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Abstract— It becomes popular to equip CPU and GPU on a single 

computer system because of its performance and energy benefits, 

constituting a heterogeneous system for processing big data 

workloads. However, the optimal exploitation of such a 

heterogeneous system requires us to know the power consumption 

characteristics of the applications for difference processing units. 

To this end, this paper aims at characterizing the power efficiency 

of CPUs and GPUs for big data processing through empirical 

measurements. We take three recent computing units, high-end 

CPU, and GPU, and mobile embedded GPU as target platforms. 

We first show the performance and power consumption 

measurements on each computing platform using the Rodinia 

benchmarks as representative big data workloads. Then, we 

discuss how performance-per-watt of each computing platform is 

associated with different characteristics of the workloads. 

 

Keywords— Performance-per-watt, big data workload, 

measurement, Rodinia benchmark 

I. INTRODUCTION 

Data centers are one of the largest and fastest growing 

consumers of electricity in the United States. In 2013, U.S. data 

centers consumed an estimated 91 billion kilowatt-hours of 

electricity, which is large enough to power all the households 

in New York City twice over, and are on-track to reach 140 

billion kilowatt-hours by 2020 [1]. It tends to increase rapidly 

related to process ever-growing large scale data-intensive 

applications, namely big data. Such workloads often possess a 

high degree of data-level parallelism. Recent improvement in 

computing capability of modern CPUs is mainly due to the 

employment of multiple computing units in a single chip, which 

is called a multi-core processor. A typical multi-core processor 

exploits both SIMD (Single-Instruction-Multiple-Data) and 

MIMD (Multiple-Instruction-Multiple-Data) types of 

parallelisms. A core is designed to have a special set of 

instructions to support SIMD operation. The Intel SSE or AVX 

instructions are such examples [2][3]. Then, more than a cores 

in a single chip enable MIMD operations, for example, at 

thread-level. While such an architectural innovation of 

processors scales well in performance, its energy efficiency is 

limited to cope with big data workloads that are growing at an 

astounding rate. As a result, a power-aware metric, so called 

performance-per-watt, becomes the first-class citizen when 

designing a computing platform for big data processing. 

Regarding such a challenge, GPUs (Graphics Processing 

Units) are attracting considerable attention. Highly parallel 

small computing cores compared to CPU is a key enabler for 

yielding high performance-per-watt for big data workloads. 

Besides its conventional form, i.e., discrete card for HPC (High 

Performance Computing), power-efficient mobile GPUs are 

available on the market, being actively used in many domains, 

such as mobile systems, robots, and automotive. 

Even though there is a general agreement in the advantage of 

GPU over CPU in performance-per-watt, to our best knowledge, 

no quantitative comparisons of the recent CPUs and (mobile 

and discrete) GPUs with suitable workloads exist. To this end, 

in this paper, we perform the comparison of the recent CPU and 

GPU quantitatively in terms of performance-per-watt. 

Particularly, we perform extensive empirical measurements of 

performance and energy consumption for three computing 

platforms, high-end server CPU and discrete GPU, and mobile 

GPU by using the Rodinia benchmark suites [4] as big data 

workloads. Then, we provide several key observations on the 

characteristics of performance-per-watt of each computing 

platform for the different big data workloads. 

The rest of this paper is as follows. Section II summaries the 

related work. Section III explains on the experimental 

methodology including the computing platforms for 

comparisons and the benchmarks to run. Section IV provides 

the experimental results and related observations. Section V 

concludes this paper. 

II. RELATED WORK 

The several benchmarks have been introduced for multi-core 

CPU and GPU [4][5][6]. Among them, the Rodinia benchmark 

suite provides a collection of parallel programs for the study of 

heterogeneous systems [4]. They analysed characterization of 

diversity of the benchmarks, and using CUDA and OpenMP, 

confirmed the speedup following parallelization toward each 

application. They also showed that the advantage of 

accelerator-based computing is its potential to achieve better 

power efficiency than CPU-based computing. Even though the 

previous works have performed the comparisons of GPUs and 

multi-core CPUs [4][7], the GPUs and CPUs used in the 

literatures are out-dated. The recent commodities have 

improved significantly especially in terms of power efficiency, 
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and the analysis with the recent platforms has not performed 

yet. 

