


Abstract—Today, with an avalanching increase in

information, the task of developing the systems that allow user
to quickly search desired information in large text volumes is
becoming more and more urgent. An example of such system is
the question answering one. In the work we describe an
architecture of such system which work is based on utilizing
data from an ontology. We propose an algorithm for automatic
update of the ontology basing on use of an expert system and
ontological rules for logical inference. We also describe an
ontology with the structure based on object-oriented model and
describe the functions that are used to update the ontology and
extract data from it. We describe the way to update the ontology
and to modify the stored data using the rules stored in the
ontology. For writing ontological-semantic rules we use the
Drools expert system that utilizes the PHREK algorithm for fast
pattern matching.

We analyze the issues of using Apache Spark system for
distributed implementation of the algorithm.

Keyword—Question Answering System, ontology, expert
systems, semantic analysis.

I. INTRODUCTION

DEVELOPMENT of question answering systems is
nowadays becoming more and more urgent problem.

This is connected with an avalanche growth of information
volume that modern people need to operate.

Basing on analysis of operation algorithms of many
Question Answering Systems (QASs), including Lasso [1],
QA-LaSIE [2], TEQUESTA [3] etc., one can conclude that
all of them do, in the whole, comply a certain general
architecture. The high-level representation of the latter is

———————————————————————

Manuscript received July 9, 2015. The work was implemented with
financial support from the Russian Foundation for the Humanities as part of
research project No.15-04-12029 ―Software development of an electronic

resource with an online version of a Russian-language question answering
system‖.

Kuznetsov V. A. is with the Petrozavodsk State University, Russia
(e-mail: kuznetcv@mail.ru) .

Mochalov V. A., is with the Institute of Cosmophysical Research and
Radio Wave Propagation FEB RAS, Russia (e-mail: sensorlife@mail.ru).

Mochalova A. V. is with the Institute of Cosmophysical Research and
Radio Wave Propagation FEB RAS, Russia (corresponding author to
provide phone: 8-916-820-15-25; fax: 8-(41531)-33718; e-mail:
stark345@gmail.com).

given at Fig. 1. The system receives a question on the natural
language as an input. After that, the text of the question is
automatically processed. The main stages of this process are
preliminary text processing, tokenization, morphological,
syntactic and semantic analysis, extraction of named entities
and definition of the logical links between the parts of the
sentences. Some of these stages may be dropped out or
simplified in different QASs implementations and
descriptions. Some are, on the contrary, basical for the system
operation in a whole: an example is semantic analysis in the
work of M. V. Mozgovoy [4]. Several more procedures that
can be executed on the stage of automated question text
processing are definition of the question type, definition of the
expected answer type etc. Basing on results of the automated
question text processing, a query is formed to be passed on to
a search engine. The search engine, in its turn, selects a
predefined number (N) of documents most relevant to a query
from the collection. The texts of each of selected documents
as well as the question text are automatically processed. Here,
the machine algorithms of the question text processing may
differ from the algorithms of the selected documents
processing. Further, by means of internal algorithms of the
QAS, the specific text fragments are selected from the
documents returned by the search engine. The selected text
fragments are presented by the system as an answer. The most
advanced QASs can use data from factbases (FB), databases
(DB) and ontologies on the stage of text fragments selection.
The information from such data storages can complement the
answer/answers of the system.

In the work we propose an operation algorithm of an
ontological-semantic analyzer (a semantic analyzer that uses
ontology) of text. We describe how to use results of its work
in a developed question answering system. During operation
of the ontological-semantic analyzer, the ontology is being
changed and its data is used to define semantic links between
parts of the sentences. As a result of these changes, the data in
the ontology may be learned, deleted or updated. In such a
way the ontological-semantic analysis solves one more task
apart from being used in a question answering system: it
performs automated ontology learning.

Further we give a brief overview of the methods of
ontologies learning.

