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Abstract—The modified Luise and Reggiannini (L&R) algo-
rithm is one of the frequency offset estimation algorithms suitable
for use with the Digital Video Broadcasting - Satellite (DVB-
S2) standard. Recently we demonstrated an enhanced poly-
polarization multiplexing (EPPM) system incorporating L&R
frequency recovery as a hardware prototype in order to evaluate
its high spectral-efficiency in a real satellite channel. In order to
provide sufficient performance at low SNR, it is recommended to
average the correlation estimates over 2048 frames. In high SNR
regions however, such a large averaging size is unnecessary. In
this paper, two techniques are proposed in order to reduce the
averaging size. The first technique measures the average noise
power and selects an efficient frame averaging length using a
noise look-up-table (LUT). The second technique uses a cyclic
redundancy check (CRC) to determine if sufficient performance
is achievable with the averaging size. Performance results show
that the size of the averaging window can be reduced whilst
maintaining a target BER. The noise LUT adaptive scheme has
been implemented in hardware and we describe the real-time
behavior.

Keywords—satellite communications, polarization multiplexing,
frequency offset estimation, latency reduction, performance investi-
gation, hardware implementation.

I. INTRODUCTION

High spectral efficiency is especially important in satellite
communications due to the constraints of limited transmit
power and fixed-bandwidth whilst facing ever-increasing de-
mands on data throughput. The recent DVB-S2X standards
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extension [1] has brought a number of new design features that
increase the spectral efficiency. Increasing the modulation or-
der on each polarization is a common technique to increase the
throughput. Although multiple-input multiple-output (MIMO)
techniques have revolutionized the mobile communications
space, it is less straight-forward to apply them to satellite
systems due to the very strong line-of-site channel. In this
work, the base-system uses a concept of multiple polarizations,
and we focus on the system frequency recovery.

Most modern transponders operate a scheme called orthogo-
nal polarization multiplexing (OPM) in which they simultane-
ously transmit on vertical (V) and horizontal (H), or lefthand
and righthand circular, polarizations and achieve sufficient
isolation. Multiplexing more than two signals onto the V and
H channels creates interference that cannot be removed by
a linear spatial filter as the number of independent paths is
limited to two. However, by appropriately selecting the signal
constellations at the transmitter and applying powerful digital
signal processing techniques at the receiver, it is possible to
recover the signals and achieve significant efficiency gains
compared to the conventional OPM system.

In general, stricter requirements are made on the phase and
frequency recovery algorithms as the modulation order in-
creases. Improved frequency and phase accuracy are therefore
becoming important issues with extensions to 256-APSK mod-
ulation listed in DVB-S2X and also in our multi-polarization
system. Estimation performance can be improved by increasing
the UW length and increasing the frame averaging size used
in the phase estimation. Here we investigate an adaptive
architecture that reduces the frame averaging size while aiming
to maintain error performances.

There have been a number of research proposals relating
to the optimization of correlation based frequency recovery
algorithms. A technique to optimize the correlation length
depending on the frequency offset was proposed for the L&R
in [2]. In this paper we aim to optimize the frame averaging
size, L. We first proposed the adaptive-L by noise estimation
(herein termed ALNE) architecture in [3] and we extend that
work to describe the hardware performance. In addition, we
propose an alternative technique called adaptive-L by CRC
(ALC).

This paper is organized as follows. The EPPM technique
is briefly introduced in Section II. The frequency estimation
and correction method is described in Section III. The ALNE
and ALC architectures are detailed in Section IV and V
respectively. A software performance investigation is presented
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Fig. 1. EPPM transmitter architecture.

in Section VI and a discussion of the hardware design in
Section VII. Finally a conclusion is drawn in Section VIII.

II. ENHANCED POLY-POLARIZATION MULTIPLEXING

The enhanced poly-polarization multiplexing (EPPM) sys-
tem transmitter architecture is shown in Fig. 1. In the EPPM
system, the H and V components of the n-th transmitted
symbol, TH(n), TV (n) are expressed as

[
TH(n)

TV (n)

]
=

M∑
m=1

([
αm

βm

]
Xm(n)

)
(1)

where Xm(n) is the m-th stream transmit data symbol to
be modulated, αm, βm are generalized complex mapping
coefficients. An optimized set of mapping coefficients are
computed offline by searching for a constellation set that
has the maximum minimum-Euclidean distance. The enhanced
PPM scheme is a superset that includes the basic PPM scheme.
In PPM, a polarization angle between the V and H planes
determines the I-Q constellation points on the additional po-
larization planes. In the simulations in this paper, we transmit
on 3 data streams, corresponding to a polarization angle of
45 degrees, with QPSK modulation on each stream. Further
details of the technique are described in [4].

