
Developing a Cost-Effective OpenFlow Testbed

for Small-Scale Software Defined Networking

Hyunmin Kim*, Jaebeom Kim**, Young-Bae Ko**

 * Graduate School of Software, Ajou University, Korea

** Graduate School of Information and Communication, Ajou University, Korea

kimhm@uns.ajou.ac.kr, jaebeom@uns.ajou.ac.kr, youngko@ajou.ac.kr

Abstract—OpenFlow is the first standard interface for realizing

Software-Defined Networking (SDN) that can decouple the data

and control plane to provide scalable network management. To

validate the performance and features of the OpenFlow standard,

many researchers have utilized specialized hardware network

devices such as NetFPGA. However, these devices are not suitable

for implementing a small-scale SDN testbed due to high cost,

complexity, and specialized programming languages. The well-

known SDN emulator, Mininet[1], is also widely utilized but it is

not enough to support network dynamicity and the performance

of the virtualized hosts. In this paper, we suggest a more cost-

effective alternative of implementing SDN testbed with Open

vSwitch (OVS), based on the Raspberry-Pi that is a low-cost

embedded Linux machine. We validate our testbed with the

OpenFlow specification 1.0 and prove that its maximum network

throughput shows almost the same performance compared to the

NetFPGA-1G.

Keywords— Software Defined Networking; OpenFlow; open

Vswitch; Raspberry-Pi

I. INTRODUCTION

Recently, amounts of network traffic has explosively

increased due to advances in IPTV, smartphone and various

smart devices. These user traffic have also become more and

more complicated due to service variations and requirements of

the users. However, the current network infrastructure cannot

handle these service requirements because the traditional

network architecture integrates the forward plane and control

plane into the same device [2]. To designa more flexible and

scalable network, the Software Defined Networking (SDN)

paradigm has been proposed in recent years. The main

characteristic of the SDN decouples the control and network

plane. Thus, network can be dynamically managed depending

on networking policies such as routing and service

prioritization [3].

There are three evaluation methods of the SDN architecture:

Mininet emulator, net-FPGA, and OpenFlow based S/W switch.

Mininet is a SDN emulator that includes a collection of virtual

end-hosts, switches, and devices, and can be used do design

virtual links without using real devices. On the other hand,

various research institutes have constructed national-wide SDN

testbed such as “OF@TEIN”, and “OFELIA” [4]. However,

these projects are very large scale, which are not suitable for

testbed-based evaluations for smaller lab-scale

experimentations. Instead of these larger experiments of SDN,

net-FPGA can be utilized for smaller scale, independent

analysis of SDN. However net-FPGA also may pose some

problems such as high cost, complexity and use of specialized

programming languages [5].

Small-scale SDN testbed can validate and test operation of

the various OpenFlow applications or functions of the SDN

controller more dynamically compared to large-scale testbed.

To make a suitable testbed for evaluating small-scale SDN, we

suggest a simple and cost-effective testbed using Raspberry-Pi.

In our SDN testbed, all of the SDN devices such as SDN

controller and host are built on the same device. Thus,

reconfiguration and maintenance of the testbed is easier than

net-FGPA. The evaluation results of the implemented SDN

testbed shows near similar performance compared to SDN

implemented on 1Gbps net-FPGA device.

II. BACKGROUND AND RELATED WORK

In this section, we describe the SDN architecture for building

SDN testbed. Also, we briefly describe some related SDN

testbed implementations. SDN architecture can be divided into

three layers; infrastructure layer, control layer, and application

layer. The overview of SDN architecture is shown in Figure 1.

The SDN infrastructure layer consists of interaction between

switches, routers, and network hosts. Only the forwarding plane

is implemented in the infrastructure layer, thus routes cannot be

found by the infrastructure layer alone. To create routes

between devices, each device sends a request message to the

SDN controller which is located in control layer through a

secure channel [6]. All of the control policy in the SDN are

decided by each type of application in the application layer.

Also, decided policies are delivered to each devices using

secure channel, and southbound APIs that are the

communication APIs to make the link between upper layer and

bottom layer functions [3].

A. OpenFlow

OpenFlow is a standard interface that allows researchers to

directly control how packets are routed in real SDN. OpenFlow

is based on Ethernet switch, but maintains an open protocol that

can be used to program the flow-table in various switches and

routers [6].