In work [5] the authors define three main methods of

Ontological-semantic text analysis and the
question answering system using data from

ontology

Kuznetsov V. A.*, Mochalov V. A.**, Mochalova A. V.**

* Petrozavodsk State University, Lenina str. 33, 185910 Petrozavodsk, Russia

 ** Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Mirnaia str. 7, 684034
Paratunka, Kamchatka region, Russia.

kuznetcv@mail.ru, sensorlife@mail.ru, stark345@gmail.com

D

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 651

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

ontologies learning:

1) «manual» input;
2) automatic or automated input using traditional

lexicographical information (encyclopedic,
word-defining and other dictionaries and databases);

3) automatic or automated input based on analysis of
distributive characteristics of the lexis in text corpus.

Ontology learning by means of manual input is a very labor
consuming procedure that requires participation of highly
qualified specialists. For this reason, development of
automatic (or at least partly automated) methods of ontology
learning is today a very urgent task.

One of the most frequent methods of automatic ontology
learning is constructed on analysis of dictionary definitions.
In such methods, the ontological constructions (entities and
the type of their relation) discovered by use of pattern search
in dictionary definitions are added to the ontology. For
instance, if one needs to collect information about all possible
means of transport, the dictionary search is performed using
all patterns of the kind ―X is a vehicle that...‖, ―X is a means of

transport used for...‖, ―X is a vehicle type equipped for...‖ etc.

Such search patterns may be developed manually or
automatically using self-learning programs [6]. The idea of
such a way of automated ontology learning is described in
works [7], [8], [9], [10].

The authors of the work [11] compare the methods of
automated ontologies learning, consider their own experience
and confirm that at the present day the most promising
technology from the perspective of obtaining practical results
is the one that uses traditional lexicographical information
(encyclopedic and word-defining dictionaries).

The work [12] describes a method of automatic
construction of domain-specific ontology basing on analysis
of linguistical characteristics of text corpus.

A more detailed survey of the existing methods of
automated ontologies learning is provided in work [13].

II. ONTOLOGY STRUCTURE AND FUNCTIONS FOR WORKING

WITH THE ONTOLOGY

An ontology (in a formulation by Gruber who was one of
the first to use this notion in the area of information
technology) is a formal specification of conceptualization
[14]. By conceptualization, we understand a description of a
set of notions (concepts) of the subject domain and links
(relations) between them. As understood today, ontology in
informatics is an hierarchical data structure including all
relevant object classes, their connections and rules
(restrictions) defined in this domain and necessary for solving
the problems assigned for an information system.

In this work we propose to use an object-oriented ontology
model consisting of classes (certain abstract images sharing in
the common sense a certain set of properties) and objects
(part of the real world having some certain properties of the
class it belongs to; the same object may belong to different
classes and the same class may have different objects).
Classes and objects can be interconnected by various
relations that define certain dependencies between them.
Here, a sequence of arguments, for which the relation is being
defined, does matter. Examples of such structured data
storages are DBpedia [15], Freebase [16] and Wikidata [17],
Wikipedia [18], Wiktionary [19]. For instance, in work [20]
the authors propose an approach to the automated
construction of a general-purpose lexical ontology based on
the Wiktionary data. When adding new information (classes,
objects or relations between them) to the ontology, one needs
to store the timestamp of the changes being made and the
source basing on which the changes are made. It should also
be possible to make a recovery of the ontology modifications
(for example, when an error has been detected). To make this
possible, the whole history of ontology modification should
be stored. The initial ontology structure can be formed using
ideographic dictionaries.

To be specific, we describe high-level functions for
ontology learning with the data and for data extraction from
the ontology:
1) CreateClass (idClass, nameClass) – adds a class with

unique identifier idClass and the name nameClass into
the ontology;

2) CreateObject (idObject, idClass, nameObject) – adds
an object with unique identifier idObject and the name
nameObject of the class with unique identifier idClass
into the ontology;

3) CreateRelation (idRelation, relationName) – creates a
relation with unique identifier idRelation and the name
relationName;

4) CreateRelation (id1, id_2, idRelation, h) – adds a
relation with unique identifier idRelation, linking two
classes or objects (or an object and a class) with unique
identifiers id_1 and id_2 correspondingly, where h is a
frequency (or weight) of the relation, into the ontology;