III. FREQUENCY OFFSET ESTIMATION

In order to estimate the frequency offset and channel state
information (CSI), an orthogonal Gold code unique word (UW)
is inserted at the start of each frame on V and H polarizations.
The UW length is between 64 and 256 symbols is inserted
and should be minimized in order to maximize the effective
bandwidth efficiency. The target in this paper is to reduce the
length from NUW =256 to 64 symbols while maintaining the
performance.

The L&R frequency offset [5], f̂LR is estimated from the
argument of the sum of correlations, R. The so-called ‘modi-
fied L&R’ computes an average correlation over L preceding
frames prior to calculating the argument and improves the
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Fig. 2. Block diagram of the frequency recovery showing the additional
architecture for noise power estimation with LUT for L.

performance in noise [6].

f̂LR =
1

πTs(N + 1)
arg

B∑
l=B−L+1

N/2∑
k=1

1

N − k
R(k, l) (2)

R(k, l) =
N∑

i=k+1

x(i, l)x∗(i− k, l) (3)

where Ts is the symbol period, B is the current frame number,
x(i, l) is the UW pilot at position i of frame l, and N is the
correlation length, NUW /2 in this paper.

The frequency recovery consists of four estimators: a coarse
feedback loop and fine feed-forward loop on each of the V and
H channels. The architecture of a single-branch is shown by
the continuous lines in Fig. 2. The optimum performance of
the fine recovery loop is achieved by setting the correlation
length equal to half the UW size, as it achieves the Cramer-
Rao lower-bound on the estimation error [5]. The coarse loop
has a reduced length of between 2-6 symbol delays in order
to achieve a large frequency pull-in range.

A. Frame Averaging

The potential benefits of frame averaging were investigated
by calculating the average residual frequency offset as a
function of the correlation length, N and averaging length, L.
The performance of a NUW =256 system, at Eb/N0=14 dB,
symbol-rate 1.6 MBaud and assuming a ± 3.2 kHz frequency
offset on V and H is shown in Fig. 3. It can be seen that
the absolute residual offset can be substantially reduced by
frame averaging. The residual error reduces at about the same
rate with L for a given value of N . The graph shows that
it is possible to trade-off L and N in order to achieve a
required maximum residual offset. In this work however, we
restrict the value of N to half the UW length, in order to
simplify an adaptive implementation in hardware. Although
the cost of programmable logic memory is now relatively low,
it is beneficial to limit excessive values of L particularly in
conditions where the offset has high temporal variation. This
situation can arise when the phase noise is high or there is
movement of, or within the vicinity of, the satellite user-
station causing Doppler shift. In a practical system, an average
tolerable frequency offset is determined based on the particular
quality of service (QoS) requirements. In the next section we
propose a method to select L adaptively.
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B. Distributed Unique Word structure

In general, frequency estimation performance degrades
when shorter UW lengths are used as there are less symbols
used and the maximum distance between them is less. We have
recently shown that the estimation performance can be im-
proved by increasing the distance between the UW constituent
symbols for a given UW length [7]. This technique improves
the estimation performance at low values of L and enables the
benefits of the adaptive architectures to be further exploited
by short UW lengths. The distribution of UW symbols on V-
polarization with a constant separation of D=4 are shown in
Fig. 4. The data symbols are sandwiched between the UW
symbols and the remainder are placed together after the last
UW symbol. In the receiver, the distributed UW symbols are
repacked into a continuous memory array of length NUW . The
frequency estimate is then obtained by dividing the standard
L&R estimate with the spacing, D. The variable D is a system-
level parameter that needs to be known at both the transmitter
and receiver. Therefore it is set at the start-of-packet and
remains constant for the entire transmission.

