
Veena Gulhane A, Dr. Latesh Malik B
A Department of Computer Science & Engineering, (G.H. Raisoni College of Engineering, RTM University, Nagpur, M.S.), India
B Department of Computer Science & Engineering, (G.H. Raisoni College of Engineering, RTM University, Nagpur, M.S.), India
veena.gulhane@raisoni.net, latesh.malik@raisoni.net

Abstract— In this paper, we have analyzed the performances of two designed algorithms which are an integral part of our research to formulate more energy efficient Code Dissemination Protocol for Multihop Wireless Sensor Network to provide the facility of reprogramming in order to support energy efficient over-the-air software updates in sensor, to set new functionalities or features, patch errors in the software after deployment & to set some parameters as per new requirements. It enables the sensor nodes to self-reprogram so that they can adapt to changing tasks and evolving environments. In this research we have tried to addresses the energy optimization issue. The objective behind designing the Adaptive Duty Cycle Scheduling Algorithm is to minimize energy consumption & reduce end-to-end delay for variable traffic load in the network and the objective to design the Attribute Based Efficient Data Delivery with Selective Approach is differentiated message delivery to achieve data reliability through the attribute based data flooding in multihop WSN & Sleep schedule techniques to minimize energy consumption through node selection.

Keywords— Attribute based programming, Duty cycle, MAC, Multihop Wireless Sensor Networks.
General Terms: End-to-end delay, Energy Consumption, Reliability.

I. INTRODUCTION

Energy is the most critical issue in wireless sensor network. Packet collision, overhead, overhearing, over emitting & idle listening are the causes of energy wastes. In order to minimize the energy consumption; several protocols have been developed Using a fixed duty cycle causes unnecessary energy wastage because even if there is no transmission; it has to be an active state, leading to the problem of idle listening which in turn causes ineffective control over variable traffic load. Adaptive duty cycle scheduling algorithm is suitable for variable traffic load in the network it's aim is to decrease energy consumption by using sleep schedule technique. The proposed algorithm performs better in terms of energy efficiency and reduced delay. The algorithm is designed for both scenarios i.e., low and high traffic & tries to improve network lifetime and energy efficiency. The other issue which has been considered is the reliable data transport with minimum energy consumption. This is an important fact for dependability and quality of service in several applications of wireless sensor networks[6]. Different applications have different reliability requirements, for example an application to collect environmental parameters like temperature and humidity etc. periodically can ignore an occasional loss of a value from a particular sensor but for an application in which the data collected by every sensor is a critical piece of information, end-to-end reliability has to be guaranteed for every individual packet. Data aggregation plays an important role in energy conservation of sensor networks. The Attribute Based Efficient Data Delivery with Selective Approach algorithm aims at a differentiated message delivery to achieve data reliability through an attribute based data flooding in multihop WSN.

This paper is structured as follows.
Section I deals with introduction on Network Creation & Clustering Model.
Section II presents the design of proposed Adaptive Duty Cycle Algorithm.
Section III presents the design of Attribute Based
Efficient Data Delivery with Selective Approach algorithm.

Section IV analyzes the performance of the Proposed Algorithm, followed by acknowledgement & Conclusion.

I. NETWORK CREATION & CLUSTERING MODEL
A. Network Creation: The simulation area considered is 500mx500m. The sensor nodes are deployed randomly and increased from 20 to 200. Every node has a unique ID. The transmission radius for each node is 250 m. The nodes are capable of communicating only if they are in transmission range of each other. Each node randomly generates a packet and sends it to the sink over multiple hops. The protocol used for communication is Adhoc on demand distance vector routing [4]. In AODV, RREQ message is broadcast by the node who wants to communicate. The RREQ consists of src_addr, src_seq_no, broadcast_id, dest_addr, dest_seq_no & hop_cnt. The algorithm works as follows.

Begin
At source
 If a route to the destination exists
 Send data
Else create a RREQ packet
 Increment the RREQID by 1
 Increment the sequence number& hop count by 1
End If
At intermediate node
 If a fresh route exists
 Generate RREP
Else if stale route exists
 Change seq_no of destination node
 Increment the hop count by 1 and forward
End if
At destination
 Increment seq_no of the destination
 Generate a RREP message and send back to the source
 Starts communication
End

B. Clustering Model: Clustering is used to make the routing energy efficient. Due to clustering, the energy is balanced in all the nodes in the network. The highest energy node takes the responsibility of acting as a head of the group which not only removes the redundancy but also removes unwanted data. The network is divided into numerous clusters, where each cluster is controlled by a cluster head (CH). Broadcast messages sent by the cluster head are received properly within a fixed time by all of its 1-hop cluster members. It requires only active nodes to recognize its 1-hop neighbors. Nodes periodically sense the network and then send out data to their cluster heads, which transmit the collected data to the base station (BS).