OpenFlow organizes three components, which are Flow

table, secure channel and OpenFlow protocol. Flow table

consists of flow entries that decides how data flows are

ISBN 978-89-968650-2-5 758 February 16~19, 2014 ICACT2014

processed in the network. Through flow entries, data flows can

be dynamically adjusted and transmitted in the network

infrastructure [7]. Secure channel is used as a communication

means between the SDN switch and controller to establish a

secure connection. OpenFlow protocol provides a standard

interface that can be defined externally by researchers, thus

avoiding additional programming in switches

B. Net-FPGA and other commercial testbeds

Net-FPGA is a platform for build high performance

networking systems in hardware.

The advantage of Net-FPGA based programmable router is

that the packets can be processed at line-rate in a user way. Net-

FPGA consists of PCI based board and it has to plug-in linux

based PC. Net-FPGA includes two Static RAMs (SRAMs) that

operate synchronously with the Field Programmable Gate

Array (FPGA). A quad-port physical-layer transceiver (PHY)

is provided enabling the platform to send and receive packets

over four, standard twisted-pair Ethernet cables. Two Serial

Advanced Technology Attachment (SATA) connectors on the

platform can be attach multiple Net-FPGAs within a system to

exchange data at high speeds [8]. It can be efficiently deployed

in enclosed areas such as office, building and laboratory

alongside OpenFlow enabled switches.

Net-FPGA can be considered as a good component in

OpenFlow environment. However, it has two weakness points.

Firstly, developer must be proficient in the low-level

programming language and design tools [9]. This is because the

Net-FPGA library consists of Verilog skeleton design. Also

The Net-FPGA employ standard Computer Aided Design

(CAD) tool flows to implement the circuits that run on the

FPGA [10].A large number of companies have also developed

commercial network switches that enable OpenFlow. Several

of these products use commercial OpenFlow-enabled switch

to build testbeds such as NEC IP8800, WiMax, HP Procurve

5400, Cisco Catalyst 6k and Quanta LB4G [11]. However,

these switches are not suitable for small scale SDN testbed due

to high cost and restricted modification.

C. Linux PC based software switch

Generally, the underlying architecture of OpenFlow uses

linux PC-based software switch. B. Pfa et al. [7] implement

OpenFlow kernel module under general purpose linux PC using

OVS. OVS is one of the OpenFlow software switches which

provides open and accessible designs by using open source

software [12]. The OVS provides connectivity between the

virtual machines and the physical interfaces.

Raspberry-Pi is the arm-based embedded system witch is

more suitable than Net-FPGA in small-scale SDN environment

because of low-cost, easy-programing, standardized device

drivers. The cost of the Raspberry-Pi is only 35 dollars [13] but

a 1Gbps Net-FPGA interface card is 1300 dollars also it

requires a specialized main platform to equip them.

III. PROPOSED TEST-BED ARCHITECTURE

The proposed testbed includes three network devices which

are SDN controller, SDN switch and host device. All devices in

proposed testbed are built on standard raspberry-pi embedded

machine and uses general linux kernel based operating system

called Raspbian [14]. Thus, all devices can be easily

reconfigured to evaluate various network environments. In this

chapter we describe the network design and software

architecture of each network devices in our testbed.

A. Network design

Network substrate consider of interconnections between

SDN Hosts as shown in Figure 2, if the host that is connected

with OVS, then OVS identifies which flow-entry is matched. If

the OVS cannot find any entry, then OVS sends request

message to Floodlight based SDN controller.

Programmable network can be dynamically provided by

composing the flow’s route. For example, packets can be routed

via physical node for a specific service or light loaded path

based on their priority. The way for providing programmable

network is to make the QoS metrics, or to make traffic route

manually by user’s control. When these invoked user

requirements are satisfied, Floodlight controller responses a

Figure 1. Software Defined Networking architecture

Figure 2. Network design of the Raspberry-Pi based SDN testbed

ISBN 978-89-968650-2-5 759 February 16~19, 2014 ICACT2014

message to OVS. It updates the flow entry and transmits to the

destination host.

B. Software design

Figure 3 shows the software design architecture of the

proposed testbed. We consider the interactions between

Raspberry-Pi, OVS and Floodlight controller on the Raspbian

linux kernel [15]. Raspberry-Pi linux kernel is 3.7.11+ version

based on Ubuntu and OVS version is 2.0.90. The proposed

Floodlight controller consists of the basic modules: QoS, basic

routing, firewall, and MACtracker. Thus, all of the devices can

be dynamically changed as a network switch or host.