IV. ADAPTIVE-L BY NOISE ESTIMATION (ALNE)

The frame averaging length is selected based on the average
estimated noise power jointly measured on the V and H chan-
nels. The basic modified L&R algorithm forms the architecture
basis. The additional components comprise a noise estimation
process and a look-up table (LUT) containing appropriate
averaging lengths. The modifications are indicated by the
dashed lines in Fig. 2.

The normalized noise power on each branch, σ2
V/H is esti-

mated by subtracting the known transmitted signal component
from that of the received signal plus noise. An average value is
calculated across N pilots and a sliding-window of W frames
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Fig. 4. The first 8 UW symbols with a constant spacing of D=4 separated
by data symbols.

TABLE I. ALNE LOOK-UP-TABLE CONTENTS.

Index Lower bound Upper bound L

0 0.18 1.00 4096

1 0.12 0.18 1024

2 0.06 0.12 512

3 0.04 0.06 256

4 0.028 0.04 128

5 0.02 0.028 64

6 0.012 0.02 16

7 0.00 0.012 4

as

σ2
V (t) =

1

WN

t∑
n=t−W

N∑
m=1

|rV (n,m)|2 − |rV (n,m)x∗
V (m)|2

(4)

σ2
H(t) =

1

WN

t∑
n=t−W

N∑
m=1

|rH(n,m)|2 − |rH(n,m)x∗
H(m)|2

(5)

where, xV and xH are the transmitted UW on V and H
polarizations, rV and rH are the received UW signals on V
and H polarizations. An average of the two branches is
computed as

σ2
V H(t) =

1

2
(σ2

V (t) + σ2
H(t)) (6)

The average noise power indexes a LUT containing values
of L. The default LUT contains eight entries for the noise
boundaries and the associated values for L, as listed in Table I
and plotted in Fig. 5. The size of L is a power of two, to make
efficient use of reserved memory. Noise boundaries should be
pre-computed off-line through a study of BER performance
simulations with different L. The LUT can be expanded if
more optimal values are determined and can be updated at
run-time via a GUI interface.
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Fig. 6. Calculating the moving average correlation R̄ with example of
updating the value of L at frame 1024.

At start-up, the memory containing the correlation values is
empty and hence the procedure to update L is delayed until
the memory buffer is sufficiently full. An example showing
the memory structure for the first 1536 frames and associated
correlation computations is shown in Fig. 6. The correlation
average, R̄1023, is computed from frames 0 to 1023 inclusive.
After determining the new value of L to be 512, the window
is updated to cover frames 513 to 1024. The correlations
computed at frames 514 to 1025 are used to calculate the
average correlation for frame 1025, and so on.

V. ADAPTIVE-L BY CRC (ALC)

In this second architecture, the Tx appends a cyclic re-
dundancy check (CRC) symbol to the end of each frame as
shown in Fig. 7. A value of D is set at both the Tx and Rx
and is held constant throughout the transmission. At the Rx,

l=1 l=2 l=L

Lset(1)

CRC 

LL fixedLMAX L=16L=64Lset(2) Lset(Np)
Fig. 7. ALC packet structure showing (top) CRC symbol appended after
L frames (bottom) NL blocks with decreasing value of L followed by
transmission with fixed L

Start

n=n+1
L = Lset(n)

Set: n=0, D=~8, 
Lset= {LMAX, 64, 16}

N
n=NL?

Select min. L
with min. fails

Decode LC frames.
CRCf (frame)=1, if fail.

Y

Fig. 8. ALC flowchart for determining the value of L.

a set of L descending values is specified before the start of
packet reception, e.g. Lset = {LMAX , 64, 16}, where LMAX ,
is the maximum value of L to be tested (Fig. 8). It can be set
according to the satellite frequency band, D, or MCS. If the
channel has a low SNR or a high modulation scheme is used,
LMAX is set high e.g. 768. If the channel has high SNR or a
high value of D is set, LMAX can be reduced e.g. 128.

After LMAX frames have been received, a frequency
estimate is made by averaging the L correlation values.
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TABLE II. SIMULATION PROPERTIES.

