

Abstract—This paper introduces a remote user interface

framework which supports devices to share the UI of their
applications with multiple smart devices. The smart devices are
internetworked globally through RUI server. Besides that, a
virtual IO function is provided to use mobile devices as remote
controller. By thus, users can control home networked devices
and applications by their smart devices with intuitive UI/UX.
The proposed framework provides collaborative application
model, APIs of sharing application view and virtual IO
emulator.

Keyword— RUI framework, home network, collaborative
application, UI migration, Virtual IO

I. INTRODUCTION

mart devices, smart phones and smart pads, have become
the most familiar appliances with users since those

devices were introduced with multi-touch based intuitive user
interface. TV is known for the friendliest consumer device to
people. It also has evolved to smart device from a typical
passive device.

The current TV provides users with various interactive
contents augmented from linear services and downloaded
from application servers. Moreover, it is not awkward for
people to interoperate their smart devices with smart TV for
collaboration services [2][5][7][8].

Recently, many researches have been introduced to
interoperate the smart devices with other devices such as TV,
information appliances and various sensors in home network
area [1][3][4][6]. Many RUI (Remote User Interface)
standards such as MIRACAST [11], DLNA-RVU [12] and
Airplay [13] use streaming protocols to provide remote
device control or collaborative services. They have some
problems of using too a lot of bandwidth and supporting only
sharing of main graphic user interface because they transmit
video streams using the sequences of images captured from
frame buffer.

———————————————————————

Manuscript received Dec. 31, 2014. This work was supported by the IT
R&D program of MKE/KEIT, [KI10039202, Development of SmartTV
Device Collaborated Open Middleware and Remote User Interface
Technology for N-Screen Service]. Bongjin Oh is with the Electronics and
Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu,
Daejeon, 305-700, Korea (corresponding author to provide phone:
+82-42-860-6384; fax: +82-42-860-5885; e-mail: bjoh@ etri.re.kr).

Jongyoul Park was with the Electronics and Telecommunications
Research Institute, Daejeon, 305-700, Korea. (e-mail: jongyoul@etri.re.kr).

An HTML5 based collaborative application platform is
provided by MOVL UI [14]. It is independent of device
platform and based on a cloud server for collaboration
services. But it is time consuming for users to connect client
applications with host applications. Multiple applications
should be installed on smart devices, and users should
interconnect the devices by logging into allocated room with
room number displayed on TV screen by host applications.

This paper proposes a RUI framework based on sharable
GUI to support collaborative services among interconnected
smart devices. Virtual IO emulator is also provided to control
remote devices using virtualized device controllers.

The rest of this paper is organized as follows. Chapter II
describes the overview of the proposed RUI architecture, and
a reference implementation of the RUI framework with
exemplary RUI services is shown in chapter III. Lastly, we
conclude our research briefly in chapter IV.

II. THE PROPOSED RUI FRAMEWORK

A. Network Configuration of the RUI Framework

Fig. 1. The proposed RUI network configuration. There is a RUI server to

interconnect all of home networked devices.

The RUI network is configured as Fig. 1. One SG (Service

Gateway) and several fixed or mobile smart devices are
internetworked in each home network. Smart devices control
and share UIs with other devices using RUI framework. SGs
are interconnected with each other through RUI server to
support smart devices to control and share UIs with remote

A Remote User Interface Framework for
Collaborative Services Using Globally

Internetworked Smart Appliances

Bongjin Oh*, Jongyoul Park *

*Bigdata S/W Platform, ETRI, 218 Gajeong-ro, Yuseong-gu, Daejeon, 305-700, Korea

bjoh@etri.re.kr, jongyoul@etri.re.kr

S

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 2, March 2015 581

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

mailto:bjoh@etri.re.kr
mailto:jongyoul@etri.re.kr

devices located at different home networks.
Service gateways manage devices and services of each

home networks. Each SG also makes a channel in RUI server
to allow remote devices to access local devices managed by
them. The channel is set up with SG ID, login and password.

The smart devices can’t send RUI messages directly to
target devices because the most of them are networked with
VPN (Virtual Private Network). Therefore, they require local
SGs connected with them by same home network to forward
their requests, formed as RUI messages, to remote devices.
SGs also forward the requests to remote SGs connected with
the target devices with the help of RUI server.

