
Method and Prototype of Utility for Partial
Recovering Source Code for Low-Level and

Medium-Level Vulnerability Search

Mikhail Buinevich*, Konstantin Izrailov*, Andrei Vladyko*
*The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, Russian Federation, Saint-Petersburg, 22-1

Prospekt Bolshevikov
bmv1958@yandex.ru, konstantin.izrailov@mail.ru, vladyko@bk.ru

Abstract— The article describes a automated method for

searching of low-level and medium-level vulnerabilities in
machine code, which is based on its partial recovering.
Vulnerability search is positioned in the field of
telecommunication devices. All various and typical
vulnerabilities in source code and algorithms for its search is
given. The article contains examples of usage method and its
utility. There is forecast to develop methods and utilities in the
near future.

Keywords— machine code, reverse-engineering, static

analyzer, telecommunication devices, vulnerability

I. INTRODUCTION

Accidental and intentional errors that lead to
vulnerabilities in software (hereinafter referred to as the
SW) are one of the top challenges of the modern worlds that
have taken the informatization path of development. Though
the errors that have been made by hackers are seen less, they
make the SW more unsafe, as long as such errors are the
ultimate goal of the attackers. With view to the fact that
critical information is usually shared via telecommunication
devices, with the functional of such devices implemented
with the help of the SW, the task of vulnerability search is
one of the principal tasks of information security. This task
is sophisticated and depends on an underdeveloped search
methodology, which is defined via a set of methods used for
such search. In this context, the efficiency of such methods
is a function of purely practical application aspects, i.e.
speed and complexity, and is now estimated as extremely
unsatisfactory.

———————————————————————

Manuscript received on June 19, 2015. This work is a follow-up of the
invited journal to the accepted conference paper of the 17th International
Conference on Advanced Communication Technology.

M. V. Buinevich is with The Bonch-Bruevich Saint-Petersburg State
University of Telecommunications, Russian Federation, Saint -Petersburg,
22-1 Prospekt Bolshevikov (e-mail: bmv1958@yandex.ru).

K. E. Izrailov is with The Bonch-Bruevich Saint-Petersburg State
University of Telecommunications, Russian Federation, Saint -Petersburg,
22-1 Prospekt Bolshevikov (corresponding author to provide phone:
+7(921)555-2389; fax: none; e-mail: konstantin.izrailov@mail.ru).

A. G. Vladyko is with The Bonch-Bruevich Saint-Petersburg State
University of Telecommunications, Russian Federation, Saint -Petersburg,
22-1 Prospekt Bolshevikov (e-mail: vladyko@bk.ru).

Therefore, development of new and highly efficient
methods for vulnerability search for telecommunication
device SW is of theoretical (in terms of methodology) and,
obviously, practical interest.

II. ANALYZING

In order to analyze available methods for SW
vulnerability search, we would like to break such methods
into the following groups by their application target.

Any methods that are applied exclusively to the SW
source code fall into the first group and they are most
abundant. Such methods are quite developed and are used
very efficiently. A large base of typical source code
vulnerabilities and methods for identification of such
vulnerabilities has been collected. CppCheck, Lint and
Cland may serve as implementation examples for the С/С++

code.
If the source code is not available, you will have to search

for vulnerabilities using the final representation, i.e.
machine code. Such methods form the second group and
they usually rely on code disassembling and manual analysis
by security experts (hereinafter referred to as the Expert).
Individual implementations of such methods you may found
in such products as Binary Static Analysis (SAST) by
Veracode and Software Static Analysis Toolset by
MALPAS. However, such methods have a different ultimate
goal and may not be used as a comprehensive solution for
the search of machine code vulnerabilities. However, a
certain quantity of theoretical works, that are close to the
solution of this problem still exists and is based on the use
of the character programming [1].

It should be mentioned that the source code here means
any code that must be compiled in a platform-dependent
machine code for running such code – so called unmanaged
code (e.g., C++, Pascal). A managed code (e.g. Java, C#) is
an alternative and is compiled into an interim bytecode,
which is then run on a virtual machine and is
unambiguously converted into the source code. Availability
and search for any vulnerabilities in the managed code are,
obviously, a different task, which is less popular and more
simple.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 700

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

bmv1958@yandex.ru
konstantin.izrailov@mail.ru

As long as a telecommunication device is usually
supplied with the SW in the form of the machine code
already installed on such device and one does not have any
access to the source code, it seems so that the search for any
vulnerabilities in the telecommunication device is done at
the moment exclusively using manual techniques.

