A Lightweight and Practical RFID Grouping Authentication Protocol in Multiple-Tag Arrangements

Jian Shen†§, Haowen Tan†§, Shaohua Chang†§, Yongjun Ren†§, Qi Liu†§

†Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, China
‡Jiangsu Technology & Engineering Center of Meteorological Sensor Network, Nanjing University of Information Science & Technology, China
§Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, China
§School of Computer & Software, Nanjing University of Information Science & Technology, China

s_shenjian@126.com, tan_halloween@foxmail.com, casaha@126.com, renyj100@126.com, qrankl@163.com

Abstract—Radio Frequency Identification (RFID) is a potential technology with the purpose of replacing the barcodes. The authentication towards multiple tags and tag groups has become the research hotspot considering of practical prospects of low-cost RFID tags. However, there are many concerns about the security risks and privacy issues due to the lightweight authentication property of the RFID tags. Many researches achievements have been made focusing on the existence of single tag in an object, while the arrangement that multiple tags attached to one object is out of consideration. In this paper, we propose a lightweight and practical RFID grouping authentication protocol in multiple-tag arrangement. In our assumption, one object to be authenticated is attached with a group of RFID tags. The backend process system (BPS) is able to take full control of the entire authentication process. The feedback towards various cases of the RFID tags is timely provided, which is available for practical situations. Additionally, the accurate position and status of the object can be ascertained with a number of tags combined with the object. Moreover, the protocol is proved to offer enough security assurances and have resistance to various attacks under the security analysis. The regular operation of RFID system will not be affected or damaged by the incidents occurred during the authentication process.

Keywords—RFID, lightweight, grouping authentication, multiple tag, security.

I. INTRODUCTION

RFID technology does not require line-of-sight contact in the communication process, which is superior to the barcodes. The basic structure of RFID system is composed of three parts: the reader, BPS and the RFID tags. As the important component of the RFID system, the reader can contact with more than one RFID tags and acquires related information from the tags. The evidence that one or more RFID tags are checked at the same time is generated after several communication passes. The BPS, regarded as the database containing important information, also plays the role of verifier which decides the validity of the generated evidence received from the reader. In addition, the RFID tags which are supposed to be attached to the goods suffer from resource limitation in terms of computation, communication and memory. Hence the RFID tags may be vulnerable to security risks and various attacks [1], [2].

As a matter of fact, many RFID authentication schemes have been presented in order to improve the security level and guarantee the regular operations of the RFID system. The researches focusing on grouping authentication of multiple tags and tag groups have become the primary tendency in RFID authentication field, while the security problems along with the privacy leakages remain barriers of practical use [1], [3].

As assumed in most of the protocols devoted to grouping authentication, single RFID tag is attached on one object. However, in the situation that the object is of big size, the RFID tag on a part of the object may not be within the communication range. Consequently, the object with other parts of it staying in the communication range cannot be identified. In other words, the detection probability of the object with single tag is not large in practical situations. The BPS cannot ascertain whether all parts of the object with large size is precisely in the supposed position so that the controlling power of the entire RFID system towards the objects is not adequate [4], [5].

To meet the practical requirements, one object can be attached with multiple RFID tags in different parts. In this assumption, if all the tags on the object are identified, it is obvious that the object is well arranged in the right position. Note that the RFID tags on the object guarantee the integration of the object and increase the detection probability as well [6], [7], [8]. Even in the harsh situations where some tags on the same object may be compromised or missed, the RFID system can still identify the existence of the object with the rest of the tags. On the other hand, the precise location of the object can be arranged by identifying the tags, which indicates the new attempt for locating on low-cost RFID tags.

In this paper we propose a lightweight and practical RFID
grouping authentication protocol in multiple-tag arrangement. In our assumption, all the tags on one object are considered as one tag group. The BPS takes control of behaviors of all these tags and reader. The object can be placed in the accurate spot with small deviation according to our design, which is practical and creative in real applications.

This paper is organized as follows. In the following section, the related original protocols about grouping authentication are presented in brief. The detailed scheme of the proposed protocol is shown in Section 3. Next is the security analysis of the protocol in Section 4. Then we conclude all this paper in Section 5.

