
CUDA-based JPEG2000 Encoding Scheme

Jeong-Woo LEE, Bumho KIM, and Ki-Song YOON
ETRI (Electronics and Telecommunications Research Institute), Korea

jeongwoo@etri.re.kr, mots@etri.re.kr, ksyoon@etri.re.kr

Abstract—JPEG2000 is the international standard for image
compression. The rich feature set and the state of the art image
compression performance make JPEG2000 an attractive
alternative for many applications. Especially JPEG2000 is used
in the area for digital cinema and medical image. Although the
JPEG2000 provides high compression rates and error tolerance,
it is burden for both encoding and decoding. To improve the
performance, a parallel computing architecture called CUDA has
been receiving a lot of attention recently. In this paper, we
attempt to realize a real-time JPEG2000 encoding scheme by
using GPUs. We present CUDA algorithms that perform DCDM
decomposition, multi-component transform, 2D discrete wavelet
transform, and quantization completely on a CUDA device,
which brings us significant performance gain on a general CPU
without extra cost. In addition, we present CUDA algorithm for
performing the color conversion from RGB to XYZ.

Keywords—JPEG2000, CUDA, GPU, Parallel Processing,
NVIDIA

I. INTRODUCTION
JPEG2000 [1] is the latest international image compression

standard created by a joint committee of ISO/IEC and ITU.
JPEG2000 was developed to address the needs of many
applications through its wide set of features. In the summer of
2004, Digital Cinema Initiatives (DCI) selected JPEG2000 as
the compression format to be used for digital distribution of
motion pictures.

Compared with a traditional codec like JPEG [2], which
uses the discrete cosine transform as an orthogonal transform,
JPEG2000 adapts the wavelet transform, which considers the
temporal locality of the signals [3]. JPEG2000 divides an
image into tiles, and processes the tiles independently. For this
reason, JPEG2000 has higher compression rates and error
tolerances than conventional codecs. Since JPEG2000 requires
massive processing, however, it seems impossible to realize
its real-time software codec for high-resolution images such as
4K on a general CPU.

Graphics Processing Units (GPUs), which include some
multi-processor units, have taken over the graphic processing
in current computer architectures. In the past, GPUs were only
used for accelerating the production of a rendered image [4].
As GPUs are rapidly developing, however, they are being
steadily used in various fields. It should be clear that GPUs
are designed as numeric computing engines, and will not
perform well for certain tasks where CPUs are better designed;
therefore, one should expect that most applications will use
both CPUs and GPUs, executing the sequential parts on the

CPUs and numerically intensive parts on the GPUs. When
adapting parallel arithmetic to very large image processes, the
higher resolution an image is at, the more the GPUs contribute
to high-speed processing. CUDA was offered from NVIDIA
to program along GPGPU principles [5]. A function executed
on a GPU is called a kernel function, and we therefore need to
program the kernel function and data transfer injunction
between the CPUs and GPUs to parallelize the computing.

The rest of this paper organized as follows. In section II, we
present a brief overview of JPEG2000 encoding system.
Section III introduces the architecture of GPUs and CUDA.
Section IV expresses our proposed GPU-accelerated
JPEG2000 method. Simulation results are presented to
evaluate the proposed method in section V, and finally, some
concluding remarks are given in section VI.

II. JPEG2000 ENCODING PROCESS
Figure 1 shows the process outline of JPEG2000 encoding

system.

Figure 1. JPEG2000 encoding process

In the first process, denoted as DCDM decomposition, the
components stored in RGBRGB… order are decomposed into R,
G, and B planar components. JPEG2000 does not use the RGB
to YCbCr de-correlation transform (followed by sub-sampling)
since the multi-resolution nature of the wavelet transform may
be used to achieve the same effect. All planar data with full
resolution are compressed independently. Next, the components
are optionally transformed into X, Y, and Z components.
Hereafter, the processes occur for each component signal
independently.