Algorithm.

Begin
 Set threshold energy value to 50J
 Form a group of more than 3 nodes but they should be in Tx range of each other.
If node energy > threshold energy
 Return highest energy node as CH
Else become CM
 Return next highest energy node as next CH
If node energy < threshold energy
 Switch CH
 Update info table
End

C. Simulation Setup: The simulation is performed using .net to evaluate the performance of the proposed algorithm. The simulation area considered is: 500x500m². The values of the simulation parameters are also listed in Table 1. A node can act both as sender as well as a receiver. The simulation is executed several times to analyze the performance by varying the number of nodes per iteration.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No. of nodes</td>
<td>Max 200</td>
</tr>
<tr>
<td>2</td>
<td>Initial energy</td>
<td>100J</td>
</tr>
<tr>
<td>3</td>
<td>Transmission range</td>
<td>250m</td>
</tr>
<tr>
<td>4</td>
<td>Simulation area</td>
<td>500m*500m</td>
</tr>
<tr>
<td>5</td>
<td>Duration of simulation</td>
<td>100s</td>
</tr>
<tr>
<td>6</td>
<td>Sleep/active time</td>
<td>10ms</td>
</tr>
<tr>
<td>7</td>
<td>Packet size</td>
<td>512byte</td>
</tr>
<tr>
<td>8</td>
<td>Routing protocol</td>
<td>AODV</td>
</tr>
</tbody>
</table>

II. ADAPTIVE DUTY CYCLE ALGORITHM

The objective to design an algorithm is to improve performance in terms of Minimum energy consumption & reduced end-to-end delay which is suitable for variable traffic load in the network. In proposed algorithm, the active time of node is changed when there are too many packets in the network. When the number of nodes is less, the randomly generated packets are also less but for a larger number of nodes,
more packets are generated. If the traffic load is low, the code is executed on the cluster head. The cluster head broadcasts a hello to all its member nodes. The control message contains the source address and the next wake up time so that the member node and the cluster head are able to communicate at the same time. Only the nodes having packets in their buffer can respond to the cluster head at the time mentioned in the control message. The cluster head after collecting data from its respective members can forward the same to the other clusters. The hop-to-hop communication takes place using AODV routing protocol. At times it may happen that after sending the hello, the cluster head changes its role due to energy depletion. In such a case the member nodes communicate with the new cluster head by identifying the new id and delete the old one. The algorithm is given below:

A. **Function Code for duty cycle**

 Public Function DutyCycleGnrate() As String
 Public Interval As Double = 10.0
 Public DutyCy As Double = 0.003
 If NodeList(i).Node_Status = True Then
 Tss.NodeStatus = "WAKE"
 Else
 Tss.NodeStatus = "SLEEP"
 End If
 If DutyCycle.Next (0, 10) < 5 Then
 Return "DutyCycle_Min"
 Else
 Return ("DutyCycle_Max")
 End If
End Function

B. **Performance Metrics**

 The performance of algorithms is assessed with respect to the fundamental metrics i.e. Energy consumption & End-to-end delay [7]:

 i. **Energy Consumption** - It is the energy spent by a node on an average during simulation, divided by the duration of the simulation and expressed in Joule. The figure 1 shows the no. of nodes versus average residual energy. The initial energy is 100J, so the energy consumption can be simply found out by deducting the residual energy from initial energy. The X-axis represents the No. of nodes and the Y-axis indicates the average energy consumption in joules. The formulae are given below.

 Energy consumption = Etx + Erx + Eactive

 Where,

 - Etx is energy required for transmitting the data
 - Erx is energy required for receiving the data
 - Eactive is the energy required till the node is active

 Hence, the average residual energy is calculated by.

 - Average residual energy = 100 – Energy Consumption

 ![Figure 1: No. of nodes Vs Energy consumed](image1)

 ![Figure 2: Node ID Vs Avg. residual energy](image2)

 ii. **End-to-end delay** - It is the total time taken for the packet to reach from source to destination and measured in seconds. Figure 3 shows the performance of delay in seconds. The X-axis represents simulation time and Y-axis represents the delay. It is observed that the delay factor is reduced by 2%.

 ![Figure 3: No. of nodes Vs Delay](image3)
Figure 4 shows the delay performance between the proposed algorithm and the ADCC approach in milliseconds. The trace file generated after executing simulation which saved the energy consumption by the source and destination at a particular time and instant, is saved. It also contains the state of the nodes after the simulation is started.