We should also mention a vast majority of
telecommunication device models, modifications and SW
versions leading to a tremendous number of various
machine code images. And such machine code images may
be of a rather big size – up to hundreds of megabytes. Also,
it is obvious that each and every image must be analyzed
"from scratch".

Thus and so, there is a critical task of search for
vulnerabilities in the telecommunication device machine
code in the above area of interest, and its solving efficiency
is obviously not satisfactory. In this context, efficiency
means a total number of vulnerabilities found in the machine
code for a reasonable time, but not in the defined volume
(i.e. vulnerability density). So, the manual technique would
allow for identification of a larger number of vulnerabilities
in small machine code volumes vs. any automated
techniques. However, application of such technique for any
line of telecommunication device machine code will be so
time-consuming in practice, even for a medium-sized
volume, that the results will just not keep up with the release
of new upgrades. Highly qualified Experts must also always
be available for application of the manual technique, which
is not always possible.

Design of a method and means of automated search for
vulnerabilities in the machine code may be an obvious
solution of the task, in which case involvement of human
factor, especially highly qualified, will be minimized.
Operational capability and vulnerability identification for
large code volumes exactly for a small time at the expense
of quality and density of the vulnerabilities found is the
basic requirement to such method. However, the last factor
is not critical, as long as you may always add any manual
search methods, with the findings of the automated search
simply facilitating such work.

Comparison of manual and automatic methods for
vulnerability search, using various criteria, is presented in
Table I.

TABLE I
COMPARISON OF METHODS FOR VULNERABILITY SEARCH BY CRITERIA

Criteria Manual Automatic

Search time Long Short

Number of detected
vulnerabilities

Many Few

Detected vulnerability
patterns

All Template-based

Amount of code

processed

Small Large

Required qualification Expert Engineer

Ability to bypass anti-

detection mechanisms

Yes Sometimes

Source code

information

Preferable Not needed

Formalization of results Possible Always

Advantages of the automatic method are highlighted in
Table I, which brings us to the following conclusion: fully
automated search methods can be used efficiently to detect
telecommunication devices machine code vulnerabilities.

For better review of the object domain, let us divide all
vulnerabilities into 4 types, according to their layout at the
software build-up levels. Such division is presented in
Figure 1.

System run-time
environment

Calculations and data
in functions

Function operation
algorithm

System architecture

Vulnerability of
surrounding environment

High-level vulnerabilities

Middle-level vulnerabilities

Low-level vulnerabilities

S
of

tw
ar

e
bu

il
d-

up
 le

ve
l

Fig. 1. Types of vulnerabilities according to SW build-up level

First of all, these include low-level vulnerabilities, such as

calculation errors, data structure, data access etc. For
example, dividing by zero, or incorrect structure field
processing due to non-standard alignment of the members,
may fall into this type. Second of all, these include medium-
level vulnerabilities, such as incorrect implementation of
algorithms and functions, transfer of input parameters,
function returns etc. For example, occurrence of infinite
cycles and recursions, appearance of an unreachable code
(despite the fact that such code does not usually lead to any
adverse effects), and IF-ELSE transition test errors may fall
into this type. Third of all, these include high-level
vulnerabilities, such as program system architecture errors
[2]: violation of general principles of system functioning
and security, incorrect implementation of various
mechanisms and protocols etc. For example, errors in
implementation of algorithm of common secret key
importation, according to Diffie-Hellman protocol may fall
into this type. And, forth of all, these include vulnerabilities
of the surrounding environment, such as errors in run-time
modules of the active program system etc. For example,
DLL injection (running code within the address space of
another process by forcing it to load a dynamic-link library)
and operating errors of objective code loader into the system
address area (ld.so for Unix-systems) may fall into this type.

The following available developments may be used as
initial data for the task solution. First of all, as mentioned
before, the development of methods for vulnerability search
has allowed us to gather certain information about the
vulnerabilities in the source code and search specifics.
Second of all, the required vulnerability search may be
implemented via conversion of the machine code of the
device into the source code and application of the available
search algorithms to such code. Therewith, any previous
work of the authors [3] also touched this task directly, as
long as it aimed at machine code algorithm recovery in the
telecommunication device, which may be considered a

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 701

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

partial source code recovery. Having combined such
developments and with view to our goal, we hereby offer a
solution of the task, which includes two major steps. We
must systemize typical source code vulnerabilities and adapt
such vulnerabilities to the machine code, i.e. select the
vulnerabilities that may be found and identified in the
machine code first. We must then develop a method for
machine code vulnerability search (hereinafter referred to as
the Method) based on the original recovery method for the
algorithms and adapted vulnerabilities in the machine code.
The Method offered is designed for searching two types of
vulnerabilities, such as: low-level vulnerabilities and
partially medium-level vulnerabilities, which is the most
important peculiarity of this Method. In this case, the basic
method of the authors [3] is suitable for full-sized search of
medium-level and high-level vulnerabilities only. Machine
code of the telecommunication device is usually a detached
binary image and is run completely, using special hardware.
Therefore, search of vulnerabilities of the surrounding
environment is not covered by this task. Let us further
consider vulnerabilities that are connected to the proposed
technique.

