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Abstract—The promising projects of satellite swarm have been
studied by scientists from NASA, ESA and other institutes around
the world. With a massive number of pico-class, low-power and
low-weight space-crafts like pico-satellites, nano-satellites, Swarm
can exploring outer space environment or taking other tasks
that are hard to be fulfilled by common satellites. The other
merit of using swarm than common satellite is cost reduction.
Besides all the advantages of satellite swarm, developing swarm-
based satellite systems from conceptualization to validation is a
complex multi-disciplinary activity. Swarm is commonly energy-
constrained, so one of the key challenges is how to achieve energy-
efficient data transmission between the satellite swarm and ter-
restrial terminal stations. By employing Lyapunov optimization,
we present an online control algorithm called EESE for optimally
dispatching traffic load among different satellite-ground links to
minimize overall energy consumption over time. Our algorithm is
able to independently and simultaneously make control decisions
about traffic dispatching on ISLs and UDLs to offer provable
energy and delay guarantees, without requiring any statistical
information of traffic arrivals and link conditions. Rigorous
analysis has demonstrated the performance and robustness of
our algorithm.

Keywords—Satellite Swarm, Optimal Control, Dynamic
Scheduling, Wireless Communication, Energy Efficiency.

I. INTRODUCTION

To enable robust space exploration, astronautic researchers
are exploiting principles and techniques that help spacecraft
systems become more resilient through self-organizing and
automatic adaptation. Inspired by the swarming behaviors of
animals in nature, they have recently proposed to build swarm-
based systems that is comprised of thousands of pico-class,
low-power, and low-weight satellite units working together for
exploration missions [1]. Example projects include ANTS of
NASA [2], APIES of ESA [3] and SeeMe of DARPA [4].

Generally, a swarm is consisted of several sub-swarms,
which are temporal groups organized to perform a particular
task. Each swarm group has a group leader (i.e.,“ruler”), and a
large number of “workers” carrying a specialized instrument.
The ruler is responsible for coordinating its workers to co-
operate on area monitoring and data gathering. Besides, there
are some “messengers” in the swarm to coordinate commu-
nications among rulers, works, and earth stations. Although
with different roles and responsibilities, all the three types
of satellites rely primarily on power from the sun for data
gathering, data processing, and data communication. However,

the on-board solar panels cannot be very large for the small
satellites [5]. Therefore, it is of great necessity to take the
energy efficiency issue into consideration when designing such
a swarm system.

To address the energy challenges of satellite swarms, we
propose a novel online control algorithm, EESE, based on Lya-
punov optimization techniques [6] to make traffic dispatching
decisions in the context of satellite-ground communications
, which offers significant potentials on reducing energy con-
sumption for data transmission over UDLs (Up-Down-Links).
Specifically, this algorithm aims to reduce energy consumption
by making control decisions on: (1) how to dispatch the traffic
load from the workers over ISLs (Inter-Satellite-Links) to the
messengers, and (2) how to choose a suitable UDL for a given
messenger to transmit the aggregated data from it to ground.
Our algorithm does not require any prior knowledge of the
system statistics or any prediction on traffic arrivals and link
conditions. Moreover, it is computationally efficient and easy
to be implemented in practical systems. It can obtain a time-
average energy consumption within a deviation of O(1/V )
from optimality, while bounding the traffic service delay by
O(V ), where V is a non-negative control parameter repre-
senting a design knob of the energy-delay tradeoff, i.e., how
much we shall emphasize the energy minimization compared
to transmission delays. We thoroughly analyze the performance
of EESE with rigorous theoretical analysis.

The rest of this paper is organized as follows: Section II
describes the theoretical model, and formulates the objective
problem. Section III presents the EESE algorithm, and pro-
vides an analysis on the performance bound and robustness of
EESE. Finally, Section IV concludes the paper.

II. PROBLEM FORMULATION

We consider a satellite swarm which has I heterogeneous
workers denoted by W = {W1, ...,WI}, as well as J
homogeneous messengers denoted by M = {M1, ...,MJ}.
The whole swarm system operates in discrete time with unit
time slots t ∈ {0, 1, 2, ...}. In every time slot t, we denote
the amount of newly generated data at Wi by Ai(t), where
A(t) = (A1(t), ..., AI(t)) denotes the arrival vector. We
assume that A(t) are independent identically distributed (i.i.d.)

over time slots with E{A(t)} = λ , (λ1, ..., λI). We also
assume that there exists a finite maximum Amax such that
0 ≤ Ai(t) ≤ Amax for all t and all i ∈ {1, ..., I}. However,
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we do not assume any priori knowledge of the statics of Ai(t).
For example, Ai(t) could be a Markov-modulated process
with time-varying instantaneous rates where the transition
probabilities between different state are unknown. This models
a scenario with unpredictable and time-varying traffic arrivals.