C. SDN controller device

The SDN controller in our testbed uses Floodlight controller

software. The Floodlight controller can handle a large of

amount equipment while maintaining a high level of service.

Thus, various applications such as QoS control, Load-balance,

and topology viewer of the SDN can be utilized in our testbed.

Also it provides a rich set of APIs to perform operations on the

underlying OpenFlow network. Floodlight controller can not

only easily control list of the modules but also write on them

using the popular JAVA language.

D. SDN switch device

Raspberry-Pi has a 1Gbps Ethernet interface that is not

sufficient to process multiple connections individually. To

solve this problem, we create the virtual interfaces using OVS

open source program.

IV. PERFORMANCE EVALUATION

We implement the suggested SDN testbed and evaluate the

maximum throughput. Also, operation of the SDN function is

validated using OpenFlow white paper. Table 1 and Figure4

shows the validation result of the OpenFlow functions in our

testbed. The items in the check list of Table 1 was decided

depending on the mandatory function of the SDN. The result

shows that our testbed successfully operate SDN functions and

validation of each result are done using controller applications.

Figure 4 shows the terminal screenshot of the MACtracking

result in controller side that includes connected MAC and

secure channel information of the SDN switch.

The performance evaluation is done by throughput

comparison using performance evaluation result of the net-

FPGA tested by M. K. Park et al [16]. They are experiment

environment is heterogenetic such as internet environment not

support OpenFlow. According to this paper we build similar

test environment as Figure 2. In our test scenario, a host sends

the number of traffics using iperf [17] depending on various

types of maximum segment size. We validate the throughput

using iperf tool also same configuration the MSS. Figure 5

shows the maximum throughput between various schemes as

Mininet emulator, net-FGPA, Raspberry-Pi. Mininet is a

software emulator which is combining virtualization with an

extensible CLI and API, and it also provides a rapid prototyping

workflow to create, customize and share a SDN to running on

real hardware. We customize the Mininet from same

environment our testbed and connect our Floodlight controller.

Figure 3. Software architecture of the raspberry-pi based SDN testbed

TABLE 1. VALIDATION RESULT OPENFLOW FUNCTIONS

Function Result

OpenFlow

interface creation

OpenFlow interfaces such as OVS, basic

applications and controller.

SDN Controller

connection

Validate using ping test from host to end-

host. The ping message is used to reach the

end-host.

Flow table

creation/remove

When connected to the floodlight

controller, flow entry is created and

propagated to OVS which updates it into

the Flow table.

Port state control Port status using OVS.

MAC address

learning control

Floodlight controller application can be

MAC address learning real raspberry-pi

hosts and also MAC address too.

Backward

compatibility

Through connection of public internet,

host can access through Open Vswitch.

Figure 4. MACtracking operation result of the Raspberry-Pi based SDN
testbed measrured by SDN controller.

ISBN 978-89-968650-2-5 760 February 16~19, 2014 ICACT2014

The experiment result of our testbed shows the similar

performance compared to 1Gbps net-FPGA hardware.

However, the Mininet emulator does not show accurate results.

This is because the Mininet generates a virtualized network

infrastructure, which cannot consider various real-life factors

and parameters.

V. CONCLUSIONS

In this paper, we suggest a Rasberry-pi based open source

software using a small-scale SDN testbed and software

architecture. Proposed testbed has several benefits such as low-

cost, low-complexity and easy programmability. Also, the

evaluation result shows the similar performance with 1Gpbs

net-FGPA device. Also, important OpenFlow functionalities

are successfully operated. For future works, we will extend the

proposed SDN functionalities from wired to wireless networks

using the proposed testbed and software architecture.

ACKNOWLEDGMENT

This research was partially supported by Basic Science

Research Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education

(2012R1A1B3003573) and MKE (The Ministry of Knowledge

Economy), Korea, under IT/SW Creative research program

supervised by the NIPA (National IT Industry Promotion

Agency)" (NIPA-2013- H0502-13-1059)

REFERENCES

[1] The Mininet website. [Online]. Available:

http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet.
[2] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. MCKEOWN,

“Slicing home networks.” In Proc. HomeNets’11, 2011.