UW code Orthogonal Gold
UW length (NUW ) 64, 256
Data length 2304 symbols / stream
Modulation 3-streams @ QPSK
Freq. offset ±2,4 kHz
Frequency recovery Modified L&R
Baud rate 1.6M, 3.2M
FEC None, LDPC (R=5/6)
Channel AWGN

The l-th frame data is then demodulated and RxCRC(l)
obtained. TxCRC(l) is then compared with RxCRC(l). If
RxCRC (l) ̸= TxCRC(l), a CRC fail variable Fail(n) is in-
cremented. Next, TxCRC(l+1) is compared with RxCRC(l+1).
Then n is incremented to 1 and the Rx next sets L=Lset(1). As
Lset(1) < Lset(0) the averaging process, and hence frequency
offset estimation, can actually be done using the correlation
contents already held in memory and thus without any wasteful
retransmissions. The smallest value of L that passes the CRC
test is finally selected.

VI. SOFTWARE SIMULATION

A performance evaluation was conducted for the EPPM
system using the parameters shown in Table II. Random PN
data of length 2 bits × 2304 symbols was generated for each
of three streams. The stream data was mapped onto the two
polarizations using EPPM modulation and a UW preamble
inserted of length NUW . The data packet was convolved with a
root raised cosine filter having roll-off factor α=0.5. A ± 4 kHz
frequency offset was applied to V & H. At the receiver,
AWGN is added and the signal matched filtered and down-
sampled. The UW sections are extracted and the frequency
offsets corrected on both V and H-channels. The noise level
is averaged over 32 symbols and indexes the LUT. The data
was estimated by MLD processing. The BER measurements
started after 2048 frames (i.e. the correlation memory was full
for all values of L) and the first value of L had been selected
from the LUT.

The BER performance for NUW =64 is plotted in Fig. 9 and
shows that when the UW length is short and the UW symbols
are adjacent to each other (D=1), the performance is degraded
by selecting small values of L. As Eb/N0 increases however, L
can be reduced whilst maintaining a given BER. By increasing
the UW symbol spacing to D=8, the performances for low-
values of L are substantially improved as shown in Fig. 10. At
the BER 1E-4, it can be seen that L can be reduced from 2048
to 128, with a negligeable loss in performance. The BER
performance for NUW =256 is plotted in Fig. 11. It can be
seen that L can be set to 128 with little performance loss
compared to the maximum value.

The required value of Eb/N0 to achieve an error rate of 1E-
4, as L increases for a fixed value of D, is plotted in Fig. 12. A
plateau shows the region where there is little additional benefit
from increasing the value of L further. It can be seen that
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Fig. 10. BER performance of 3 stream × QPSK, NUW =64 with UW symbol
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L=512 is an efficient setting for the case {NUW =64, D=2}.
In the case of {NUW =256, D=1} and {NUW =64, D=4,8},
L can be set to 64 without any observable degradation in
performance.

The reduction in the size of L compared to a fixed value
of 1024 is shown in Fig. 13 for the case of NUW =64. With
symbol spacing D=2, the averaging length can be reduced
by about 75% whilst maintaining the target BER at 1E-4. In
the case of LDPC with D=4, L can be optimally set to 512
at 4.8 dB and decreased to 32 at 6.0 dB. The optimized settings
depend on the particular modulation coding scheme (MCS) and
a specific LUT for each MCS should be investigated as part
of our future work.

A BER simulation was set-up to investigate the ALC behav-
ior. Three simulations with a different value of D={8,16,32}
were conducted. At the transmitter, EPPM 6-bit modulation
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with coding rate was R=5/6 was applied. At the receiver, a
± 2 kHz offset was added. The frame averaging size was
determined by the adaptive algorithm which selects a value
of L that achieves the desired lowest sum of CRC fails.
Without, the ALC control, the significantly different D for a
fixed value of L would result in different BER. However, the
error graph shows that each transmission had almost identical
performance (Fig. 14). When a low value of D was used, a
larger value of L was selected automatically in compensation.

Both ALC and ALNE use different techniques to achieve the
same aim. In terms of complexity, the ALNE is preferred as the
noise estimation requires relatively few hardware multiplica-
tions and has no CRC overhead. Further, the noise estimation
may already be required and computed by the LDPC block.
The ALC could however be considered if a CRC module is
already part of the system design.
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VII. HARDWARE IMPLEMENTATION

Each transceiver board consists of five Xilinx FPGAs with
the frequency recovery and signal processing operations com-
puted on a Virtex XC6SLX100 device. The symbol rate is
variable between 0.05-10 MBaud, the input sampling rate
is 102.4 MHz. The ADC and DAC precisions were 12-bits
and 16-bits respectively. The transmitter and receiver settings
are entered via a GUI on the respective Tx and Rx PCs.
The required Eb/N0, frequency and phase offsets were set on
a SLE900 satellite channel emulator. The transceiver system
is shown in Fig. 15 and further details of the design are
in [8]. The BER is computed by comparing the transmitted
and received signals using an Anritsu MP8931A BER tester.

