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Abstract—Split information functions are used in deriving

closed-form Extrinsic Information Transfer (EXIT) curves of

super-variable nodes (SVNs) in doubly-generalized low-density

parity-check (DGLDPC) codes. In this letter, we derive an exact

split information function for single-parity-check (SPC) codes. The

function is very easy to compute and has been verified against

the results obtained using the traversal method.

Index Terms—Doubly generalized LDPC codes, EXIT curve,

split information function.

I. INTRODUCTION

Low-density parity-check (LDPC) codes make use of rep-
etition codes at the variable nodes and single-parity-check
(SPC) codes at the check nodes. Doubly-generalized LDPC
(DGLDPC) codes are formed when the repetition codes and
the SPC codes are replaced by more complex linear block
codes. Subsequently, the nodes are called “super-variable
nodes” (SVNs) and “super-check nodes” (SCNs). Researchers
have proposed using various types of constituent codes such
as Hamming codes and BCH codes in the generalized LDPC
and DGLDPC codes [1]–[7].

Similar to the standard LDPC decoders, the iterative decoder
of DGLDPC codes can be regarded as two concatenated
component codes, including the super-variable-node (SVN)
decoder and the super-check-node (SCN) decoder, as shown in
Figure 1. For an ma⇥na adjacency matrix, the corresponding
DGLDPC code has ma SCN decoders and na SVN decoders
which are connected by an edge-interleaver.

In each iteration, each SVN decoder takes the channel
information C and the a priori information Asvn as the input,
and then outputs the extrinsic information Esvn. Esvn, after
passing through the edge-interleaver, becomes the a priori
information Ascn of the neighboring SCN decoder. Based on
Ascn, each SCN decoder generates the extrinsic information
Escn and passes it, via the edge-interleaver, back to the
SVN decoder as the a priori information Asvn. Consequently,
two types of channels, namely communication channel and
extrinsic channel, exist in the decoder model.

In [8], ten Brick has proposed using Extrinsic Information
Transfer (EXIT) charts to analyze the convergence behavior
of turbo codes. Later, the principle of EXIT charts has been
successfully applied to study other iteratively-decoded codes
such as parallel concatenated codes (PCCs) [9], serially con-
catenated codes (SCC) [10], convolutional codes [11], LDPC
codes [9], [12], repeat-accumulate codes [13], generalized
LDPC codes and DGLDPC codes [7], [14], [15].
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Fig. 1. An iterative decoder of DGLDPC codes.

In [16], it has been shown that codes with capacity-
approaching performance over the binary erasure channel
(BEC) can be designed by matching exactly the EXIT curves
of the component codes. Empirically, this approach can also
be applied to the more general cases, i.e., the binary-input
additive-white-Gaussian-noise (BI-AWGN) channel. While the
closed-form EXIT functions of LDPC codes over both the
BEC and the BI-AWGN channel have been derived already,
they cannot be applied to the analysis of DGLDPC directly.
One common method is to use Monte Carlo simulations
to estimate the EXIT charts of DGLDPC codes. However,
intensive simulations have to be performed and are very time-
consuming.

Another way is to derive the closed-form EXIT functions
for all types of SVNs and SCNs in the DGLDPC codes over
the BEC. Assume that the communication channel and the
extrinsic channel are BECs and the corresponding erasure
probabilities of these two channels are denoted by q and p,
respectively. For a DGLDPC code, the closed-form EXIT
functions of any SVN type and any SCN type over the
BEC have been derived in [16]. For a general (nsvn, ksvn)
constituent code with code length nsvn and ksvn information
bits used at the SVN, the closed-form EXIT function of this
SVN over the BEC is expressed by [16]

I

BEC
e,svn(p, q)

= 1� 1

nsvn

nsvn�1X

t=0

ksvnX

z=0

p

t(1� p)nsvn�t�1

q

z(1� q)ksvn�z

⇥[(nsvn � t)eensvn�t,ksvn�z � (t+ 1)eensvn�t�1,ksvn�z]

(1)

where eeg,h is named as the (g, h)-th split information function.
Moreover, eeg,h is defined as the summation of the ranks of
all the possible sub-matrices (denoted by Sg,h) obtained by
choosing g columns in the corresponding generator matrix
with the size of ksvn⇥nsvn and h columns in the correspond-
ing ksvn⇥ksvn identity matrix. Figure 2 depicts the definition
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Fig. 2. The definition of the sub-matrix Sg,h for calculating the split
information function eeg,h for a general (nsvn, ksvn) SVN.

of the sub-matrix Sg,h for calculating the split information
function eeg,h. For the (nsvn, 1) repetition code, (1) leads to

I

BEC
e,svn(p, q) = 1� qp

nsvn�1 (2)

which is the well-known closed-form EXIT function for a
variable node with degree-nsvn in an LDPC code over the
BEC.