[3] S. Sezer, S. Scott-hayward, P.K Fraser, D. Lake, J. Finnegan, N. Vijoen,
M. Miller, and N. Rao, "Are we ready for SDN? Implementation

challenges for software-defined networks." Communications Magazine,

IEEE Vol. 51(7), 2013.
[4] A. Köpsel and H. Woesner, “OFELIA – Pan-European Test Facility for

OpenFlow Experimentation”, Lecture Notes in Computer Science. Vol.

6994/2011. 2011
[5] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao, and

Y. Zhang. “ServerSwitch: A Programmable and High Performance

Platform for Data Center Networks,” in Proc. NSDI’11, 2011.
[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. “Openflow: enabling innovation

in campus networks.” SIGCOMM Computer Communication Review.,

vol. 38, pp. 69–74, Apr. 2008.
[7] B. Pfa, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker.

“Extending Networking into the Virtualization Layer.” In Proc.

HotNets-VIII’09, 2009.
[8] The net-FPGA website. [Online]. Available: http://netfpga.org/

[9] G. Ibáñez, B. De Schuymer, J. Naous, D. Rivera, E. Rojas, and J. A.

Carral, “Implementation of arp-path low latency bridges in linux and
openflow/netfpga.” in Proc. HPSR’11,2011.

[10] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–An Open Platform for Gigabit-

rate Network Switching and Routing,” in Proc MSE’07, 2007.

[11] N. McKeown,“Software-defined networking,” INFOCOM keynote

talk.

Available:http://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.
pdf, Apr. 2009.

[12] V. Tanyingyong, M. Hidell, and P. Sj¨odin, “Improving pc-based

openflow switching performance,” in Proc. ANCS ’10, 2010.
[13] J. D Brock, F. B Rebecca, and E. C Marietta, "Changing the world with

a Raspberry Pi." Journal of Computing Sciences in Colleges, vol. 29(2)

pp. 151-153, 2013.

[14] The Raspbian website. [Online]. Available: http://www.raspbian.org.

[15] G. Ibáñez, B. De Schuymer, J. Naous, D. Rivera, E. Rojas, and J. A.

Carral, “Implementation of arp-path low latency bridges in linux and
openflow/netfpga.” in Proc. HPSR’11,2011.

[16] M. K. Park, J. Y. Lee, B. C. Kim and D. Y. Kim, “Implementation of a

Future Internet Testbed on KOREN based on NetFPGA/OpenFlow
Switches,” NetFPGA Developers Workshop, stanford, CA, 2009.

[17] The iperf website. [Online]. Available:
http://sourcerforge.net/projects/iperf/.

 Hyunmin Kim received his B.S degree in
Electronic Engineering from the KyungHee

University, Korea, in 2013. He is currently a M.S

course student in the Software Engineering of
Ajou University, Korea. His research interests are

in the areas of Software Defined Networking,

Wireless LAN, and Smart Grid Communications.

 Jaebeom Kim received his B.S degree in

Computer Engineering from the Korea

Polytechnic University, Korea, in 2010. He is
currently a Ph.D candidate in the School of

Information and Computer Engineering of Ajou

University, Korea. His research interests are in the
areas of network virtualization, software defined

networking, wireless multi-hop networking, and

Smart Grid Communications.

 Young-Bae Ko is currently a Professor in the

School of Information. He was also a visiting
professor of Coordinated Science Lab at

University of Illinois, Urbana Champaign (UIUC)
for the 2008–2009 academic year. Prior to joining

Ajou University in 2002, he was with the IBM T.

J. Watson Research Center, Hawthorne, New

York, as a research staff member in the

Department of Ubiquitous Networking and

Security. He received his Ph.D. degree in computer science from Texas
A&M University, and B.S. and M.B.A. degrees from Ajou University.

His research interests are in the areas of mobile computing and wireless

networking. In particular, he is actively working on mobile ad hoc
networks, wireless mesh/ sensor networks, and various ubiquitous

networked system issues. He was the recipient of a Best Paper award

from ACM Mobicom 1998. He has served on the program committees
of several conferences and workshops. He also serves on the editorial

board of ACM Mobile.

Figure 5. Maximum throughput comparison in various packet size

ISBN 978-89-968650-2-5 761 February 16~19, 2014 ICACT2014

	5C-04-0418-O
	pdf
	로컬 디스크
	F:\21 ICACT2014 CD\pdf\tech\pdf.txt