5) Inheritance (id1, id2) – adds information that the class
with unique identifier id2 is inherited from the class with
unique identifier id1 into the ontology;

6) Inheritance_with_denial (id1, id2, {[idRelation1],
[idRelation2], [idRelation3], …}) – adds information
that the class with unique identifier id2 is inherited from
the class with unique identifier id1 excepting relations
with unique identifiers from the array {[idRelation1],
[idRelation2], [idRelation3], …} into the ontology;

Fig. 1. Workflow architecture in a question answering system

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 652

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

7) PartialInheritance (id1, id2, {[idRelation1],
[idRelation2], [idRelation3], …}) – adds information
that the class with unique identifier id2 is inherited from
the class with unique identifier id1, but only the relations
with unique identifiers from the array {[idRelation1],
[idRelation2], [idRelation3], …} are inherited, into the
ontology;

8) ReturnClassName (idClass) – returns the name of the
class with unique identifier idClass;

9) ReturnObjectName (idObject) – returns the name of
the object with unique identifier idObject;

10) What_Is (text, position) – returns value 1 if the sense
entity from the analyzed text text, having its position in
this text is explicitly defined by the data stored in position
variable, is an ontology class; 2 if this entity is an
ontology object; 3 if there has been detected no
information about this sense entity in the ontology;

11) ReturnAllRelations (idClassOrIdObject) — for a
class or an object with unique identifier
idClassOrIdObject, returns a set consisting of the
following values groups:
a) idRelation – unique identifier of the relation linking

a certain class or an object to the class with unique
identifier idClass;

b) idClassRel – unique identifier of a class or an object
to which the class with unique identifier idClass is
linked by the relation with unique identifier
idRelation;

c) relationName – relation name;
d) val – relation value;
e) h — relation frequency (or weight);

12) ReturnRelations (idClassOrObject, RelationName) –
is similar to the function ReturnAllRelations
(idClassOrIdObject) in which the names of relations are
restricted to RelationName only;

13) ReturnAllObjects (idClass) — returns a set of unique
identifiers of objects from the class with unique identifier
idClass;

14) ReturnParentClasses (idClassOrObject) — returns
unique identifiers of the classes that are parent to a class
or an object with unique identifier idClassOrObject;

15) ReturnRelationValue (idClassOrObject1,
idClassOrObject2, relationId) – returns the value of
the relation with unique identifier relationId, linking two
objects or ontology classes with unique identifiers
idClassOrObject1 and idClassOrObject2;

16) ReturnAllAncestorClasses (idClassOrObject) –
returns unique identifiers of all classes that are ancestors
to a class or an object with unique identifier
idClassOrObject;

17) ReturnAllSuccessorClasses (idClass) – returns unique
identifiers of all classes that are successors of any level
for a class with unique identifier idClass;

18) ReturnAllSuccessorObjects (idClass) – returns unique
identifiers of all objects of the classes that are successors
of any level for the class with unique identifier idClass
and for this class itself.

19) insertOrUpdateRelation(RelationName,
idClassOrObject1, idClassOrObject 2, h) – if the
ontology does already contain the relation named
RelationName, connecting the class or the ontology
object with unique identifier idClassOrObject1 to the

class or the ontology object with unique identifier
idClassOrObject2, then increase the weight of this
relation by h. If the ontology does not contain such
relation, then add it and assign the weight h.

For writing ontological-semantic rules we propose to use
the following notations:
1) Unit – undefined token, class, object or relation from the

ontology;
2) UnitCO – class or object from the ontology;
3) Class – class from the ontology;
4) Object – object from the ontology:
5) Rel – relation linking two classes, two objects or a class

and an object from the ontology;
6) UDT – undefined token, that is a token (indivisible sense
entity) the information about which is not present in the
ontology yet. That means that this token is neither an ontology

class nor an object.
Hierarchical relationship between these notations is given

at Fig. 2.