RUI server manages channels with ID, login and password
as well as IP address for SGs, and forward the received RUI
messages to SG designated with SG ID after verifying login
and password included into RUI messages. For this, RUI
server also support asynchronous HTTP based
communication protocol for SGs to send and receive
forwarded RUI messages asynchronously.

Below diagram describes the procedure of making a
session and exchanging RUI messages among RUI devices
through RUI server.

Fig. 2. The procedure of communication among RUI devices located at
different home networks. RUI server manages channels of SGs to forward
the input RUI messages to target devices.

B. Components of the RUI framework

Three kinds of RUI components are launched on the home
networked devices such as SG and client devices. Their

functions are described at Table I.

RM (RUI Manager) is the only component which runs on

each service gateways and RA (RUI Agent) and RV (RUI
Viewer) can run on every smart device.

The RM scans the RUI devices using the SSDP (Service
Discovery Protocol) of UPnP. Whenever a RUI device turns
on, The RA also find the RM using SSDP. If two devices are
connected, then the RM collects device profile from the RUI
device. The device profile includes device name, service list,
address and device mode, and it is stored to RUI Status Table.
The RM monitors the status of RUI devices. Client devices
get the global information for RUI services such as RUI
application list, RUI devices, from the RM. The status of
client devices including current running RUI application and
connection mode is stored to RUI Status Table together with
device profile s. The RM also supports service session
management among client devices. If a client device is gone,
then the RM notifies it to another client device bound to
disappeared client device.

The RV is implemented by extension of the WebKit to
render HTML5 based UIs, and it handles user events invoked
locally or remotely. The user events are transmitted to the
RV’s event queue by the RA whenever users input events with
local input device or remote virtual input devices. The RV is
launched automatically to render initial RUI Page by the RA.

The RA plays the most important role of RUI framework to
share UIs for remote control of devices and applications
among smart devices. The RA manages Top Window, Device
Page, Virtual IO Page, RUI applications and local repository
and so on.

The Top Window is displayed as an overlay window on the
screen for interaction between users and RUI components.
Users can request RUI operations of the RA by long touch on
the top window for about 3 seconds. The RA shows the
functions such as virtual IO on the Top Window, and then
users select one of them to process.

Fig. 3. The protocol stack of the RUI Agent.

The software elements of RUI Framework except the RV
interoperate with each other using HTTP based messages.
The RA provides the software elements with RUI
Communicator APIs based on JSON message system. On the
contrary, The RV is tightly coupled with the RA on every
client devices, and they interoperate with each other using
local procedure calls to invoke user’s input events and to

render application’s or RUI initial UI page.
Virtual IO Page is also described as an HTML5 document

including the key map of physical controllers such as remocon,
mouse and keyboard provided locally. Virtual IO Page is
transmitted to other Remote Agents for virtual IO mode. The
Remote Agent shows the received Virtual IO Page to users by

TABLE I
COMPONENTS OF THE PROPOSED RUI FRAMEWORK

Components Function

RUI Manager - manages the home networked devices and RUI
services
- provides local devices with method to
communicate with devices outside home

RUI Agent - manages the UIs of launched applications and
virtual IO page
- collaborates with other devices for sharing of UI
and IO functions

RUI Viewer - displays application UI and virtual IO UI
- handles the user events

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 2, March 2015 582

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

the RV to control remote devices using the similar user
interface of physical controller.

The Device Page is changed according to current mode of
client’s device. When the RUI framework is launched, the

page is set with the RUI Initial Page. If the device is bound to
other device as virtual IO mode, then the page is set with the
Virtual IO Page. Lastly, the page can be set with UIs of RUI
applications launched locally or remotely. If the RUI
applications are running on a remote client, then the UI to be
set is moved to local device from the remote client.

The RA installs RUI applications to the repository of client
devices, and manages their life-cycles. It also request remote
RAs to launch RUI Applications installed on the remote
devices. The UIs of RUI Applications are able to be migrated
into other devices for remote control. The UIs and Virtual IO
Pages are distributed to remote RUI Agents using OSGI’s

core APIs. In this paper, the UIs and Virtual IO Pages are
handled as sub-apps included in a service bundle.

C. Collaboration Model of RUI Application

Fig. 4. The concept diagram of the proposed collaboration model. HTML5
based UI is composed of serveral parts to be shared by serveral devices.