The estimated frequency offset on each polarization as
measured in hardware is plotted in Fig. 16. The value of
D=12 and L was determined by LUT. The estimated offset
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Fig. 16. Frequency offset estimate in hardware in response to a ± 2 kHz offset
set by the channel emulator (top) H-polarization, (bottom) V-polarization.

was within ± 8 Hz of the value set in the channel emulator
with 10 dB SNR.

A. Adaptive-L by Noise Estimation
The LUT in hardware was verified by examining frame

versus index results data. The SNR on the SLE channel
emulator was varied from 10 dB to 20 dB in steps of 2 dB.
The frame number at which the index changed is written to
file and from this the variation of L with frame number is
plotted in Fig. 17. After switching on the machine, the LUT
is filled with correlation data. At position O an SNR of 10 dB
is set with the addition switch off in the channel emulator and
hence L reverts to the low value of 16. At position A1, noise
addition is switched on and quickly the value of L changes
to 1024 at postion A2. It stays at this position for about 6000
frames. It briefly reduces to 512 but then returns to 1024. At
position A3, the noise is switched off and the value of L rapidly
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Fig. 17. Variation of L versus frame as SNR increases from ALNE hardware
experiment.

reduces to 16. A similar process is repeated for the remaining
SNR values. That is, the SNR is set to {12,14,16,18,20} dB
at positions {B1,C1,D1,E1,F1} respectively. The respective
noise is added until positions {B3,C3,D3,E3,F3} respectively.

Two further general observations can be made from this
figure. First, there is a downward trend in L observed as
the SNR increases and confirms the desired behavior. The
exact SNR at which the value of L changes depends on the
LUT boundary entries and whose determination is an off-line
optimization task to achieve a desired performance. Second,
occasionaly (e.g. D2 to D3) there are oscillations between two
values of L. When L is large, the estimation performance is
high and the estimation is very accurate. A lower value of
L is subsequently selected by the algorithm. The estimation
performance degrades slightly and subsequently a higher value
of L is required. To avoid the averaging size being updated too
frequently, control circuitry should manage the case when the
measured noise power oscillates across a LUT boundary. This
situation becomes more important when the LUT is small and
thus there are relatively large steps of L.

Various techniques can be applied to control the oscillatory
behavior. A hysteresis can be set so that the new setting of L
only becomes valid if the boundary is crossed for a sufficient
number of frames. Alternatively, the update rate for L can be
set to once per a given number of frames. The optimization can
also achieved by adjusting the boundary positions or changing
the frame averaging LUT entries. This optimization together
with the hysteresis should be added as a future upgrade to the
firmware. A software simulation with {D=12, L=256} was
compared with hardware results for D=12 with L determined
by LUT. There is a close match between the software and
hardware performances as shown in Fig. 18. LUT-B achieves
slightly better performance than LUT-A due to a larger value
of L being used.
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Fig. 18. BER of ALNE in hardware for uncoded 6-bit EPPM with ± 2 kHz
offset, 3.2 MBaud, D=12.

VIII. CONCLUSION

We have proposed two adaptive techniques to reduce the
frame averaging required in satellite frequency offset estima-
tion. These techniques are called adaptive-L by noise estima-
tion (ALNE) and adaptive-L by CRC (ALC). In ALNE, the
window-size for frame averaging was reduced by selecting it
based on the estimated noise power on both V and H branches.
A BER of 1E-4 could be maintained with a reduction in L
of 75% for D=2 with UW length 64 at 11 dB Eb/N0. The par-
ticular algorithm selection partly depends on implementation
complexity and whether CRC and noise estimation modules
are already used in other parts of the system. Further work
should optimize the performance by adding a hysteresis to
avoid excessive switching between boundaries and optimize
the averaging sizes for the LUT across a range of MCS and
channel conditions.
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