III. ARCHITECTURE OF THE QUESTION ANSWERING SYSTEM

INTEGRATED WITH AN ONTOLOGY

The question answering system is supposed to operate in
two modes: ontology learning mode (when system input are
valid texts and the general ontology is being modified) and
user answering mode. By ―valid‖ here we understand the text

containing the data the verity of which is unquestioned. In the
scheme presented at Fig. 3 and depicting an architecture of the
question answering system, everything concerning only the
user answering mode is marked with a dash line.

Ontology learning mode
When a question answering system operates in ontology

learning mode, it receives a valid text T as its input. The text
enters the module of initial text processing where it is
preliminarily processed: text formatting symbols that do not
carry any role during text analysis are removed,
orthographical and syntactic mistakes are corrected, extra
symbols of whitespaces and line breaks are removed and so
on. The tokenization stage follows, including breaking text
into paragraphs, sentences and words. For each marked word
its morphological properties are being defined with use of
corresponding morphological dictionaries. The next stage is
separating non-divisible sense entities which can be separate
words or groups of words that are united by some common
meaning. Some examples of named entities consisting of
several words are some named entities (New York, Santa
Claus, Mr. Smith etc.) or composite parts of speech (an idiom
―good and proper‖, a linking word ―such as‖, a numeral

adjective ―forty five‖ etc.). The final stage of the initial

processing is search for logical links in the text.

Fig. 2. Hierarchy of the notations used for describing ontological-semantic
rules.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 653

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

The text T that has been initially processed, together with
all data received on this stage, is denoted as F(T) on the
scheme and passed onto input of ontological-semantic
analyzer.

The work of ontological-semantic analyzer begins with
association of non-divisible sense entities separated in the
valid text T with classes and objects from the ontology. At this
stage, a task of lexical ambiguity resolution is being solved for
the purpose of defining which one of the set of existing classes
and/or objects with the same names does the considered sense
entity belong to.

After the valid text has been initially processed, the
ontology modification takes place. For this, the ontology
itself, the expert system (consisting of the Knowledge base
containing rules, the Working memory containing facts, the
Block of logical derivation containing the operational list of
the rules and the Component of knowledge acquisition) and
the object-oriented code are used. As a result of certain rules
stored in the expert system (ES), the ontology may experience
addition or removal of certain classes or objects, as well as
addition, removal or modification of the relations between

them.
User answering mode
During operation of the question answering system, the

system receives as its input the question Q asked by a user and
the text T selected by the user for searching the answer in.
The user provides the question sentence Q in natural
language. The text T to search the answer in and the question
Q are passed onto input of the module of initial text
processing where they get through the same stages of
automated text processing that were described for the
ontology learning mode. The working results of this module
(F(Q) for the question sentence and F(T) for the text in which
an answer is searched), on the analogy with the ontology
learning mode, are passed onto input of the module of the
ontological-semantic analyzer.

In the ontological-semantic analyzer, the association of
non-divisible sense entities that have been separated in Q and
T with classes and objects of the ontology takes place.

Next, with use of the Ontology and the Expert system, the
separate ontology Ont(T) is created by means of the
object-oriented code after the text that has been provided by
the user and experienced the initial processing. All classes
and objects of the ontology Ont(T) refer to the classes and
objects from the main ontology but do not modify the latter.
No modification of the common ontology is performed when
the system operates in user answering mode.

The next stage of work of the ontological-semantic
analyzer in the considered mode is formation of a search
query to the ontology basing on existing information about Q
and T. The search query is formed using functions describing
work with the ontology (see p.1.) and the Unit-terminology,
the hierarchical dependency of which is presented in Fig. 2.

When developing the query to the ontology, one should
consider not only the user-defined question Q itself, but also
the text T in which an answer is to be found. It is related to the
fact that the user-provided text can help in solving the tasks of
lexical ambiguity that can arise when forming the query. For
example, if the question contains the word ―bank‖ which may

mean either ―coast‖ or ―credit institution‖, then the

user-provided text T may help to solve the lexical ambiguity
that arose in the question. It is more likely that the word
―bank‖ is used in the meaning ―coast‖ if the text T contains the

words which are such classes or objects in the ontology that
are close to the class or the object ―bank‖ in the meaning
―coast‖ of a river, a sea etc.