RUI based services are installed on one of inter-connected
smart devices by users. Users can browse the service list
regardless of local service or remote service by RUI service
browser. When users select a service, the selected service will
be launched on the device which it is installed on. Users can
control the remote service by the proposed RUI protocol
based on migratable UI as Figure 5.

Fig. 5. The collabroation model of RUI applications. Migrated UI segments
will communicate to the logic installed in local device through RA.

The Sub-description of each UI segments includes
attributes such as segment ID, sharing mode, URL and input
event model etc. Three kinds of the UI sharing modes are
provided as follows.

1) Mirror
The UI of the original application which runs on the remote

device is duplicated, and the UIs are transmitted to multiple
devices. If an input event is invoked in the original UI, then all
the duplicated UIs also receive the invoked event at the same
time.

2) Migration
The original UI of local device is moved to selected devices.

This mode is needed to display the local UI on the bigger
screen. The local UI is automatically changed into virtual IO
mode to control the migrated UI with local device.

3) Segmentation
The parts of Remote UIs are pulled and rendered on the

display of local device. The UIs may be displayed on multiple
devices according to the requests of several users at the same
time.

As described in Fig. 2, Virtual IO page can be transmitted

to globally networked devices for remote control through RUI
server. The RUI messages of Virtual IO Page and invoked
user events are routed to remote devices through local SG,
RUI server and remote SG. Because of the problem of
synchronization, the UI of application can’t be shared
between two devices located at different home until now.

The migrated UIs and logic communicated to each other
with RUI messages which have the format as Fig. 6.

Fig. 6. The Structure of RUI Message. SE address contains ID to distinguish
which target is local devices or remote devices and target software element.

The address of RUI message consists of SG ID, device
UUID, software element ID and segment ID to distinguish
software elements. The kinds of software elements are
classified into RUI applications (UI segments, logic apps) and
RUI components (RM, RAs).

The IP address of RUI message is decided by the related
information stored to the RUI Status Table such as the
composition of device ID, application ID and UI segment ID
(application ID is allocated per RUI service and included in
service descriptions).

A RA figures out the SG ID is local or not before
transmission of RUI messages. If SG ID is for local SG, then
the RA transmits RUI messages to target elements directly.
Otherwise, the messages are redirected to target elements of
globally networked devices via RUI server. First, RA tosses
RUI messages to local RM to forward those messages to
target elements. Then, Local RM transmits RUI messages to
RUI server to be verified and forwarded to target RM. lastly,
the remote RM transmits the received messages to target
device using IP address mapped to device ID contains in the
messages.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 2, March 2015 583

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

D. Virtualized Input Devices

The proposed RUI framework provides two virtual IO
modes for users to utilize smart devices as remote controllers
as shown in Figure 7.

(a) Device based virtual IO mode

(b) Application based virtual IO mode

Fig. 7. Virtual IO action model. Virtaul IO Page is pulled to local device, so
users can control the remote device as local device.

The first mode is the device virtual IO mode which user
device plays the role as same as physical controller of other
smart devices. Each RA manages Virtual IO Page which
describes control UI of local device’s physical controller such
as remocon or control panels. The Virtual IO Page is
described as HTML5 based application which can be
rendered by the RVs of other devices. The Virtual IO Page is
transmitted to other devices and launched by RVs of the
devices, when users want to control remote devices by virtual
IO mode.

User inputs are transmitted to remote RA as remocon
control codes, and the codes will be consumed by system
event handler. The system handler forwards codes to user
event handler after converting them into key events. This
procedure is also processed when user press a button of
physical remocon. If any smart appliances, such as
refrigerator, boiler and washing machine as well as TV, can
be accessed from internet, then user can remotely control
them using device based virtual IO mode at any home.

The second mode is the application virtual IO mode which
user can select necessary type of virtual controller
dynamically. RA manages embedded virtual IO emulators to
be launched by only local RV, not by remote RVs. Virtual IO
emulators are predefined in the repository of the RA
according to the capabilities of local devices.

RUI applications should notify the type of input model for
control their UI segments to RAs which launch the UI
segments according to user’s request, and RAs will provide
users with selectable IO emulators among embedded

emulators. If an event model contains keyboard and mouse,
then the icon of keyboard and mouse is displayed in the virtual
IO menu to be selected by users.