II. RELATED WORK

Many RFID grouping authentication protocols have been presented with the purpose of offering enough secure requirements and preventing possible attacks to the RFID system. J. Saito and K. Sakurai [9] proposed the original grouping proof using time stamp in order to alleviate the weakness of the protocol presented by Ari Juels [2], [10]. Generally speaking, it is the relatively earlier protocol in multiple tags authentication. In this protocol, the reader derives the time stamp from database and submits it to all the RFID tags. The tags of the protocol are divided into two parts: the ordinary product tags and pallet tag. However, the entire RFID system in this protocol does not provide enough resistance to replay attack.

The chaining proof protocol is proposed in 2007 [11]. The main idea of this protocol is to combine all the tags intended to be authenticated together and form a chain with purpose of integrity preserving. However, the identities of the tags under authentication are transmitted in plaintext, which makes the tags vulnerable to illegal tracing. In addition, this protocol also depends on certain reading order of the tags, which is not convenient for practical situation.

Reading order independent grouping proof [12] is proposed in order to meet the practical requirements. In the assumption, the reader has enough computational power and the pallet tag can be merged into the reader. As a matter of fact, this protocol is applicable for special use in supply chain. The structures that the reader is bound to the pallet tag offers new research topic.

H. Liu et al. proposed grouping-proofs-based authentication protocol [13] for distributed RFID systems. In this protocol, all the tags are divided into several groups and are sequentially checked. This protocol provides strong protection on privacy and is resistant to various attacks. However, the checking sequence of the tags is required to be arranged in advance. A RFID authentication protocol for multiple tag arrangement [14] is proposed by S. Dhal and I. S. Gupta in 2014. In the assumption multiple numbers of RFID tags are attached in one object in order to increase the detection probability. Based on it, we propose our grouping authentication protocol in this paper, which is relatively available in the practical situations.

III. PROPOSED AUTHENTICATION SCHEME

In this section we describe our RFID grouping authentication protocol which is available for the scenario that multiple tags are attached to one object with large size. Note that these tags in one object are classified into the same tag group. In our assumption, the sequence numbers of the tags in the group are delivered to the reader after mutual authentication with each other. We would like to emphasize that the real identifiers of the RFID tags are not used in our protocol, preventing the RFID system from tracing problem. The reader communicates with each tag according to their sequence number of the group and gathers all the secret information to generate the proof. The authentication process completes when all the tags in the group are verified successfully, which means that the tags are in the right position so that the object is safe and well arranged. In addition, unusual situations are under consideration [14], [15], [16]. For example, when some of the tags are broken or damaged, the reader can generate the proof containing other tags’ secrets. Consequently, the BPS acquires the information that some specific tags need to be repaired but the object remains safe, which is practical in real applications.

A. Problem Definition

We assume the occasion that a set of objects with large size need to be verified where each of the objects is attached with more than one RFID tags in its different parts. Note that the tags combined with the same object are considered as one tag group. The object is arranged to be successfully authenticated after all the tags of the tag group are fully verified, which guarantees that the object is precisely in the scheduled location. The proposed RFID authentication scheme should meet most of the security requirements without affecting its efficiency or increasing the cost. Moreover, the BPS should be available with the feedback of all the tags of the group.

B. Protocol Design

The protocol we propose in this paper is divided into four phases for better description. In the initialization phase, the RFID tags are initiated with group identifiers along with the sequence numbers as soon as being attached to the object. The number of the tags in the group g is assumed to be n. The reader acquires n tags’ identities and combines them with the received random numbers from the BPS in the tag acquisition phase. The proof of group g is generated in the main authentication phase, which links the entire tag group. In the verification phase, the proof is delivered to the BPS. It is necessary to emphasize that the communication between the BPS and the reader through secure channel, while that between the reader and the RFID tags are not safe and vulnerable to various attacks. The notations used in our proposed protocol are provided in Table 1.

1) Initialization Phase: In this phase, the initialization of the RFID tags is conducted. As we describe above, one object is assumed to be combined with several tags in order to ensure that this object is totally in the right position. The group information as well as the sequence number e_i is input in the memory of RFID tag. Note that the tag referred to here can be
the reusable tag, which means that the tag can be attached to another object after the authentication process is completed.