In a swarm, the worker Wi continuously gathers and
temporally stores data information obtained by specialized
exploring instruments. It then decides how to distribute the
queued data to the messengers for transmitting to ground.
To model this decision, we use µij(t) to denote the amount
of data traffic sent from Wi to Mj at time t, and use
µi(t) = (µi1(t), ..., µiJ (t)) to denote the vector of traffic load
dispatching rates at Wi. We assume that in every t, µi(t) must
be drawn from some general feasible set Ri, i.e., µi(t) ∈ Ri

for all t. We assume that each set Ri contains the constraint

that 0 ≤
J∑

j=1

µij(t) ≤ µmax for some finite constant µmax. It

must be noted here that this assumption is quite general for
many typical scenarios.

The current satellite swarm prototypes generally use
two different technologies for data communication, i.e.,
the commercial-off-the-shelf wireless technology (e.g., IEEE
802.11 [7]) for inter-satellite communications within the swar-
m, and the high-frequency microwave wireless technology
(e.g., UHF/C/X/Ku/Ka band [8]) for satellite-ground commu-
nications between swarm messengers and earth stations. It is
obvious that the latter can bring about energy consumption
considerably higher than the former, and has significant im-
pacts on the energy consumption and operational lifetime of
messengers. In the same time slot, a messenger may have more
than one accessible earth stations at different locations, and
the UDLs between them have distinct characteristics, includ-
ing available duration and error rate [9]. Hence, there exist
opportunities for energy saving for the swarm by scheduling
data transmission onto those UDLs currently with high quality
and low cost. Let αj(t) denotes the decision of messenger
j ∈ 1, ..., J on the earth station selection in time slot t.
Then, the service rates (i.e., throughput) of messenger j for
slot t can be given as Xj(t) = Xj(αj(t)). We assume a
maximum transmission rate Xmax, regardless of α(t), so that
0 ≤ Xj(t) ≤ Xmax. Besides, the energy consumption for

transmitting data for j can be given as fj(t) =
K∗Xj(t)
Ej(t)

, where

K is the coefficient of energy consumption for transmitting per
unit data, and Ej(t) = Ej(αj(t)) is the success rate of selected
link in slot t [10].

Let Q(t) = (Wi(t),Mj(t), i ∈ {1, ..., I}, j ∈
{1, ..., J}), t = 0, 1, ... be the vector denoting the data traffic
queued at the workers and the messengers at time slot t, we
can capture the following queueing dynamics over time:

Wi(t+ 1) = max[Wi(t)−

J∑

j=1

µij(t), 0] +Ai(t) (1)

Mj(t+ 1) = max[Mj(t)−Xj(t), 0] +

I∑

i=1

µij(t) (2)

In the following, we assume that satellites can estimate the
unfinished traffic load in their queues accurately, and the case
when such estimation has errors will be discussed in Section
III. Throughout the paper, we use the following definition of
queue stability:

Q̄ , lim
T→∞

1

T

T−1∑

t=0

[E{

I∑

i=1

Wi(t)}+ E{

J∑

j=1

Mj(t)}] < ∞ (3)

Our objective is to design a flexible and robust online
control policy that automatically adapts to the time-varying
systems (in terms of traffic arrivals and link conditions) by
making decisions on µij and αj(t) for solving the following
stochastic minimization problem:

min
µij ,αj(t)

F̄ , lim
T→∞

1

T

T−1∑

t=0

E{

J∑

j=1

fj(t)}

s.t.

0 ≤ Ai(t) ≤ Amax, ∀i ∈ {1, ..., I}, ∀t

0 ≤
J∑

j=1

µij(t) ≤ µmax, ∀i ∈ {1, ..., I}, ∀j ∈ {1, ..., J}, ∀t

0 ≤ Xj(αj(t)) ≤ Xmax
j , ∀j ∈ {1, ..., J}, ∀t

Q̄ < ∞
(4)

However, traditional techniques, e.g., Markov Decision
Theory and Dynamic Programming, require substantial statis-
tics of system dynamics and suffer from high computational
complexity [6]. By comparison, the recently developed Lya-
punov optimization framework has shown its efficacy and
efficiency in designing online control algorithms for such
a constrained optimization of time-varying systems. It is a
technique for solving problems of joint system stability and
performance optimization on stochastic networks, especially
communication and queueing systems. To achieve this goal,
network algorithms are deigned to make control actions that
greedily minimize a bound on the following drift-plus-penalty
expression in each time slot t:

∆(t) + V F (t)

where ∆(t) (Lyapunov drift) represents the congestion state
of queue backlog, F (t) denotes the objective function to be
optimized, and V is a non-negative weight that is chosen
as desired to affect a performance tradeoff between backlog
reduction and penalty minimization. Unlike the traditional
techniques, Lyapunov optimization does not require knowledge
of the statistics of relevant stochastic models to make online
control decisions. The Lyapunov optimization algorithms com-
monly have a better computational complexity, and are easy
to be implemented in practical systems [11][12][13]. In the
following section, we will present an online control algorithm
to solve problem in (4) based on the Lyapunov optimization
framework.
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III. ONLINE CONTROL ALGORITHM EESE

Let Q(t) , (W(t),M(t)) be a concatenated vector of
all Wi(t) and Mj(t) queues. As a scalar measure of queue
lengths, a quadratic Lyapunov function is defined as:

L(Q(t)) ,
1

2

I∑

i=1

[Wi(t)]
2 +

1

2

J∑

j=1

[Mj(t)]
2 (5)

Then, the one-slot conditional Lyapunov drift ∆(Q(t)) is
defined as:

∆(Q(t)) , E[L(Q(t+ 1))− L(Q(t))|Q(t)] (6)

Following the drift-plus-penalty framework in Lyapunov
optimization, EESE is designed to make decisions on µij and
αj(t) to minimize upper bound on the following drift-plus-
penalty term in each time slot:

∆(Q(t)) + V E{

J∑

j=1

fj(t)|Q(t)} (7)

A key derivation step is to obtain an upper bound on this
term, which is defined as follows.

Theorem 1. (Drift-plus-Penalty Bound) Under any control
algorithm, the drift-plus-penalty expression has the following
upper bound for all t, all possible values of Q(t), and all
parameters V ≥ 0:

∆(Q(t)) + V E{

J∑

j=1

fj(t)|Q(t)} ≤ B + E{

I∑

i=1

Wi(t)Ai(t)|Q(t)}

+E{

I∑

i=1

J∑

j=1

µij(t)[Mj(t)−Wi(t)]|Q(t)}

+E{
J∑

j=1

[V fj(t)−Mj(t)Xj(t)]|Q(t)}

(8)

where B =
I(A2

max+µ2

max)+J(X2

max+Iµ2

max)
2 .

Proof:

Squaring both sides of the queueing dynamic (1), and using
the fact that for any Q ≥ 0, b ≥ 0, A ≥ 0, (max[Q − b, 0] +
A)2 ≤ Q2 +A2 + b2 + 2Q(A− b), we have:

[Wi(t+ 1)]2 ≤ [Wi(t)]
2 + [Ai(t)]

2 + [

J∑

j=1

µij(t)]
2

+2Wi(t)[Ai(t)−

J∑

j=1

µij(t)]

Summing the above over i = 1, ..., I and using the fact
that, we have:

I∑

i=1

{[Wi(t+ 1)]2 − [Wi(t)]
2} ≤ I(A2

max + µ2
max)

+2

I∑

i=1

Wi(t)[Ai(t)−

J∑

j=1

µij(t)]

Repeating the above steps for the queue Mj(t), and by
using the fact that 0 ≤ Xj(t) ≤ Xmax, we have:

J∑

j=1

{[Mj(t+ 1)]2 − [Mj(t)]
2} ≤ J(X2

max + Iµ2
max)

+2

J∑

j=1

Mj(t)[

I∑

i=1

µij(t)−Xj(t)]

Combining these two bounds together, and taking the
expectation with respect to Q(t) on both sides, we arrive at
the following one-slot conditional Lyapunov drift ∆(Q(t)):

∆(Q(t)) ≤ B + E{
I∑

i=1

Wi(t)Ai(t)|Q(t)}

+E{
I∑

i=1

J∑

j=1

µij(t)[Mj(t)−Wi(t)]|Q(t)}

−E{

J∑

j=1

Mj(t)Xj(t)|Q(t)}

where B =
I(A2

max+µ2

max)+J(X2

max+Iµ2

max)
2 .

Now adding to both sides the penalty expression, i.e., the

term V E{
J∑

j=1

fj(t)|Q(t)}, proves the theorem.