III. ATTRIBUTE BASED EFFICIENT DATA DELIVERY WITH SELECTIVE APPROACH

The objective to design an algorithm is differentiated message delivery to achieve data reliability through an attribute based data flooding in multihop WSN & apply Sleep schedule technique to minimize energy consumption through node selection. Data aggregation among different nodes is on the basis of set attributes like min or max temperature & sensitivity etc. This data is collected in three different modes i.e. time-query-event and according to set attributes and applications. In time based mode data is collected through hop by hop method. For this algorithm is given as follows.

A. Algorithm

Time based:
If (Present value-old value>sensitivity)
Then
 Initialize-node()
 Report(data, self-id+1)
 Next node
 Report(data, data1, self-id+1)
 Send ack
Else
 Report (null, null, null)

Query mode:
If Q(q, node-no)
Then report (id-present value)

Event mode:
If(Temp>Max Temp or Temp<min Temp) then (Alert window occurs)

B. Function Code

```c
Main Block:
while (1) {
  get_adv0(xoyo);
  data = ad.voltage / 2;
  if (data1 > ad.val + sensitivity) {
    if (write_1_buffer == TRUE) {
      write_data_buffer();
    }
    if (write_1_buffer == TRUE) {
      write_data_buffer();
    }
    if (data > upper || data < lower) {
      std.val = data;
      delay_count(1000);
    }
    if (data > upper || data < lower) {
      write_data_buffer();
    }
  }
  else {
    spi_write(0);
    delay_count(10);
    spi_write(0);
    delay_count(10);
    spi_write(data1);
    delay_count(10);
    spi_write(NULL);
    delay_count(10);
    spi_write(0x11);
    delay_count(10);
    spi_write(0x10);
    delay_count(10);
    spi_write(0x01);
  }
}
```

C. Evaluation Metrics

Given below are a few terms through which we are going to evaluate the performance of LEACH routing protocol.

i. Network Throughput:
This is the ratio of total number of packets received successfully by the destination nodes to the number of packets sent by the source nodes.

Network throughput = Number of packets received by the destination/Number of packets sent by the source

ii. Average end-to-end Delay:
It is the total time taken for the packet to reach from source to destination measured in seconds.

iii. Error messages are calculated on the basis of errors that occur in a thousand messages.

iv. Reliability is calculated by heating temperature sensor to this test

D. Performance metrics

i. Energy consumption:
It is the power required by a node to transmit data to the receiver node. Here power consumption is calculated on the basis of the mode of transmission.
In the event mode and the query mode, power required to transmit is more because it directly transmits the data to the sink without transmitting hop by hop. The voltage required is considered as 3.3v and current required in event and query mode is 21.2mA.

Power required at event and query mode is
\[P = VI = 3.3 \times 21.2 = 70 \times 10^{-3} \text{ watt} = 70 \text{ mW} \]

Power required in Time = 3.3 * 11.1 = 37 * 10^{-3} watt = 37mW

ii. Data transmission: In event and query mode transmission from node to base station transmitted bytes are fixed i.e. 4=4*8=32bits. In multihop mode if all nodes sends data then the packet contains insertion and forwarding request ,data i.e. 2 bytes from the first node to second ,4 bytes from second to third and 12 bytes from third to the base station The time required to send one report is given as follows.

Data rate = \((256+\text{DRATE-M})2^{\text{DRATE-E}} * f_{\text{osc}}^{28}\)

=250 kbps

Assume M=59 and E=13 : Time to transmit=Bit/speed

= \(32/250\)

= 0.124 s

Fig 7: shows the number of error messages that occurred in the transmission of messages through different schemes. X-axis shows the number of messages and y-axis shows the number of error message. It is observed that the error factor came down by 1%.

iii. Comparative Analysis

<table>
<thead>
<tr>
<th>Error message occurred</th>
<th>Amount of messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEACH</td>
<td>CRDD</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>200</td>
<td>17</td>
</tr>
<tr>
<td>300</td>
<td>25</td>
</tr>
<tr>
<td>400</td>
<td>34</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 3 : Tabular representation Amount of error message occurred
ACKNOWLEDGMENT

Our research work is in progress to design & implement a real time reprogramming architecture for Wireless Sensor Networks in which the algorithms discussed in this paper will play an important role to design more robust solution for WSNs. The research work in this paper was supported by G. H. Raisoni College of Engineering, Nagpur. Dr.L.G.Malik is the corresponding supportive author.

REFERENCES