2) Tag Acquisition Phase: In this phase, the tags responding to the reader are registered after verification. According to our design, it is not necessary for the RFID system to collect all the n tags. The RFID system allows authentication towards more than one tag. We assume there are j tags in group that are successfully registered. When in extreme situations, only one tag which passes the authentication of the RFID system can successfully registered. When in extreme situations, only one tag which passes the authentication of the RFID system can successfully registered. When in extreme situations, only one tag which passes the authentication of the RFID system can successfully registered. When in extreme situations, only one tag which passes the authentication of the RFID system can successfully registered. When in extreme situations, only one tag which passes the authentication of the RFID system can successfully registered. When in extreme situations, only one tag which passes the authentication of the RFID system can successfully registered.

The detailed steps of this phase are as follows:
- The BPS generates a pseudo-random number r_{R_m} for the reader R_m. Then the BPS chooses the tag group to be authenticated and delivers $(ID_{R_m}, GID_{g}, r_{R_m})$ to the reader R_m through secure channel.
- The reader R_m computes $M_g = (GID_{g} \oplus ID_{R_m}) + (S_g \lor r_{R_m})$ and broadcasts (ID_{R_m}, M_g, r_{R_m}) to all the tags.
- The tag T_i of group g checks the validity of the received M_g and generates its own pseudo-random number r_{T_i}. Then T_i computes $N_{T_i} = [M_g \ominus (GID_{g} \oplus ID_{R_m})] \lor r_{T_i}$ and $Q_{T_i} = e_i \lor (S_g \lor r_{T_i})$. Next the tag T_i responds $(N_{T_i}, Q_{T_i}, r_{T_i})$ to the reader R_m.
- After receiving the information form the tag, the reader R_m checks validity of the acquired N_{T_i} and derives e_i from Q_{T_i}. After all the n tags have been collected or the timer has timed out, the reader sends $(ID_{R_m}, GID_{g}, e_1, \ldots, e_j)$ to the BPS in the secure way.
- The BPS compares the received information with data in the database and replies to the reader with $(ID_{R_m}, GID_{g}, e_1, \ldots, e_j)$, where e_1, \ldots, e_j denote the pseudo-random numbers generated for each tag separately. The reader stores all this in its memory for the authentication in the next phase.

The brief description of this phase is shown in Figure 1.

3) Main Authentication Phase: As the important section of the entire authentication process, this phase focuses on gathering the secrets of each tag and combining them following their sequence numbers e_i. Instead of using the tag’s identifier, we compute $TempID_{T_i}$ as the temporary identifier during the communication between the reader and the tags, which shows enough resistance to the tracing problem towards the RFID tags. In the authentication process, the reader will not terminate the authentication process when the requested tag does not give the respond. Instead, the reader will skip to the next tag after the timer times up. The entire RFID system will not be interfered by abnormal tags or tag groups, which makes it more efficient.