III. BACKGROUND AND EVALUATION METHODOLOGY 

A. GPGPU 

A GPGPU (General-Purpose Graphics Processing Units), or 

GPU in short, utilizes a GPU to perform general purpose 

computation in applications that are traditionally done by a 

CPU. In this study, we used a Kepler architecture-based GPU 

[8]. A plurality of parallelism is present in the GPU, which in 

turn is also a multi-core processor. The GPU has 13 to 15 cores, 

each of which is called an SMX (Next Generation Streaming 

Multiprocessor). Each of the SMX units features 192 single-

precision CUDA cores and has fully pipelined floating-point 

and integer arithmetic logic units. The SMX schedules threads 

in groups of 32 parallel threads, called warps. Each SMX has 

four warp schedulers and eight instruction dispatch units, 

allowing four warps to be issued and executed concurrently. 

GPUs are programmed using CUDA [9], which is an 

extension of C with slightly syntactical additions and run-time 

API and library. 

B. Rodinia Benchmark Suite 

We use the Rodinia benchmark suite [4], which is a 

collection of benchmarks for parallel processing on 

heterogeneous computing platforms. The latest version of 

Rodinia contains 31 parallel applications from various domains 

such as medical imaging, bioinformatics, data mining, and 

scientific computing. Parallelizable part of each application is 

implemented using both multi-core CPU and GPU. The multi-

core implementation employs OpenMP (Open Multi-

Processing) [10], which is an API that supports multi-platform 

shared memory multiprocessing programming in C, C++, and 

Fortran used on multicore CPUs. On the other hand, the GPU 

implementation is available in CUDA and OpenCL (Open 

Computing Language) [11], which is a programming language 

for heterogeneous systems including GPUs. 

C. Experiment Setups 

Table 1 shows the architectural parameters for the three 

computing platforms under consideration in this study. We use 

a quad-core Intel i7 processor with the simultaneous hardware 

multithreading enabled, thus eight cores are seen by users. As a 

discrete GPU, we use NVIDIA GTX Titan Black that is one of 

high-end GPUs available on the market. For a mobile GPU, we 

chose NVIDIA Tegra K1 [12], which is a System-on-chip that 

has a quad-core ARM Cortex A15 CPU and a Kepler GPU with 

192 CUDA cores. In the experiment, we used the Jetson TK1 

development board [13] for the Tegra K1 that runs CUDA 

programs on a complete Linux distribution. 

Table 2 provides the descriptions on the application domain, 

input data size, and parallelism exhibited on GPU of the 

benchmarks chosen from the Rodinia suites for the evaluation. 

Note that some benchmarks are excluded from the study as the 

input data of the benchmarks is too small to reasonably measure 

the performance of the high-end CPU and GPU.  

The power consumptions of the benchmarks were obtained 

from instrumental measurement using a digital multimeter. 

Because it is difficult to specifically measure the power 

consumption of processing units and memory from the target 

systems, we use a simple scheme for measuring power 

consumption. The measurement was performed at the power 

supply, meaning that we obtain the power consumption of the 

entire system. To consider the power consumption due to the 

execution of the benchmarks only, we first measure the power 

consumption of the system when it is idling, and then subtract 

the idle power from the power consumption measured while the 

system is busy for running the benchmarks. 

TABLE 1. PARAMETERS FOR THREE COMPUTING PLATFORMS. 

Platforms Parameter Value 

CPU 

(Intel i7) 

# cores 8 

Core clock 3.20GHz 

Peak throughput (single-precision) 102.4GFLOPS 

Cache size (L1/L2/L3) (32KB/256KB/8,192KB) 

Main memory size 12,295MB 

Main memory bandwidth 25.6GB/s 

PCI-e version 2.0 

Discrete 
GPU 

(NVIDIA 

GTX Titan 
Black) 

# SMXs 15 

# CUDA cores 2,688 

Core clock 889MHz 

Peak throughput (single-precision) 4,494GFLOPS 

Main memory size 6,291MB 

Main memory bandwidth 336GB/s 

Mobile GPU 

(NVIDIA 
Tegra K1) 

# SMXs 1 

# CUDA cores 192 

Core clock 852MHz 

Peak throughput (single-precision) 365GFLOPS 

Main memory size 1,048MB 

Main memory bandwidth 17GB/s 

TABLE 2. SELECTED BENCHMARKS FROM THE RODINIA SUITES. 

