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Abstract—OpenFlow is the first standard interface for realizing 

Software-Defined Networking (SDN) that can decouple the data 

and control plane to provide scalable network management. To 

validate the performance and features of the OpenFlow standard, 

many researchers have utilized specialized hardware network 

devices such as NetFPGA. However, these devices are not suitable 

for implementing a small-scale SDN testbed due to high cost, 

complexity, and specialized programming languages. The well-

known SDN emulator, Mininet[1], is also widely utilized but it is 

not enough to support network dynamicity and the performance 

of the virtualized hosts. In this paper, we suggest a more cost-

effective alternative of implementing SDN testbed with Open 

vSwitch (OVS), based on the Raspberry-Pi that is a low-cost 

embedded Linux machine. We validate our testbed with the 

OpenFlow specification 1.0 and prove that its maximum network 

throughput shows almost the same performance compared to the 

NetFPGA-1G.  

  
Keywords— Software Defined Networking; OpenFlow; open 

Vswitch; Raspberry-Pi 

I. INTRODUCTION 

Recently, amounts of network traffic has explosively 

increased due to advances in IPTV, smartphone and various 

smart devices. These user traffic have also become more and 

more complicated due to service variations and requirements of 

the users. However, the current network infrastructure cannot 

handle these service requirements because the traditional 

network architecture integrates the forward plane and control 

plane into the same device [2]. To designa more flexible and 

scalable network, the Software Defined Networking (SDN) 

paradigm has been proposed in recent years. The main 

characteristic of the SDN decouples the control and network 

plane. Thus, network can be dynamically managed depending 

on networking policies such as routing and service 

prioritization [3].  

There are three evaluation methods of the SDN architecture: 

Mininet emulator, net-FPGA, and OpenFlow based S/W switch. 

Mininet is a SDN emulator that includes a collection of virtual 

end-hosts, switches, and devices, and can be used do design 

virtual links without using real devices. On the other hand, 

various research institutes have constructed national-wide SDN 

testbed such as “OF@TEIN”, and “OFELIA” [4]. However, 

these projects are very large scale, which are not suitable for 

testbed-based evaluations for smaller lab-scale 

experimentations. Instead of these larger experiments of SDN, 

net-FPGA can be utilized for smaller scale, independent 

analysis of SDN. However net-FPGA also may pose some 

problems such as high cost, complexity and use of specialized 

programming languages [5]. 

Small-scale SDN testbed can validate and test operation of 

the various OpenFlow applications or functions of the SDN 

controller more dynamically compared to large-scale testbed. 

To make a suitable testbed for evaluating small-scale SDN, we 

suggest a simple and cost-effective testbed using Raspberry-Pi. 

In our SDN testbed, all of the SDN devices such as SDN 

controller and host are built on the same device. Thus, 

reconfiguration and maintenance of the testbed is easier than 

net-FGPA. The evaluation results of the implemented SDN 

testbed shows near similar performance compared to SDN 

implemented on 1Gbps net-FPGA device.  

II. BACKGROUND AND RELATED WORK  

In this section, we describe the SDN architecture for building 

SDN testbed. Also, we briefly describe some related SDN 

testbed implementations. SDN architecture can be divided into 

three layers; infrastructure layer, control layer, and application 

layer. The overview of SDN architecture is shown in Figure 1. 

The SDN infrastructure layer consists of interaction between 

switches, routers, and network hosts. Only the forwarding plane 

is implemented in the infrastructure layer, thus routes cannot be 

found by the infrastructure layer alone. To create routes 

between devices, each device sends a request message to the 

SDN controller which is located in control layer through a 

secure channel [6]. All of the control policy in the SDN are 

decided by each type of application in the application layer. 

Also, decided policies are delivered to each devices using 

secure channel, and southbound APIs that are the 

communication APIs to make the link between upper layer and 

bottom layer functions [3].  

A. OpenFlow 

OpenFlow is a standard interface that allows researchers to 

directly control how packets are routed in real SDN. OpenFlow 

is based on Ethernet switch, but maintains an open protocol that 

can be used to program the flow-table in various switches and 

routers [6].  