In case the query to Ont(T) has been successfully executed
and returned data from the ontology, these data are provided
to the user as an answer. In case an answer has not been found
in Ont(T) or it has not satisfied the user, the search is
continued in the general ontology. Using the explanatory
component of the expert system, the user can learn how the
system has obtained the solution.

IV. ONTOLOGY LEARNING MODE

This section will describe the working algorithm of the
ontological-semantic analyzer operating as a part of the
question answering system which is functioning in the
ontology learning mode.

A semantic dependency is a certain universal relation that
a native speaker beholds in the language. This relation is

Fig. 3. Architecture of the question answering system.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 654

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

binary, that is, it holds from one semantic node to another [21].
It is convenient to regard indivisible sense entities of the
language as semantic nodes. They can be represented, for
example, by the named entitites. We say that two different

semantic nodes  and  from the same sentence are

related by a semantic dependency named R (denote
(,)R  ) if there is a certain universal binary relation

between  and  .

For concrete semantic nodes  and  and the

dependency R , the direction is selected in such a way that

the formula (,)R   would be equivalent to the statement

that ―  is R for  ―.
Queue with priority

 In a classical definition a queue with priority is defined as an
abstract data type allowing to store pairs (key, value) and
supporting the following operations [22]:
1) init — initialize a new empty queue;
2) insertToPriorityQueue — insert a new element into the

queue;
3) remove — remove and return the highest-priority

element of the queue.
In this work we will use the ―queue with priority‖ for

removing facts from the working memory of the expert
system. The fact of the expert system consists of the
following: UnitCO, a link to the previous fact (left) and to the
next fact (right), morphological characteristics and
coordinates in text (the number of the sequence and the
position of UnitCO in the sentence). In this context we use
two values to define the element priority in the queue:
1) priority of the group that the considered semantic relation

belongs to;
2) position of UnitCO in the analyzed sentence.

In this work we will consider the queue Q with priority, the
elements of which will consist of the following triples:
1) a – the name of UnitCO;
2) sp – the priority of a semantic group which the semantic

relation belongs to, one of the arguments being UnitCO;
3) pos – the position of UnitCO in the analyzed sentence.

We will say that the element (a, sp, pos) of the described
queue Q has the highest priority if sp value of this element is
minimal and pos value is maximal. Consequently, the
elements of the queue with priority are sorted in ascending
order of priorities of semantic dependencies groups. If the
queue contains several elements with the same priority values
of semantic groups, then such elements are sorted in
descending order by the last UnitCO related to the considered
element in the analyzed sentence.

Below we describe the rules to add the element (a', sp',
pos') into the queue Q with priority for the case when Q
contains the element (a, sp, pos) such that (a = a') and (pos =
pos'):
1) (sp'> sp), hence Q = Q\(a, sp, pos)U(a', sp', pos');
2) (sp'<= sp), hence Q is not modified.
Basical ontological-semantic patterns

Let us call an ontological-semantic pattern the rule by
which the expert system finds semantic dependencies between
classes and objects in the analyzed text (where indivisible
sense entities are marked and each of them is refered to a
certain class or an object of the ontology). A basical

ontological-semantic pattern which is a rule of the expert
system consists of the left and the right sides. The left side of
the pattern describes the conditions upon which the actions
described in the right side are executed. So, for example, the
left side of the pattern always describes a biconnected facts
list, and can also describe boolean functions having the facts
from that biconnected list as their arguments.

The right side of the pattern contains the list of actions each
of which can: modify any fact of the ES (by modifying the
relation in a corresponding UnitCO); queue for removal a fact
of the ES having a certain priority of removal; other actions.