Minimizing the right-hand-side of (8) is equivalen-

t to minimizing E{
I∑

i=1

J∑
j=1

µij(t)[Mj(t) − Wi(t)]|Q(t)} +

E{
J∑

j=1

[V fj(t)−Mj(t)Xj(t)]|Q(t)} under the same constraints

in (4). Therefore, we can design the control algorithm as in
Algorithm 1.

The following theorem presents bounds on the time aver-
age energy cost and queue backlogs achieved by our EESE
algorithm.

Theorem 2. (Algorithm Performance) Define Λ as the set of
all rate vectors that satisfy the constraints in (4). For any
rate vector λ ∈ Λ, suppose there exists an ǫ > 0 such that
λ+ ǫ1 ∈ Λ, then under our algorithm we have:

Q̄ , lim
T→∞

1

T

T−1∑

t=0

[E{

I∑

i=1

Wi(t)}+E{

J∑

j=1

Mj(t)}] ≤
B + V F̄max

ǫ

(9)
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Algorithm 1 EESE Algorithm

1: Workers-to-Messengers Traffic Distribution: At time
slot t, each Wi solves for µij(t) to maximize

J∑

j=1

µij(t)[Wi(t)−Mj(t)]

2: Messengers-to-Stations UDL Selection: At time slot t,
each Mj chooses αj(t) to minimize

V fj(t)−Mj(t)Xj(t)

3: Queue Update: Update the queues using (1) and (2).

F̄ , lim
T→∞

1

T

T−1∑

t=0

E{

J∑

j=1

fj(t)} ≤ F̄ ∗ +
B

V
(10)

Here F̄max and F̄ ∗ are the maximal value and the optimal
value for the cost defined in (4) respectively, and 1 denotes
the vector of all 1’s.

Proof: According to Caratheodory’s theorem [6][11], we
can easily prove that there exists a randomized stationary
control policy π that chooses feasible control decisions µij

and αj(t), independent of the current queue backlogs, and
achieves the following guarantees:

E{
J∑

j=1

fπ
j (t)} = F̄ ∗ (11)

E{Aπ
i (t)} = E{

J∑

j=1

µπ
ij(t)} (12)

E{
I∑

i=1

µπ
ij(t)} = E{Xπ

j (t)} (13)

Because, every time slot t, our implementation seeks to
minimize the right-hand-side of the drift-plus-penalty expres-
sion in (8):

∆(Q(t)) + V E{

J∑

j=1

fj(t)|Q(t)} ≤ B + V E{

J∑

j=1

f †
j (t)|Q(t)}

+E{

I∑

i=1

Wi(t)[Ai(t)−

J∑

j=1

µ†
ij(t)]|Q(t)}

+E{

J∑

j=1

Mj(t)[

I∑

i=1

µij(t)−Xj(α
†
j(t))]|Q(t)}

(14)

where f †
j (t), µ

†
ij(t) and α†

j(t) are the resulting decisions and
attributed values under any alternative (possibly randomized)
policy (denoted by †). Now since λ+ǫ1 ∈ Λ, it can be known
from (11)-(13) that there exists a stationary and randomized
policy π′ that achieves the following:

E{

J∑

j=1

fπ′

j (t)} = F̄ ∗(λ+ ǫ1) (15)

E{Aπ′

i (t)} = E{
J∑

j=1

µπ′

ij (t)} − ǫ (16)

E{

I∑

i=1

µπ′

ij (t)} = E{Xπ′

j (t)} − ǫ (17)

Here F̄ ∗(λ + ǫ1) is the minimum cost corresponding to the
rate vector λ+ ǫ1. Plugging (15)-(17) into the right-hand-side
of (14) yields:

∆(Q(t)) + V E{

J∑

j=1

fj(t)|Q(t)} ≤ B + V F̄ ∗(λ + ǫ1)

−ǫ

I∑

i=1

Wi(t)− ǫ

J∑

j=1

Mj(t)

Now we can take expectations on both sides over Q(t) to
get:

E{L(Q(t+ 1))− L(Q(t))}+ V E{

J∑

j=1

fj(t)|Q(t)} ≤ B

+V F̄ ∗(λ+ ǫ1)− ǫE{

I∑

i=1

Wi(t)} − ǫE{

J∑

j=1

Mj(t)}

(18)

Rearranging the terms, and using the fact that 0 ≤ F̄ ∗(λ+
ǫ1) ≤ F̄max we get that:

E{L(Q(t+ 1))− L(Q(t))}+ ǫ(E{

I∑

i=1

Wi(t)}

+E{

J∑

j=1

Mj(t)}) ≤ B + V F̄max

Summing the above over t = 0, 1, ..., T−1, rearranging the
terms, using the fact that L(Q(t)) ≥ 0 for all t, and dividing
both sides by ǫT , we have:

1

T

T−1∑

t=0

[E{

I∑

i=1

Wi(t)}+ E{

J∑

j=1

Mj(t)}] ≤
B + V F̄max

ǫ

which proves (9) by taking limit as T → ∞.