OpenFlow organizes three components, which are Flow 

table, secure channel and OpenFlow protocol. Flow table 

consists of flow entries that decides how data flows are 
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processed in the network.  Through flow entries, data flows can 

be dynamically adjusted and transmitted in the network 

infrastructure [7]. Secure channel is used as a communication 

means between the SDN switch and controller to establish a 

secure connection. OpenFlow protocol provides a standard 

interface that can be defined externally by researchers, thus 

avoiding additional programming in switches 

B. Net-FPGA and other commercial testbeds 

Net-FPGA is a platform for build high performance 

networking systems in hardware.  

The advantage of Net-FPGA based programmable router is 

that the packets can be processed at line-rate in a user way. Net-

FPGA consists of PCI based board and it has to plug-in linux 

based PC. Net-FPGA includes two Static RAMs (SRAMs) that 

operate synchronously with the Field Programmable Gate 

Array (FPGA). A quad-port physical-layer transceiver (PHY) 

is provided enabling the platform to send and receive packets 

over four, standard twisted-pair Ethernet cables. Two Serial 

Advanced Technology Attachment (SATA) connectors on the 

platform can be attach multiple Net-FPGAs within a system to 

exchange data at high speeds [8]. It can be efficiently deployed 

in enclosed areas such as office, building and laboratory 

alongside OpenFlow enabled switches. 

Net-FPGA can be considered as a good component in 

OpenFlow environment. However, it has two weakness points. 

Firstly, developer must be proficient in the low-level 

programming language and design tools [9]. This is because the 

Net-FPGA library consists of Verilog skeleton design. Also 

The Net-FPGA employ standard Computer Aided Design 

(CAD) tool flows to implement the circuits that run on the 

FPGA [10].A large number of companies have also developed 

commercial network switches that enable OpenFlow. Several 

of these products   use commercial OpenFlow-enabled switch 

to build testbeds such as NEC IP8800, WiMax, HP Procurve 

5400, Cisco Catalyst 6k and Quanta LB4G [11]. However, 

these switches are not suitable for small scale SDN testbed due 

to high cost and restricted modification.  

C. Linux PC based software switch 

Generally, the underlying architecture of OpenFlow uses 

linux PC-based software switch. B. Pfa et al. [7] implement 

OpenFlow kernel module under general purpose linux PC using 

OVS. OVS is one of the OpenFlow software switches which 

provides open and accessible designs by using open source 

software [12]. The OVS provides connectivity between the 

virtual machines and the physical interfaces.   

Raspberry-Pi is the arm-based embedded system witch is 

more suitable than Net-FPGA in small-scale SDN environment 

because of low-cost, easy-programing, standardized device 

drivers. The cost of the Raspberry-Pi is only 35 dollars [13] but 

a 1Gbps Net-FPGA interface card is 1300 dollars also it 

requires a specialized main platform to equip them.  

III. PROPOSED TEST-BED ARCHITECTURE 

The proposed testbed includes three network devices which 

are SDN controller, SDN switch and host device. All devices in 

proposed testbed are built on standard raspberry-pi embedded 

machine and uses general linux kernel based operating system 

called Raspbian [14]. Thus, all devices can be easily 

reconfigured to evaluate various network environments. In this 

chapter we describe the network design and software 

architecture of each network devices in our testbed.  

A. Network design 

Network substrate consider of interconnections between 

SDN Hosts as shown in Figure 2, if the host that is connected 

with OVS, then OVS identifies which flow-entry is matched. If 

the OVS cannot find any entry, then OVS sends request 

message to Floodlight based SDN controller.  

Programmable network can be dynamically provided by 

composing the flow’s route. For example, packets can be routed 

via physical node for a specific service or light loaded path 

based on their priority. The way for providing programmable 

network is to make the QoS metrics, or to make traffic route 

manually by user’s control. When these invoked user 

requirements are satisfied, Floodlight controller responses a 

 
Figure 1. Software Defined Networking architecture 

 

 

 
Figure 2.  Network design of the Raspberry-Pi based SDN testbed 
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message to OVS. It updates the flow entry and transmits to the 

destination host.  