Below we provide an example of a basical
ontological-semantic pattern that describes how the ontology
is modified if in the analyzed text there has been discovered a
fact X containing UnitCO being a class of the ontology
(defined as a Property in the ontology and containing among
the morphological characteristics the information that it is the
singlular number), and what follows next is some fact Y
containing UnitCO being a class or an object of the ontology,
and it is known that in the text it is preceded by the fact X, and
among the morphological characteristics of Y there is
information that it is the singlular number of a noun.
when

{

$X : Fact (unitCO.type == “Class”,

unitCO.hsOntAttrs contains "Property",

hsMorphAttrs contains "singular")

$Y : Fact (unitCO.type == "Object" ||

unitCO.type == "Class" , prev == $X,

hsMorphAttrs contains "singular", hsMorphAttrs

contains "noun")

}

then

{

Logic.insertOrUpdateRelation("Property",

$Y.unitCO.id, $X.unitCO.id, 1);

Logic.insertOrUpdateRelation("Property for",

$X.unitCO.id, $Y.unitCO.id, 1);

Logic.insertToPriorityQueue ($X, sp);

}
After all basical ontological-semantic patterns (with true

left sides) have been found on the current facts of the expert
system, one fact with the highest priority is removed from the
queue for removal and from the working memory of the
expert system. When removing a fact from the working
memory of the expert system, one should update the left and
the right facts for the fact being removed (as shown in Fig. 4).

The Table 1 shows an example of using the
ontological-semantic analyzer and how the priority queue (Q)
is gradually changing. The analyzed text (AT) is "Yesterday,
the yachting sport school honors left for a camp". Algorithm
of ontology learning using the basical ontological-semantic
patterns
Used notations:
1) P – the analyzed sentence;
2) pi – i-th indivisible sense entity of the analyzed sentence

P;
3) S – the set of all rules of the ES including the basical

ontological-semantic patterns;
4) Si – i-th rule of S;
5) Q – the queue with priorities.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 655

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

Aiming to check the usage possibilities of Apache Spark
platform, we have implemented the programs for the latter.
The first program computed in a distributed manner the
inverted text index using the Lucene library on a 10-nodes
cluster. After that, a second program executed in a distributed
manner a large number of search queries using Lucene
language to the distributed inverted index. The working
results of the programs allowed to establish the following: a) a
significant profit in working time of distributed operations of
indexing and search in comparison with performing the same
operations on a single computer; b) reasonability to

implement the proposed algorithm on the Apache Spark
platform.

Algorithm:
Step 1. Put in the input of the ontological-semantic analyzer
the preprocessed sentence P (see the architecture of the
question answering system) in natural language and
consisting of indivisible sense entities pi: P = (p1, p2, p3, …,

pN).
Step 2. Match the indivisible sense entities p1, p2, p3, …, pN

with the ontology data: associate with each pi some UnitCOi
— a class or an object from the ontology. Form the facts of
the ES PFacts, presented using a double-linked list where the
first and the last facts (Fact0 and FactN+1) are empty, and the
rest are formed according to the fact definition: that is, Facti
contains UnitCOi, the morphological information about
UnitCOi, the links to the left and the right facts, the fact
position in the text.
Step 3. Add to the knowledge base of the expert system (S)
all ontological-semantic patterns and other rules.
Step 4. Initialize the variable i which will store the sequential
number of the considered rule as zero: i := 0.
Step 5. Using fast patterns matching algorithm, form the
array G consisting of pairs (rule, fact list) in which we will put
the rules from S and the corresponding facts from PFacts with
true left part.
Step 6. Sort the elements of the array G in the order of
fulfilling the rules by the block of logical derivation.
Step 7. Check whether the value of the loop variable i has
exceeded the limits of array G (i < |G|), which would mean
that all elements of G has been looked through. If i < |G|, go to
Step 8. Else go to Step 10.
Step 8. According to the right side of the rule Gi the following
actions may be performed: update the facts of the ES; add
facts to the queue for removal together with their priorities;
etc.
Step 9. Increase the value of the loop variable i by 1: i :=
i + 1. Go to Step 7.
Step 10. Check whether the queue for removal Q is empty: if
the queue is empty (isEmpty(Q) is true), then finish the
algorithm execution.
Step 11. Set the variable b to be equal to the fact being
removed from Q and having the highest priority, that is:
element b := remove(Q).
Step 12. Update the links of the fact a (a=b.left) and the fact c
(c=b.right) in the following way: a.right=c; c.left=a. In the
working memory of the expert system: update the facts a and
c; remove the fact b. Go to Step 4.