The detailed steps of this phase are as follows:
- The reader R_m computes $r'_1 = r_1 \lor e_1$ and $TempID_{T_1} = (GID_{g} \oplus e_1) \lor (r'_1 \lor ID_{R_m})$ and delivers $(Q_{T_1}, TempID_{T_1}, First, r_{T_1})$ to the first tag in group g.
- The first tag T_1 checks the validity of the received $TempID_{T_1}$ from the reader and computes $Z_{GID_g} = TempID_{T_1} \lor (r_{T_1} + S_{T_1})$ and $C_{T_1} = (e_1 \oplus r_{T_1}) \lor N_{T_1}$. Then $(TempID_{T_1}, C_{T_1}, Z_{GID_g})$ is replied to the reader.
- The reader checks the validity of C_{T_1} and sends $(Q_{T_2}, TempID_{T_2}, Z_{GID_g}, r_{T_2})$ to the next tag of the group.
- The tag T_2 computes $Z_{GID_g} = [TempID_{T_2} \lor (r_{T_2} + S_{T_2})] \oplus Z_{GID_g}$ and $C_{T_2} = (e_2 \lor r_{T_2}) \lor N_{T_2}$. Note that Z_{GID_g} is generated with the value from the previous tag T_1.
- The process continues to operate in this way and finally the reader acquires private secret information of all the activated legal tags.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPS</td>
<td>Backend processing system</td>
</tr>
<tr>
<td>R_m</td>
<td>The m-th reader</td>
</tr>
<tr>
<td>g</td>
<td>The group identifier of tag group</td>
</tr>
<tr>
<td>T_i</td>
<td>The i-th tag of tag group g</td>
</tr>
<tr>
<td>n</td>
<td>The number of tags in tag group g</td>
</tr>
<tr>
<td>r_{R_m}</td>
<td>The pseudo-random number generated by the BPS</td>
</tr>
<tr>
<td>ID_{R_m}</td>
<td>The identifier of reader R_m</td>
</tr>
<tr>
<td>GID_{g}</td>
<td>The group identifier of tag group g</td>
</tr>
<tr>
<td>r_{T_i}</td>
<td>The pseudo-random number generated by the tag T_i</td>
</tr>
<tr>
<td>e_i</td>
<td>The sequence number of the tag T_i</td>
</tr>
<tr>
<td>S_g</td>
<td>The group secret of the tag group g</td>
</tr>
<tr>
<td>r_{T_1}, \ldots, r_{T_n}</td>
<td>The pseudo-random numbers generated by the BPS</td>
</tr>
<tr>
<td>Z_{GID_g}</td>
<td>The secret of the tag T_i</td>
</tr>
<tr>
<td>Z_{GID_g}</td>
<td>The generated proof of the tag group g</td>
</tr>
</tbody>
</table>

Figure 2. Main authentication phase of the proposed protocol.
the object is here, while it is not totally in the right place. In addition, the BPS can be aware of the identities of the disabled tags, which is convenient for facilities maintenance without checking all the tags.

The brief description of this phase is shown in Figure 3.

IV. SECURITY ANALYSIS

In this section, we analyze the security properties of our protocol in order to prove that our protocol is reliable. The proposed protocol is resistant to various kinds of attacks. The RFID system has large potential in the practical situations because it is convenient for the system to deal with different kinds of occasions. Moreover, only simple computations are required for the RFID tag, which is appropriate for market promotion of low-cost passive tags. In addition, the key information of the tag is protected in every communication session, showing strong privacy protection to the tags. In addition, the proposed protocol is resistant to the tracing problem towards the RFID tags. The BPS takes control of all the authentication processes and can monitor the changes of the entire system, which improves the security and is available for practical use.

A. Replay Attack

In our protocol, the pseudo-random numbers are in use for preventing the replay attack. As we describe above, in the tag acquisition phase, the random numbers \(r_{\text{tag}} \) and \(r_e \) are all generated by the BPS and delivered to the reader in secure channel. In this situation, the BPS takes full control of the key generation. As for communication between the reader and the RFID tags, the tag itself generates the random number in the tag acquisition phase in every session. The reuse of the previous messages cannot pass the verification of both the tag and the reader so that the replay attack is prevented.

B. Eavesdropping

The adversary may try to get the secret information through eavesdropping during the communication process, which is the common way for the adversary to damage the RFID system. In our scheme, the identifiers of the tags as well as the secret keys are under encryption. We apply temporary identifier \(\text{TempID}_i \) to the communication between the tag and reader so that it is not easy for the adversary to acquire key information of the specific tag through eavesdropping. Moreover, the BPS takes control of the generating of all the random numbers and the data exchanges between the BPS and reader are assumed to be safe. As a result, the entire RFID system in our protocol is resistant to eavesdropping.

C. Physical Attack

We assume that the adversary is able to destroy the tags physically and get all the secret information of the destroyed tag. The adversary may even manage to clone the tag and use it to cheat the RFID system. However in our protocol, one object is attached with a group of RFID tags. The object can be authenticated with several disabled tags in the group. In order to interrupt the authentication process, the adversary has to damage all the tags in the group, which is difficult and worthless. As the important facility of the entire RFID system, the reader and the BPS are assumed to be well protected in safe place [1], [2], [17]. As a result, physical attacks towards the reader and the BPS are not taken into consideration in
this paper. As a matter of fact, we attach significance to the security requirements of the RFID tag more than the reader and the BPS.

