are assumed known. Consider the case when
the training length is sufficiently largéy > 4L, + L, — 2. 10

Define the new4L;, + L, — 2) x 1 channel vector as =

T . . . .
[wi,w3,h”]", whose covariance matrig, is a diagonal

Bayesian CRLB

matrix 10
Ry, 0 O
Ru = Eo {uuH} == 0 RW2 0 ) . .
0 0 Rn Fig. 3. Bayesian CRLBs versus SNR
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almost coincides with the NMSE curve after the previous
iteration.

V. CONCLUSION

In this paper, we have introduced the superimposed training
strategy into OFDM modulated AF TWRN, which superim-
poses a new training vector at the relay, and provides the
separated channel information at the destination to simplify the
channel estimation. Under the circumstances that the randorm
parameter vector to be estimated contains only fading channe
coefficients, the closed-form Bayesian CRLB has been derived
for the estimation of the block-fading frequency-selective
channels, and then used to guide the optimal training design,
which is more complicated than OWRN due to the self-
interference in TWRN.
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The theoretical Bayesian CRLBs is calculatedlicandg as
the function of both SNR and, as in Fig. 3. We can see that
the Bayesian CRLB oh is always smaller than the Bayesian
CRLB of g for any givena. [1]

The NMSE performance of the suboptimal estimator ver-
sus SNR is displayed together with the theoretical Bayesiafp)
CRLBs in Fig. 4 for channel estimation &f and g with «
fixed as 0.25. The NMSE performance of channel estimation

for h is always better than the counterpart fgr which is [
consistent with the comparison between the two CRLBs.
: ‘ ‘ ‘ A [4]
A A
A --6-- g, initial estimate
10" B0 9 E
Q\:g:z:ﬁ‘ --e-- g, 3 iteration 5l
B g, theoretical
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Fig. 4. Channel estimation NMSEs versus SNR dor 0.25

Itis also found that the iterative algorithm converges in threg, ;
iterations, as Fig. 5, the NMSE curve after the third iteration
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