If a virtual mouse emulator is selected then user’s inputs are
transferred to remote RA through local RA as Mouse Events.
Then the remote RA forwards the Mouse Events to RV, and
RUI Apps (UI Segments) consume the Mouse Events
generated by RV. This procedure is different with that of
physical remocon.

III. REFERENCE IMPLEMENTATION

Fig. 8. Network configuration of a reference implementation. All devices are
interconnected with one home network except contents servers.

A reference platform is implemented to show the
functionalities of the proposed RUI framework together with
an exemplary RUI application. The network configuration of
the reference platform is shown as Figure 8 and Table II.

Android based a set-top box; a smart phone and a smart pad

are interconnected by an AP connected to a Giga-bit switch. A
VOD server is connected directly to switch as an UPnP AV
server. VOD client is installed the set-top box as an UPnP AV
Renderer. The RM runs on the smart pad to manage the status
of RUI framework. Some HTML5 games found on websites
by the keyword of “HTML5 games” are installed on both of
set-top box and smart pad. The smart phone is only used to
control other devices as a virtual IO or remote UI sharing
mode.

TABLE II
THE DETAILS OF DEVICE AND SOFTWARE ENVIRONMENT

Item Details

Hardware - Set-top box, smart phone, smart pad
Android 2.x.x, dual core, RAM:2GB

- Contents Server (PC), Windows 7, quad core: i-7,
RAM: 4GB, HDD: 1T, 5400RPM

Networks - AP (WiFi n/g, Ethernet 100Mbps) and switch (1Gbps)

Software - VideoTube RUI application (VOD client)
media player, contents guide, media control
functionalities (UPnP AV renderer)

- VideoTube server
UPnP AV architecture
Directory service, HTTP based streamer

- HTML5 based web apps - handles the user events

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 2, March 2015 584

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

(a) Segmenting RUI mode

(b) Mirroring RUI mode

Fig. 9. A Exemplary RUI service (Segmenting & Mirroring).

VideoTube RUI service was implemented for remote UI
sharing functionality among home-networked devices as
Figure 9. VideoTube is composed of a contents server and a
media player to provide users with a VOD-like service.

The UI of media player is able to be fragmented into Media
Display UI, Control Panel UI and Contents Navigation UI. In
the (a) of Figure 9, a user pulled the Contents Navigation UI
together with Control Panel UI from TV. Only Media Play UI
remains on the screen of TV with full screen mode
automatically. There are 8 kinds of layout templates are
provided for various status of RUI sharing for VideoTube.

The mirroring RUI mode is shown in the (b) of Figure 9.
The UIs of VideoTube are duplicated to smart pad, and users
can control the VideoTube by local smart pad or remote TV.
The user input events are multicast to all of mirrored devices
as well as TV which launches the VideoTube.

Fig. 10. An Exemplary Virtual IO service (Mouse & Keyboard)

Some HTML5 based web apps deployed on websites are
used to verify our proposed virtual IO functionalities. Some of
them are developed for PC, and the others are developed for
mobile devices. Therefore, user’s smart device should be
virtualized into keyboard for PC version and virtualized into
mouse for mobile device version according to user’s selection.
Fig. 10 shows an example of virtual IO service collaborated
with TV and two smart devices.

An Entanglement game [15] is launched in PAD. When
user requests the game migrate to TV, the UI of user’s PAD is
changed to the virtual Keyboard automatically. The phone is
also bound to TV as a virtual mouse mode. Two users can
play the game together simultaneously.

IV. CONCLUSION

The proposed RUI framework supports collaborative
services using decomposable and sharable UIs among
interconnected smart devices. The framework consumes less
network bandwidths than the typical streaming based RUI
protocols because the RUI framework uses HTML5 based UI
and message driven interoperation between multiple devices,
Moreover, users can use local devices as intuitive remote
controllers of other devices using virtual IO emulators. Those
functionalities can be provided to devices interconnected with
different home networks through the RUI server using SG
channels.

Table Ⅲ shows that the proposed RUI framework is better

than other RUI standards for various RUI functionalities.

REFERENCES

[1] Bong-Jin Oh, Jong-Youl Park, “A Remote User Interface Framework
for Collaborative Services Using Interconnected Smart Devices,” in
Proc. ICACT2014, Pyunchang, 2014, pp.630-634.

[2] Moon Soo Lee, Seung-Joon Kwon, “Lightweight Inter-device Interface
Control System for the Machine-to-Machine (M2M) Interaction in the
Internet of Things,” in Proc. ICCC2014, Jeju Island, 2014,
pp.481-482.