Evaluating the (g, h)-th split information functions eeg,h of
all constituent codes at the SVNs can be very time-consuming
if closed-form formulas are not available. For a general (n, k)
block code, the number of possible sub-matrices are up to
2n+k for computing eeg,h. Taking the (8, 7) SPC code used at
the SVN as an example, in order to obtain the (g, h)-th split
information function eeg,h, we should calculate the ranks of
215 possible sub-matrices and add them up. In this paper, we
derive an exact formula for calculating eeg,h of the SPC codes
at SVNs.

II. SPLIT INFORMATION FUNCTIONS FOR SPC CODES

Lemma 1: Assume that

a = (a
1

, a

2

, ..., ai, ..., ak) 2 {0, 1}k

b = (b
1

, b

2

, ..., bi, ..., bk) 2 {0, 1}k

c = (c
1

, c

2

, ..., ci, ..., ck) 2 {0, 1}k

and
ci = OR(ai, bi)

where the OR(x, y) operator is defined as

OR(x, y) =

⇢
0 if x = y = 0
1 otherwise .

Then the number of possible combinations (a,b) satisfying
8
<

:

P
ci = tP
ai = gP
bi = h

(3)

equals
kCt ·t Cg ·g Cg+h�t, (4)

where 0  g, h  k; max(g, h)  t  min(g + h, k); and
`C~ = `!

(`�~)!~! .

k

g

t
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c
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a

Fig. 3. The vectors c, a and b shown from top to bottom. The shadowed
parts in the vectors indicate the positions of ‘1’s. There are t, g and h ‘1’s
in the vectors c, a and b, respectively.

Proof: Referring to Fig. 3, each of the vectors a, b and
c contains k elements. Moreover, t of the elements in c are
‘1’s. First we select t out of the k locations to put the ‘1’s,
and there are kCt combinations. Among these t locations, g
of them coincide with the locations where the elements of a
also equal ‘1’. There are tCg such choices. Among the h ‘1’s
in b, (t � g) of them do not overlap (in terms of location)
with those in a. The remaining (h�(t�g)) = (g+h� t) ‘1’s
in b overlap with the ‘1’s in a. The number of combinations
is gCg+h�t. Therefore, the overall number of combinations
satisfying (3) equals kCt ·t Cg ·g Cg+h�t. ⇤

Denote Ik as the k⇥k identity matrix, and ek as the all-one
vector of size k⇥1. The generator matrix G of the (n, n�1)
SPC code is thus written as

G = [Ik, ek]

where k = n � 1. The definition of the sub-matrix Sg,h for
calculating the split information function eeg,h for the (n, n�1)
SPC code is shown in Fig. 4.

In order to calculate the split information function of the
(n, n � 1) SPC code, we need to select g columns from G
(the LHS matrix in Fig. 4) and h columns from Ik (the RHS
matrix in Fig. 4) to construct a sub-matrix Sg,h. Let Rank(W)
denote the rank of the matrix W. Then the question is how
to get the sum of Rank(Sg,h) for all cases to obtain eeg,h.

Theorem 1: The eeg,h defined in Problem 1 is given by

eeg,h =

min(g+h,n�1)X

t=max(g,h)

t · n�1

Ct ·t Cg ·g Cg+h�t

+

min(g+h�1,n�1)X

t=max(g�1,h)

[min(t+ 1, n� 1)

·n�1

Ct ·t Cg�1

·g�1

Cg+h�1�t].

(5)

Proof: We consider two cases: (a) ek in G is not selected
to form Sg,h; (b) ek in G is selected to form Sg,h.

Case-(a): ek in G is not selected. In this case, in order to
construct the sub-matrix Sg,h of size k ⇥ (g + h), we only
need to select g and h columns from the two identity matrices
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Fig. 4. The definition of the sub-matrix Sg,h for calculating the split
information function eeg,h for the (n, n� 1) SPC code.

Ik, respectively. We denote

ai =

⇢
1 if the i-th column of the first Ik is selected
0 otherwise,

bi =

⇢
1 if the i-th column of the second Ik is selected
0 otherwise.