D. Man-In-The-Middle Attack

Our protocol is resistant to man-in-the-middle attack. As we describe above, in our protocol, the adversary cannot collect the ID or secret key of the tag. In the main authentication phase, we assume the situation that the message $(\text{TempID}_T, C_T, Z_{\text{SID}T})$ sent by the RFID tag is blocked by the adversary. The adversary cannot get the real ID and sequence number of the RFID tag. The reader will skip to the next tag after the timer times out, and the object can still be recognized without the message of the blocked tag. In conclusion, the man-in-the-middle attack is prevented [14], [18], [19].

E. Tracing attack

Tracing attack towards the RFID tag, especially the low-cost passive tag, remains big threat to both the RFID system and the users. We classify tracing attack into two kinds: tracing during the session and tracing between two successful sessions. On the one hand, to prevent tracing attack during one session, the delivered messages between the reader and the tags are all under encryption. The use of temporary identifier provides strong protection through tracing during the session. On the other hand, with the use of random number r'_T, the temporary identifier of the tag is changed after every successful authentication session. As a result, tracing between two successful sessions is still impossible.

F. De-Synchronization Attack

In the de-synchronization attack, an adversary disturbs the interactions between a tag and a reader by intercepting or blocking the messages. In our protocol, the real ID of the tag is not applied in the authentication process. Instead, temporary identifiers are used in our protocol. As a result, it is not necessary for the low-cost tags to update their secrets. In addition, the RFID tags are relatively independent of each other. The compromising through single tag will not affect the entire group and the RFID system. In this occasion, if one or more tags are blocked for several times, the tags can also contact with the reader. In a word, the RFID tags in the group will not suffer from de-synchronization attack according to our design [14], [20].

G. Forward Security

In our protocol, if the adversary obtains the secret information of the RFID tag in the present session, the secure information of the previous sessions will not be leaked to the adversary. The temporary identifier in every session is generated and valid only in the present session, which means that the secret information is not related to the previous session. In a word, the forward security is provided in the proposed protocol.

Comparison of security assurance: We have compared the proposed protocol with some existing RFID authentication protocols. The result of the comparison is given in Table 2. The possible attacks are specified using the symbols a, b, c, etc. The meanings of the symbols are written under the table.

<table>
<thead>
<tr>
<th>GROUPING PROOF</th>
<th>CHAINING PROTOCOL</th>
<th>GUPA</th>
<th>APCMA</th>
<th>OUR PROTOCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: Replay attack</td>
<td>b: Eavesdropping</td>
<td>c: Physical attack</td>
<td>d: Man-in-the-middle attack</td>
<td>e: Tracing attack</td>
</tr>
<tr>
<td>N: Not satisfy</td>
<td>P: Partially satisfy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2. Comparison result

V. Conclusion

In the grouping authentication of RFID tags, the use of multiple tags in one object not only increases the detection probability, but also provides the chance for accurate positioning of the object, which satisfies the practical requirements. In this paper we propose a lightweight and practical RFID grouping authentication protocol in multiple-tag arrangement. In our assumption, the entire authentication process is in the control of the BPS. The feedback towards various cases of the authentication process is also provided. Moreover, with multiple tags combined with the object, the accurate position of the object can be arranged. The RFID system in our protocol shows enough resistance to various attacks and security risks. We are working to improve our protocol in order to make it more efficient and practical in the future work.

Acknowledgment

This work is supported by the research fund from Nanjing University of Information Science and Technology under Grant No. S8113003001, the National Science Foundation of China under Grant No. 61300237, No. 61232016, No. U1405254, and No. 61402234, the National Basic Research Program 973 under Grant No. 2011CB311808, the research fund from Jiangsu Technology & Engineering Center of Meteorological Sensor Network in NUIST under Grant No. KDXG1301, the research fund from Jiangsu Engineering Center of Network Monitoring in NUIST under Grant No. KJR1302, the 2013 Nanjing Project of Science and Technology Activities for Returning from Overseas, the CICAEET fund, and the PAPD fund.

References