To prove (10), using (18), we have:

V E{

J∑

j=1

fj(t)|Q(t)} ≤ V F̄ ∗(λ+ ǫ1) +B
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Summing the above over t = 0, ..., T − 1, and dividing
both sides by TV , we have:

1

T

T−1∑

t=0

E{
J∑

j=1

fj(t)} ≤ F̄ ∗(λ+ ǫ1) +
B

V

which proves (10) by taking limit as T → ∞ and letting ǫ → 0.

The following theorem shows that EESE is robust when it
makes control decisions based on the queue backlog estimates

Q̂(t) that differ from the actual queue backlogs.

Theorem 3. (Algorithm Robustness) Suppose there exists an
ǫ > 0 such that λ + ǫ1 ∈ Λ. Also suppose there exists a
constant ce, such that at all time t, the estimated backlog sizes

Ŵi(t), M̂j(t) and the actual backlog sizes Wi(t), Mj(t) satisfy

|Ŵi(t)−Wi(t)| ≤ ce and |M̂j(t)−Mj(t)| ≤ ce. Then under
our algorithm, we have:

Q̄ , lim
T→∞

1

T

T−1∑

t=0

[E{

I∑

i=1

Wi(t)}+E{

J∑

j=1

Mj(t)}] ≤
B′ + V F̄max

ǫ

(19)

F̄ , lim
T→∞

1

T

T−1∑

t=0

E{
J∑

j=1

fj(t)} ≤ F̄ ∗ +
B′

V
(20)

Here B′ = B + ce(IAmax + Iµmax + JIµmax + JXmax).

Proof: It suffices to show that using Ŵi(t), M̂j(t), we still
minimize the right-hand-side of the drift expression in (8) to

within some additive constant. Denote eWi (t) = Ŵi(t)−Wi(t)
and eMj (t) = M̂j(t)−Mj(t). Suppose now Ŵi(t) and M̂j(t)
are used to carry out the algorithm, then we see that we try to
minimize:

F̄ (Q̂(t)) , V E{
J∑

j=1

fj(t)|Q(t)}

+E{

I∑

i=1

Wi(t)[Ai(t)−

J∑

j=1

µij(t)]|Q(t)}

+E{

J∑

j=1

Mj(t)[

I∑

i=1

µij(t)−Xj(t)]|Q(t)}

+E{

I∑

i=1

eWi (t)[Ai(t)−

J∑

j=1

µij(t)]|Q(t)}

+E{

J∑

j=1

eMj (t)[

I∑

i=1

µij(t)−Xj(t)]|Q(t)}

Using the fact that |eWi (t)| ≤ ce and |eMj (t)| ≤ ce, and the

fact that |Ai(t) −
J∑

j=1

µij(t)| ≤ Amax + µmax, |
I∑

i=1

µij(t) −

Xj(t)| ≤ Iµmax +Xmax, we know that

F̄ (Q̂(t)) ≤ F̄ (Q(t))+ce(IAmax+Iµmax+JIµmax+JXmax)

This shows that (8) holds with Q(t) replaced by Q̂(t), and
B replaced by B′ = B + ce(IAmax + Iµmax + JIµmax +
JXmax). The rest of the proof follows similarly as the proof
of Theorem 2.

IV. CONCLUSIONS

This paper develops a control algorithm EESE for reducing
energy consumption on data communication for satellite swarm
systems. EESE can independently and simultaneously make
decisions on traffic dispatching control actions on both ISLs
and UDLs. In particular, EESE can approach the optimal cost
within provable O(1/V ) deviation with a worst-case delay
tradeoff that is O(V ), without requiring substantial statistics
of system dynamics. Besides, we prove that EESE is robust
against estimation errors in traffic load. Furthermore, EESE
is computationally efficient and easy to implement in large
swarm-based satellite systems.

This work is our primary study on such a research issue.
In the future, we hope to implement EESE in our STK-based
simulation environment, as well as in our experimental swarm
prototype, to test and evaluate its performance.
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