[3] Bumsuk Choi, Junghak Kim, Soonchoul Kim, Youngho Jeong, Jin
Woo Hong, and Won Don Lee , “A Metadata Design for Augmented

Broadcasting and Testbed System Implementation,” ETRI Journal,
vol.35, No.2, pp. 292–300, Apr. 2013.

[4] Kyoung Ill Kim, Su Young Bae, Dong Chun Lee, Chang Sik Cho, Hun
Joo Lee, and Kyu Chul Lee, “Cloud-Based Gaming Platform
Supporting Multiple Devices,” ETRI Journal, vol.35, No.6, pp.
960-968, Dec. 2013.

[5] L. Bassbouss, M. Tritschler, S. Steglich, K. Tanaka, and Y. Miyazaki,
"Towards a Multi-Screen Application Model for the Web," in Proc. the
1st IEEE International Workshop on Consumer Devices and Systems
(CDS 2013), Kyoto, 2013, pp.528-533.

[6] Steven Morris, Anthony Smith-Chaigneau, Interactive TV Standards.
Elsevier Inc., 2005.

[7] Moon Soo Lee, Min Jung Kim, Sun Joong Kim, Cho Kee Seong,
“Remote Collaboration Screen Control Using Mobile Multi-Touch
Interface,” in Proc. ICTC2012, Jeju Island, 2012, pp. 272-273.

TABLE III
THE COMPARISON OF RUI PROTOCOLS

Function Proposed MIRACAST Airplay MOVL UI

Bandwidth Low High High Low
Mirroring OK OK OK NO
Collaboration OK NO OK OK
Virtual IO OK NO NO NO
Device Paring Easy Easy Easy Difficult

Platform
Independent

OK OK NO OK

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 2, March 2015 585

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

[8] Yusoek Bae and Jongyoul Park, “A Seamless Remote User Interface

System Supporting Multi-Screen Services in Smart Devices,” in Proc.
ICCE2013, Lasvegas, 2013, pp. 462–463.

[9] Bong-Jin Oh and Jong-Youl Park, “Design and Implementation of
HTML5 based Collaborative N-Screen Contents Platform for Smart
TV,” in Proc. ICCC2013, Okinawa, 2013, pp.225–226.

[10] JeaWon Moon, Tae-Beom Lim, Kyung Won Kim, Seok Pil Lee,
SeWoom Lee, “Advanced Responsive Web Framework based on

MPEG-21,” in Proc. ICCE-Berlin2012, Berlin, 2012, pp.192–194.
[11] Miracast. [Online]. Available: https://www.wi-fi.org/
[12] RVU Alliance. [Online]. Available: http://www.rvualliance.org/
[13] Apple AirPlay. [Online]. Available: http://www.apple.com/airplay/
[14] MOVL UI. [Online]. Available: http://connect.movl.com/
[15] Entanglement HTML5 based web app. [Online]. Available:

http://entanglement.gopherwoodstudios.com

Bong-Jin Oh received B.S. and M.S. degrees in
computer science from Pusan National University,
Busan, Korea in 1993 and 1995 respectively, and the
Ph.D. degree from Chungnam National University,
Daejeon, Korea in February 2012. Since 1995, he has
been with the Electronics and Telecommunications
Research Institute (ETRI), where he develops home

network middleware and data broadcasting middleware. His research
interests are home network middleware, data broadcasting middleware,
IPTV, pervasive computing, and big data analytics.

Jongyoul Park received the B.S. degree in computer
engineering from Chungnam National University, Korea,
in 1996, the M.S. and Ph.D. degrees in information and
communication engineering from the Gwangju Institute
of Science and Technology (GIST), Korea, in 1999 and
2004, respectively. From 2001 to 2002, he was a visiting
researcher at the school of computing, University of Utah.

Since 2004, he has been a Research Staff and Director of Analytics SW
Research Section of Electronics and Telecommunications Research Institute
(ETRI), Korea. His research interest includes IP broadcasting, software
middleware, mobile code, distributed computing, big data and analytics
platform.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 2, March 2015 586

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

https://www.wi-fi.org/
http://www.rvualliance.org/
http://www.apple.com/airplay
http://connect.movl.com/
http://entanglement.gopherwoodstudios.com/