Benchmark 
(Abbreviation) 

Dwarves Domains 
Input data 
size (KB) 

# threads per 
GPU run 

B+ Tree (BT) Graph Traversal Search 6889 1,536,000 

Breadth-First 

Search (BFS) 
Graph Traversal 

Graph 

Algorithms 
262 1,000,448 

K-means (KM) 
Dense Linear 

Algebra 
Data Mining 61223 65,536 

Needleman-
Wunsch (NW) 

Dynamic 
Programming 

Bioinformatics 16777 2,048 

Particle Filter  

(PF) 
Structured Grid 

Medical 

Imaging 
104858 1,024 

Back Propagation 
(BP) 

Unstructured 
Grid 

Pattern 
Recognition 

2000 1,048,576 

Heart Wall 

(HW) 
Structured Grid 

Medical 

Imaging 
50762 13,056 

Streamcluster 
(SC) 

Dense Linear 
Algebra 

Data Mining 524 65,536 

LU Decomposition 

(LUD) 

Dense Linear 

Algebra 
Linear Algebra 262 976 

LavaMD (MD) N-Body 
Molecular 

Dynamics 
8 128,000 

Myocyte (MC) Structured Grid 
Biological 

Simulation 
3 64 

SRAD_v1 (SR_v1) 
Structured Grid 

Image 
Processing 

91966 230,400 

SRAD_v2 (SR_v2) 134218 4,194,304 

IV.  EVALUATION RESULTS 

In this section, we provide the performance and power 

consumption of the benchmarks on the computing platforms 

under consideration and several observations to draw 

characteristics on performance-per-watt for the different 

platforms and workloads.  

Figure 1(a) and (b) show the power consumptions and data 

processing rate of the benchmarks on four different ways, CPU 

with a single thread and 8 threads, discrete GPU, and mobile 

GPU, respectively. First of all, the mobile GPU consumes less 
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energy than the CPUs and discrete GPU for all the 

benchmarks except for MC, which will be explained later. On 

the other hand, the discrete GPU consumes energy the most 

over the CPU and the mobile GPU. Note that the power 

consumption of the mobile GPU is less than 5W throughout all 

the benchmarks. Overall, the mobile GPU is up to 30x and 7x 

power-efficient compared to the discrete GPU and the CPUs. 

Data processing rates normalized to that of the CPU with a 

single thread are shown in Figure 1(b). Interestingly, not all 

benchmarks are best performed with the discrete GPU. PF, BP, 

SR_v2, and MC are such examples. On the other hand, the 

performance of the mobile GPU is comparable with that of the 

8-threaded CPU in several benchmarks such as BT, HW, LUD, 

MD, and SR_v1. 

Performance-per-watt, i.e., data processing rate per watt, of 

each benchmark is depicted in Figure 2. The mobile GPU 

outperforms others except for the MC and MD  benchmarks. 

There is, however, no consistent tendency on the power 

efficiencies of the CPU and the discrete GPU, which depends 

on the benchmarks. The BT benchmark is a typcial case where 

the mobile GPU is the most energy-efficient. Performance-per-

watt of the discrete GPU is only 75 KB/s per W while it is 1206 

KB/s per W with the mobile GPU consuming 5.34W on average. 

On other hand, the MC benchmark is best performed with 

the CPU unlike other benchmarks. This is due to limited 

parallelism in the benchmark. In particular, up to 64 threads are 

created for running the benchmarks, providing enough 

parallelism with the CPU. This degree of parallelism, however, 

remains the same when applied to the GPUs. Given that even 

the mobile GPU is capable of processing 192 simultaneous 

threads at least, such a limitation in parallelism severely 

restricts the exploitation of the compute capability of the GPUs. 

The problem becomes worse with the discrete GPU that is 

designed to execute 2K threads at the same time. 

Another exceptional observation is found in the MD 

benchmark, where the GPUs are significantly energy-efficient 

compared to the CPU. This is because the benchmark has 

abundant parallelism in opposite to the MC benchmark. 

Furthermore, the input data of the benchmark is very small so 

that the overhead for transferring input data to the GPU devices 

is almost negligible. As a result, the most of execution time is 

consumed by the computation using the GPUs. 

V. CONCLUSIONS 

The study provides the performance and power 

characterization of recent multi-core CPUs and GPUs using the 

Rodinia benchmarks as representative workloads of parallel 

programs. Several key observations were made through the 

extensive measurements. Overall, using GPUs promises better 

performance-per-watt compared to the case of CPUs as more 

  
(a) 

  
(b) 

Figure 1. Comparison of the three platforms for running the benchmarks in terms of (a) power and (b) data processing rate normalized to the case of the CPU 

with a single thread. 
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parallelism exists in an application. The experiments show that 

an application with limited parallelism is advantageous of using 

CPU instead of GPU. The mobile GPU shows the significant 

improvement in performance-per-watt over the CPU and 

discrete GPU due to its outstanding power efficiency. Hence, 

beyond the typical applications such as battery-powered hand-

held devices, it may be considered for large scale data 

processing in place of conventional multi-core CPUs and 

discrete GPUs in the near future. 

Future work will focus on several in-depth comparisons to 

find different characteristics of the parallel benchmarks from 

those observed in the previous studies. 
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Figure 2. Performance per watt of the benchmarks on the three computing platforms. 
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