 The proposed working algorithm of the
ontological-semantic analyzer can be implemented in
distributed manner. For instance, the analyzed texts can be
stored in a distributed file system (such as HDFS). The
following tasks can be distributed among the nodes of a
computational cluster: the ontology construction and learning
for each analyzed text; indexing of ontological-semantic
graphs; search for the answers to the questions; etc. A
promising platform for distributed implementation of the
proposed algorithm on a cluster may be the system Apache
Spark. This platform has already been integrated in the
Hadoop ecosystem (HDFS, Hadoop YARN) and is a part of
such popular integration projects as Cloudera, HortonWorks,
MapR etc.

TABLE I
AN EXAMPLE OF USING THE ONTOLOGICAL-SEMANTIC ANALYZER

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 656

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

Aiming to check the usage possibilities of Apache Spark
platform, we have implemented the programs for the latter.
The first program computed in a distributed manner the
inverted text index using the Lucene library on a 10-nodes
cluster. After that, a second program executed in a distributed
manner a large number of search queries using Lucene
language to the distributed inverted index. The working

results of the programs allowed to establish the following: a) a
significant profit in working time of distributed operations of
indexing and search in comparison with performing the same
operations on a single computer; b) reasonability to
implement the proposed algorithm on the Apache Spark
platform.

V. CONCLUSION

The work is devoted to development of architecture and
prototype of a question answering system that uses data from
the ontology. The structure and the functions to work with the
ontology are described in this paper. A working algorithm of
an ontological-semantic analyzer using basical
ontological-semantic patterns with removal is
programmatically realized in Java language. The program has
been registered in the Rospatent [23]. The Drools system, that
uses a fast pattern matching algorithm with PHREAK
patterns, has been used as the expert system. Using the expert
system Drools has ensured high working speed of the
ontological-semantic analyzer. For instance, the described
algorithm of the ontological-semantic analysis using the
Drolls expert system and 2160 basical ontological-semantic
patterns has determined 8213 semantic relations in 6390 ms in
the text of E. T. A. Hoffmann's fairy tale ―The Golden Pot‖.

Without the Drolls expert system, the implementation of the
algorithm of the ontological-semantic analyzer works in
average 6-8 times slower. The experiments were performed
on an Intel Core i3 M CPU 2.27 GHz under OS Ubuntu 12.04.

REFERENCES

[1] Moldovan, D. I., Harabagiu, S. M., Pasca, M., Mihalcea, R., Goodrum,
R., Girju, R., and Rus, V.: LASSO – A Tool for Surfing the Answer
Net. TREC-8, pp. 175-183, 1999.

[2] Scott, S., Gaizauskas, R.: QA-LaSIE: A Natural Language Question
Answering System. Proceedings of the 14th Biennial Conference of
the Canadian Society on Computational Studies of Intelligence, 2001.

[3] Monz, C., de Rijke, M.: Tequesta: The University of Amsterdam’s

Textual Question Answering System. TREC, 2001.
[4] Mozgovoy, M. V.: Simple question-answering system, based on

Russian semantic analyzer. Vestnik of the SPb University, series 10,
issue 1, 116-122, 2006.

[5] Rubashkin, V. Sh., Kapustin, V. A.: Using term definitions in
encyclopedic dictionaries for automated ontologies learning. XI
All-Russian united conference «The Internet and the modern society»,
SPb, 2008, http://old.conf.infosoc.ru/2008/pdf_CL/Rubashkin&Kapu
stin.pdf

[6] Mitrofanova, O. A., Konstantinova, N. S.: Ontologies as systems of
data storage. All-Russian competitive selection of the review
analytical papers on the priority direction “Information

telecommunication systems”, 54 p., 2008.
[7] Aramaki, E., Imai, T., Kashiwagi, M., Kajino, M., Miyo, K. and Ohe,

K.: Toward medical ontology using Natural Language Processing.
http://www.m.u-tokyo.ac.jp/medinfo/ont/paper/2005-aramaki-1.pdf

[8] Hovy, E., Knight, K., Junk, M.: Large Resources. Ontologies
(SENSUS) and Lexicons.
www.isi.edu/natural-language/projects/ONTOLOGIES.html

[9] Rubashkin, V. Sh.: Ontological semantics. Knowledge. Ontologies.
Ontologically-oriented methods of informational text analysis.
Moscow, Fizmatlit, 2013.