In the next process, denoted as a DC level shift, the
components represented by unsigned values are level shifted to
have zero DC values. The 2D-DWT divides signals into
subbands, and the coefficients represent frequency features. The
quantized wavelet coefficients in the code-blocks are encoded
using coefficient bit modeling and arithmetic coding. This
process is called tier-1 coding in JPEG2000. Tier-1 coding is
essentially a bit-plane coding technique commonly used in
wavelet-based image coders [6]. In tier-1 coding, code-blocks
are encoded independently. If necessary, the generated bitstream

ISBN 978-89-968650-2-5 671 February 16~19, 2014 ICACT2014

can be truncated and grouped for rate control. The JPEG2000
stream is completed by adding the header information.

III. CUDA PARALLEL PROCESSING
A thread is a processing unit, and is programed by

developers using CUDA. The developers need to designate the
number of threads, and the threads are managed in a
hierarchical structure called a grid and block. A grid
principally corresponds to a GPU device. Starting from
CUDA compute capability 2.0, the maximal dimension of the
grid is 65,535 x 65,535 x 65535 blocks and the gpu can hold
up to 65536 x 65536 x 65536 kernels. The number may be
even higher with compute capability 3.x. In the last CUDA
version, the maximum number of threads per block is 1024.
To operate these threads efficiently, the developers also have
to maximize the number of threads within the restriction of the
GPUs.

The GPU calculations are processed in a warp having 32
threads. Hence, the number of parallel calculations should be
designed in multiples of 32. Note that a warp is applied within
the same SP. CUDA has some memory types that match the
hardware memories. Global memory can be accessed from all
threads, but the reference time is slow. The capacity of global
memory is several GBytes. At the first part of program, the
host (CPU) must transfer the data to global memory to process
on the GPUs. Only threads within a same block access shared
memory, and the reference time is about 200-times faster than
global memory. Thus, shared memory must be used to
improve the performance as soon as possible. However, the
size of the shared memory is small and restricted.
Consequently, all data are transferred to global memory, and
the smaller data, which are processed by each block, are only
deployed in shared memory. It should be emphasized that we
have to use these memories in a suitable way for efficient
calculations.

The global memory bandwidth is used most efficiently
when simultaneous memory access by threads with half of the
warp size is guaranteed. That is, the global memory access by
16 threads is coalesced into a single memory transaction as
soon as the words are accessed by all threads. It should be
noted that we should maintain coalesced global memory
access for reads and stores to improve the performance in the
GPU kernels.

IV. CUDA-BASED JPEG2000 ENCODING METHOD

A. DCDM decomposition
Components stored in a TIFF or DPX data format, the

components should be converted into X, Y, and Z planar
components. In addition, they must be transferred into global
memory on the GPU.

Figure 2 shows the memory copy method from DCDM to
GPU memory. The size of input image is aligned to size
conforming to coalesced memory access of CUDA. The
memory controller of CUDA GPU tries to coalesce memory
loads and stores issued by 32 threads (a warp) into as few
memory transactions as possible. Only older GPUs coalesce
memory transaction within half-warps (16 threads). The width

and height parameters represent the real size of an image x-
axis and y-axis, respectively. The parameters stride_x and
stride_y represent the maximum size of an image x-axis and
y-axis. The parameters stride_x and stride_y are set to 2,048
and 1,080 for the 2K, and 4,096 and 2,160 for the 4K,
respectively. To maintain the coalesced memory access, the
height of the image in GPU memory is changed. Note that the
data structure can be fully used in CUDA, because the
parameter stride_x is in multiples of 32, which is the warp size
in CUDA.

Figure 2. Memory copy from CPU to GPU

The first step of the computation is to fetch image data
from global memory into fast shared memory. It is crucial here
to comply with coalesced global memory access. For the
coalesced reading access in the decomposition kernel function,
the data in the global memory are loaded into the shared
memory with a length of (blockDIM * 3), as shown in Figure.
3. According to the thread index number, each component is
decomposed into the composite data allocated in the shared
memory using modulo operation. Because the composite data
for X, Y, and Z planar data are stored sequentially, all stores
are coalescent. Finally, all data are stored back into the global
memory.