B. Software design 

Figure 3 shows the software design architecture of the 

proposed testbed. We consider the interactions between 

Raspberry-Pi, OVS and Floodlight controller on the Raspbian 

linux kernel [15]. Raspberry-Pi linux kernel is 3.7.11+ version 

based on Ubuntu and OVS version is 2.0.90. The proposed 

Floodlight controller consists of the basic modules: QoS, basic 

routing, firewall, and MACtracker. Thus, all of the devices can 

be dynamically changed as a network switch or host.  

C. SDN controller device 

The SDN controller in our testbed uses Floodlight controller 

software. The Floodlight controller can handle a large of 

amount equipment while maintaining a high level of service. 

Thus, various applications such as QoS control, Load-balance, 

and topology viewer of the SDN can be utilized in our testbed. 

Also it provides a rich set of APIs to perform operations on the 

underlying OpenFlow network. Floodlight controller can not 

only easily control list of the modules but also write on them 

using the popular JAVA language. 

D. SDN switch device 

Raspberry-Pi has a 1Gbps Ethernet interface that is not 

sufficient to process multiple connections individually. To 

solve this problem, we create the virtual interfaces using OVS 

open source program.  

IV. PERFORMANCE EVALUATION 

We implement the suggested SDN testbed and evaluate the 

maximum throughput. Also, operation of the SDN function is 

validated using OpenFlow white paper. Table 1 and Figure4 

shows the validation result of the OpenFlow functions in our 

testbed. The items in the check list of Table 1 was decided 

depending on the mandatory function of the SDN. The result 

shows that our testbed successfully operate SDN functions and 

validation of each result are done using controller applications. 

Figure 4 shows the terminal screenshot of the MACtracking 

result in controller side that includes connected MAC and 

secure channel information of the SDN switch. 

The performance evaluation is done by throughput 

comparison using performance evaluation result of the net-

FPGA tested by M. K. Park et al [16]. They are experiment 

environment is heterogenetic such as internet environment not 

support OpenFlow. According to this paper we build similar 

test environment as Figure 2. In our test scenario, a host sends 

the number of traffics using iperf [17] depending on various 

types of maximum segment size. We validate the throughput 

using iperf tool also same configuration the MSS. Figure 5 

shows the maximum throughput between various schemes as 

Mininet emulator, net-FGPA, Raspberry-Pi. Mininet is a 

software emulator which is combining virtualization with an 

extensible CLI and API, and it also provides a rapid prototyping 

workflow to create, customize and share a SDN to running on 

real hardware. We customize the Mininet from same 

environment our testbed and connect our Floodlight controller. 

 
Figure 3. Software architecture of the raspberry-pi based SDN testbed 

TABLE 1. VALIDATION RESULT OPENFLOW FUNCTIONS 

Function Result 

OpenFlow 

interface creation 

OpenFlow interfaces such as OVS, basic 

applications and controller. 

SDN Controller 

connection 

Validate using ping test from host to end-

host. The ping message is used to reach the 

end-host.   

Flow table 

creation/remove 

When connected to the floodlight 

controller, flow entry is created and 

propagated to OVS which updates it into 

the Flow table. 

Port state control Port status using OVS. 

MAC address 

learning control 

Floodlight controller application can be 

MAC address learning real raspberry-pi 

hosts and also MAC address too. 

Backward 

compatibility 

Through connection of public internet, 

host can access through Open Vswitch.  

 

 
Figure 4. MACtracking operation result of the Raspberry-Pi based SDN 
testbed measrured by SDN controller. 
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The experiment result of our testbed shows the similar 

performance compared to 1Gbps net-FPGA hardware. 

However, the Mininet emulator does not show accurate results. 

This is because the Mininet generates a virtualized network 

infrastructure, which cannot consider various real-life factors 

and parameters. 

V. CONCLUSIONS 

In this paper, we suggest a Rasberry-pi based open source 

software using a small-scale SDN testbed and software 

architecture. Proposed testbed has several benefits such as low-

cost, low-complexity and easy programmability. Also, the 

evaluation result shows the similar performance with 1Gpbs 

net-FGPA device. Also, important OpenFlow functionalities 

are successfully operated. For future works, we will extend the 

proposed SDN functionalities from wired to wireless networks 

using  the proposed testbed and software architecture.  
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Figure 5. Maximum throughput comparison in various packet size 
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