[10] Rabchevsky, E. A.: Automatic ontology construction based on
lexical-syntactic patterns for information retrieval. Proceedings of the
11th All-Russian scientific conference RCDL'2009, Petrozavodsk,
69-77, 2009.

[11] Rubashkin, V. Sh., Bocharov, V. V., Pivovarova, L. M., Chuprin, B.
Yu.: The approach to ontology learning from machine-readable
dictionaries. Dialog — 2010.
http://www.dialog-21.ru/digests/dialog2010/materials/html/63.htm

[12] Orobinska, E. A.: Automatic Method Of Domain Ontology
Construction based on Characteristics of Corpora POS-Analysis.
Proceedings of the XV All-Russian united conference «The Internet
and the modern society» (IMS-2012), SPb, 209-212, 2012.

[13] Buitelaar, P., Cimiano, P.: Ontology learning and population bridging
the gap between text and knowledge. Series: Frontiers in artificial
intelligence and applications, V. 167, Amsterdam; Washington, DC :
IOS Press, 2008.

[14] Gruber, T. R. A Translation Approach to Portable Ontology
specification. Knowledge Acquition, 5(2), 1993.

[15] DBpedia, http://wiki.dbpedia.org
[16] Freebase, http://www.freebase.com
[17] Wikidata, https://www.wikidata.org
[18] Wikipedia, the free encyclopedia, https://ru.wikipedia.org
[19] Wiktionary, the free dictionary, https://ru.wiktionary.org
[20] Krizhanovsky, A. A., Smirnov, A. V.: An approach to the automated

construction of a general-purpose lexical ontology basing on the
wictionary data [in Russian]. Izvestiya RAS, Conntrol theory and
systems, No. 2, 53-63, 2013.

[21] Sokirko, A. V.: Semantical dictionaries in automated text processing:
as exemplified by the DIALING system. PhD. tech. sci. diss. [in
Russian]. Moscow, 2001.

[22] Downey, A. B. Think Python. O'Reilly Media, 300 p., 2012.
[23] Mochalovа, A. V. Certificate on the state registration of the computer

program “A program of text semantic analysis using basical semantic
patterns with removal”, No. 2015613430, Russia. 28.01.2015

Vladimir Kuznetsov is a scientist, mathematician,
Professor, Doctor of technical sciences, Honorary
worker of higher professional education of the Russian
Federation, Honored worker of science of the Republic
of Karelia. He is the author of over 200 scientific papers
in the field of mathematical modeling and solution of
applied optimization problems, as well as academic

literature on the programming. He is one of the coaches of the teams who
were winners of the world championship on programming (in 2007, 2008,
2010). His research interests include optimization techniques, Olympiad
programming.

Fig. 4. Logical diagram of the algorithm of automated ontology learning.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 657

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

Vladimir Mochalov was born in Lyubertsy, Russia in
1985. He received the Ph.D. degree in electronic
engineering from Moscow Technical University of
Communications and Informatics. His research interests
include networks structure synthesis, artificial
intelligence, bio-inspired algorithms, query answering
systems and Big Data.

Anastasia Mochalova was born in Petrozavodsk,
Russia, in 1987. She received the bachelor's degree at
Petrozavodsk State University, the master's degree in St.
Petersburg State University of Aerospace
Instrumentation. She is an external PhD student in
technical sciences at Petrozavodsk State University. Her
research interests include automated processing of
natural language texts, development of

question-answering systems, automation of ontologies creation,
development of the semantic analyzer.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 4, July 2015 658

Copyright ⓒ 2015 GiRI (Global IT Research Institute)

	PointTmp