Then

Rank(Sg,h) =
X

ci =
X

OR(ai, bi) , (6)

where
P

ai = g and
P

bi = h. It is easy to see that

max(g, h)  Rank(Sg,h)  min(g+h, k) = min(g+h, n�1).
(7)

Based on Lemma 1, the number of combinations for selecting
these columns such that Rank(Sg,h) = t is

n�1

Ct · tCg ·g Cg+h�t. (8)

Hence the sum of the ranks for all the possible cases given in
(7) is given by

min(g+h,n�1)X

t=max(g,h)

t · n�1

Ct ·t Cg ·g Cg+h�t. (9)

Case-(b): ek in G is selected. First we select g�1 columns
and h columns from the two identity matrices Ik, respectively,
to construct S0

g,h of size k⇥ (g � 1 + h). From Case-(a), we
know that

max(g � 1, h)  Rank(S0
g,h)  min(g � 1 + h, k)

= min(g � 1 + h, n� 1)
(10)

and the number of combinations equals

n�1

C

Rank(S0
g,h)

·
Rank(S0

g,h)
Cg�1

·g�1

Cg�1+h�Rank(S0
g,h)

.

Noting that when we combine S0
g,h and ek to form Sg,h, the

rank of Sg,h is given by

Rank(Sg,h) = min(Rank(S0
g,h) + 1, n� 1). (11)

TABLE I
THE SPLIT INFORMATION FUNCTION OF (5, 4) SPC CODE.

g h eeg,h g h eeg,h
0 0 0 3 0 30
0 1 4 3 1 136
0 2 12 3 2 222
0 3 12 3 3 156
0 4 4 3 4 40
1 0 5 4 0 20
1 1 36 4 1 80
1 2 78 4 2 120
1 3 68 4 3 80
1 4 20 4 4 20
2 0 20 5 0 4
2 1 104 5 1 16
2 2 192 5 2 24
2 3 148 5 3 16
2 4 40 5 4 4

TABLE II
THE SPLIT INFORMATION FUNCTION OF (6, 5) SPC CODE.

g h eeg,h g h eeg,h g h eeg,h
0 0 0 3 0 60 6 0 5
0 1 5 3 1 350 6 1 25
0 2 20 3 2 800 6 2 50
0 3 30 3 3 890 6 3 50
0 4 20 3 4 480 6 4 25
0 5 5 3 5 100 6 5 5
1 0 6 4 0 60
1 1 55 4 1 325
1 2 160 4 2 690
1 3 210 4 3 720
1 4 130 4 4 370
1 5 30 4 5 75
2 0 30 5 0 30
2 1 200 5 1 150
2 2 500 5 2 300
2 3 600 5 3 300
2 4 345 5 4 150
2 5 75 5 5 30

The summation of all Rank(Sg,h) for Case-(b) is therefore

min(g+h�1,n�1)X

t=max(g�1,h)

min(t+1, n�1)·n�1

Ct ·tCg�1

·g�1

Cg+h�1�t.

(12)
Combining the two cases together, we obtain the result in (5).
⇤

In Table I and Table II, we show our numerical results eeg,h
calculated by Theorem 1 for (5, 4) SPC code and (6, 5) SPC
code, respectively. Our numerical results eeg,h calculated by
Theorem 1 are the same as those evaluated by considering all
possible combinations of the sub-matrices and their ranks.
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TABLE III
THE SPLIT INFORMATION FUNCTION OF (7, 6) SPC CODE.

g h eeg,h g h eeg,h g h eeg,h
0 0 0 3 0 105 6 0 42
0 1 6 3 1 750 6 1 252
0 2 30 3 2 2175 6 2 630
0 3 60 3 3 3300 6 3 840
0 4 60 3 4 2760 6 4 630
0 5 30 3 5 1200 6 5 252
0 6 6 3 6 210 6 6 42
1 0 7 4 0 140 7 0 6
1 1 78 4 1 930 7 1 36
1 2 285 4 2 2550 7 2 90
1 3 500 4 3 3680 7 3 120
1 4 465 4 4 2940 7 4 90
1 5 222 4 5 1230 7 5 36
1 6 42 4 6 210 7 6 6
2 0 42 5 0 105
2 1 342 5 1 666
2 2 1080 5 2 1740
2 3 1740 5 3 2400
2 4 1530 5 4 1845
2 5 696 5 5 750
2 6 126 5 6 126

III. CONCLUSION

We have derived an exact formula for calculating the split
information function for SPC codes used at the SVNs of
DGLDPC codes. The results have further been verified against
those found by the traversal method (i.e., forming all possible
sub-matrices, evaluating their ranks and summing them up).
The exact formula can facilitate DGLDPC designers evaluating
the closed-form EXIT function of SVN over the BEC and
subsequently over the BI-AWGN channel.
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