Figure 3. Coalesced reading access

B. Component transform
For optimization, coalesced memory access should also

be achieved during this process. The sequential
computation order allows a coalesced memory access, that
means, thread one processes pixel one, thread two
processes the pixel that is saved directly after pixel one,
and so forth. Similar to the decomposition and color
conversion process, DC-shift and irreversible color
transform are both also realized in one kernel. To take

ISBN 978-89-968650-2-5 672 February 16~19, 2014 ICACT2014

advantage of the parallelization, every pixel has its own
thread. Even if the x-axis length of the image is less than
the multiples of the number of threads, the read and store
processes satisfy the coalesced access because the length of
the x-axis is extended to the value of stride_x.

C. 2D-DWT
Figure 4 shows the 2D-DWT method used on CPUs or

GPUs. Figure 4(a) shows the conventional 2D-DWT
algorithm operated on CPUs. To calculate the 2D-DWT for an
image, the lifting processes should be performed for all levels
[7]. After the whole horizontal line is loaded into shared
memory and the lifting steps for the horizontal line are first
performed, the whole vertical line is loaded into shared
memory, and the lifting steps for the vertical line are
performed. Finally, all data are stored back into global
memory. In this case, the vertical transform has no coalescent
reads and writes at all, because the successive pixels in one
column are transferred into shared memory, which degrades
the performance significantly.

Figure 4. 2D-DWT on CPUs and GPUs

To avoid this problem, the transposed matrix has been used
as shown in Figure 4(b). The horizontal block size should be a
multiple of 16, such that coalesced access is not broken by a
thread block misalignment. As mentioned before, however, an
image is decomposed from 0 to last levels. As a result, the
width and height of an image at each level may not be a
multiple of 16. Therefore, the kernel function for the
transposing matrix has no coalescent reads and stores in
certain blocks. To support the coalesced access for reads and
writes in the transpose kernel, we utilize another global
memory for the transposed matrix, which stores the result of
the transpose kernel as shown in Figure 4(c).

D. Quantization
After the 2D-DWT, all of the resulting subbands are

quantized, which means that the precision of the wavelet
coefficients is reduced. Quantization is the main source of
information loss and aids in achieving compression. The
quantizer maps several values that are in the range of some
interval to one fixed value. It should be noted that the

quantization step size can be chosen differently for every
subband. That is, the quantization kernel function must be
applied to each subband separately. After quantization, the
data are transferred from global memory in the GPU to CPU
memory. It should be noted that the operations on GPUs and
CPUs are executed independently.

E. EBCOT
Embedded Block Coding with Optimal Truncation

(EBCOT) is the fundamental and computationally very
demanding part of the compression process of the JPEG2000
algorithm. Load balancing between the CPU and the GPU is a
key performance factor. In this paper, we therefore assigned
the EBCOT task to the CPU part.

Figure 5. Tier-1 Coding using threads

F. Streaming
A stream function permits the GPUs to manage a one

kernel function and one data transfer part simultaneously.
Figure 6 shows our JPEG2000 encoder using a stream
function. In this case, three components are processed. Using
the stream function, the data transfer of the second stream
starts just after the data transfer of the first stream is finished;
the kernel function of the first stream and the data transfer of
the second stream thus work at the same time. In the
decomposition kernel function, however, synchronization for
the threads must be performed because it uses the data in the
other components. The EBCOTs for the components are
executed on a CPU simultaneously. It should be noted that the
functions on the GPU and CPU are performed independently,
as shown in Figure 6.

Figure 6. Stream function

ISBN 978-89-968650-2-5 673 February 16~19, 2014 ICACT2014

V. SIMULATION RESULTS
To evaluate the performance of the proposed algorithms,

we consider images with 2K and 4K resolution. The proposed
schemes are implemented in the reference software, called
“JasPer” [8], which is defined in Part 5 of the JPEG2000
standard. In our experiments, we used two CPUs with an Intel
Xeon w5590 at 3.33GHz. The GPU platform used for
evaluation purposes was an NVIDIA Geforce GTX 580. For
the GPU implementation, we used CUDA as the development
environment.

TABLE 1. TEST IMAGE SPECIFICATION

TestID Profile Size bits/sample
1 2K 2048x1080 8, 10
2 2K 1920x1080 8, 10
3 4K 4096x2160 8, 10
4 4K 3840x2160 8, 10

Table 1 shows the test image specifications and

corresponding test ID. For each profile, the reference use
samples that each sample has 8 bits per sample. Otherwise, the
proposed algorithm is adapted to an image that has 10 bits per
sample.

TABLE 2. EXECUTION TIME OF JASPER AND THE PROPOSED ALGORITHM

 TestID Time(sec)
ICT 2D-DWT Q

JasPer
(CPU)

1(8bit) 0.0045 0.0766 0.0126
2(8bit) 0.0058 0.0648 0.0179
3(8bit) 0.0151 0.4954 0.0414
4(8bit) 0.0194 0.4193 0.0540

Proposed
Algorithm

(GPU)

1(10bit) 0.0005 0.0055 0.0005
2(10bit) 0.0005 0.0053 0.0005
3(10bit) 0.0017 0.0192 0.0017
4(10bit) 0.0016 0.0184 0.0017

Table 2 shows the encoding time of Jasper and the

proposed algorithm for each test set. As shown in Table 2, the
proposed method is about 20 times faster the reference
software. The reference software fully used dual CPU with 8
cores. Otherwise, the proposed algorithm just used single
GPU.

Figure 7. Comparison of JasPer and the proposed algorithm.

Figure 18 shows a comparison of the reference software
and the proposed implementation for each resolution.
Compared with the reference software, the proposed

algorithm for each module provides about a ten to fifteen-
fold better performance. It should be noted that the
proposed algorithm for a whole image provides about a
twenty-fold better performance.

VI. CONCLUSION
In this paper we described the development of CUDA

implementation of JPEG2000 encoding. Specifically, we
proposed a new method to maintain the coalesced global
memory access, even though the width and height of an image
is not a multiple of 16, which is half of the warp size in
CUDA. In addition, we have proposed a new JPEG2000
algorithm that considers GPUs and multi-CPUs. Compared
with other solutions, our JPEG2000 solution also provides
high-speed encoding service.

ACKNOWLEDGMENT
This work was supported by MSIP (Ministry of Science,

ICT and Future Planning) (10041539 High Compression, Low
Loss Content Creation /Distribution /Display Technology
Development for 8K-Video Service).

 REFERENCES
[1] ISO/IEC 15 444-1: Information Technology—JPEG 2000 Image

Coding System—Part 1: Core Coding System, 2000.
[2] G. K. Wallace, “The JPEG still picture compression standard,” IEEE

Trans. Consum. Electron., vol. 38, no. 1, pp. 18–34, Feb. 1992.
[3] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000

stillimage coding system: an overview,” IEEE Trans. Consum.
Electron., vol. 46, no. 4, pp. 1103–1127, Nov. 2000.

[4] D. Ko, J. Lee, S. Lim, et al., "Construction and Rendering of Trimmed
Blending Surfaces with Sharp Features on a GPU," ETRI Journal, vol.
33, no.1, Feb. 2011, pp. 89-98.

[5] J. Sanders and E.Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison-Wesley, 2011.

[6] J. M. Shapiro, “Embedded image coding using Zerotrees of wavelet
coefficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–
3462,Dec. 1993.

[7] W. Sweldens, “The lifting scheme: A construction of second
generation wavelets,” SIAM Journal on Mathematical Analysis, vol. 29,
no. 2, pp. 511-546, 1998.

[8] M. D. Adams and F. Kossentini, “JasPer: a software-based JPEG-
2000codec implementation,” in Proc. IEEE Int. Conf. Image
Processing, vol. 2, Oct. 2000, pp. 53–56.

Jeongwoo Lee received the Ph.D. degree in the Information
and Communications Department from GIST in 2003. He is
currently working in Electronics and Telecommunications
Research Institute (ETRI).

Bumho Kim received MS degree in information technology
from Information Communication University in 2002. He is
currently working in Electronics and Telecommunications
Research Institute (ETRI).

Ki-Song Yoon received the Ph.D. degree in Computer Science
from New York City University in 1993. From 1993, he was
a principal member of Electronics and Telecommunications
Research Institute (ETRI).

ISBN 978-89-968650-2-5 674 February 16~19, 2014 ICACT2014

	4P-20-0464-O
	pdf
	로컬 디스크
	F:\21 ICACT2014 CD\pdf\tech\pdf.txt