A. Adapted vulnerabilities in the machine code.
As long the vulnerability in the SW is basically an

integral part of the SW contents (i.e. functional), any code
presentation shape conversions may not affect vulnerability
in any way, i.e. make it disappear or change significantly.
Therefore, any source code vulnerability will be reflected in
the machine code to some degree. However, due to any
operations that reduce the program “structurization”
(compilation, assembling), the final presentation of the
vulnerability may become "washed out", which may make it
practically impossible to identify such vulnerability, even in
cases of reversed engineering (disassembling,
decompilation). Let us mark out the vulnerabilities that can
be found in the source code, and are still integral in the
machine code, which will be indicative of the potential
ability of them being identified in the code. For this purpose
there is a sufficient quantities of theoretical studies and
practical implementations, for example, in the works [4] and
[5].

Vulnerability 1 – Dividing by 0

This vulnerability can be found in operations of dividing
by 0, which should not occur in any correct programs at all.
The reasons for such vulnerability may include missed
check by zero value of denominators of expressions, and
operational logic mistakes. Exclusion of division by zero
will be called up as a result, which may lead to incorrect
program exit. This vulnerability search algorithm is based
on defining any possible variable value ranges, which are
included in the expression with dividing and signalization of
the possibility of the dominator equal to 0. Example of a
code with this vulnerability is given at the following listing.

if(y == 0)

 z = x / y;

else

 z = x * y;

Vulnerability 2 – Using a non-initialized variable

This vulnerability occurs during the first use of a variable
that was not assigned any initial value. The reasons for such
vulnerability may include any programmer's error, which
usually includes missing initial value of the variable or
assumption of such value equalling to 0 by default. As a
result, the variable may take random values (so called
'garbage'), which will lead to incorrect calculations. The
vulnerability search algorithm is based on determining
locations of the initial variable assignment/use and
signalization, if such use occurred before the assignment. .
An example of code, which involves this vulnerability, is
presented in the following listing.

int x, y;

y = x * 2;

Vulnerability 3 – Buffer overflow

This vulnerability occurs due to no control over going out
of the object stored in the buffer, which usually constitutes
an array. Overwriting of the memory area, which is
physically located out of the buffer, may occur and it may
lead to writing off the contents of any other objects and
change of the program code, or simply exclusion into the
protected memory based on the record. The vulnerability
search algorithm is based on detecting the buffer memory
range, operation algorithms for the indexes of buffer objects,
and possible values of such pointers, and signalization in
case of index going out of the range [6]. Example of a code
with this vulnerability is given at the following listing.

int arr[10];

…

arr[10] = 0;

Vulnerability 4 – Handling incorrect memory pointers

This vulnerability can be found, while dereferencing of
pointer containing incorrect memory paths. The reasons for
such vulnerability may include errors in function operation
algorithm or incorrect pointer initialization. Reading and
writing using the pointer may be done on the area of the
executed code as a result. Dereferencing of the 0x0th pointer
is a special case. The vulnerability search algorithm is based
on determining pointer values and dereference locations.
Example of a code with this vulnerability is given at the
following listing.

int *ptr_1 = 0x0;

int *ptr_2 = &funct;

*ptr1 = 0;

*ptr2 = 0;

Vulnerability 5 – Memory leaks

This vulnerability can be found in case of unlimited
memory use. The reasons for such vulnerability may include
missing required operations to free up the memory, in
particular in case of cyclic execution. Memory shortage
exclusion or write-off of the contents of used objects (due to
incorrect stack handling) may occur as a result. Although
such situation does not make the full-featured vulnerability,
it may interrupt program operation in case of prolonged use,
which typical just for the telecommunication device.
Unfortunately, there is not any common vulnerability search
algorithm available (as long as memory selection and
freeing-up are phenomena that are defined exclusively
within the program and program libraries). Nevertheless,
manual algorithm set-up, such as obvious function and

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 702

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

memory operation template determination will allow for
identifying vulnerabilities of such type with the help of
management flow graph analysis, including call-ups of such
functions in the graph. An example of code, which involves
this vulnerability, is presented in the following listing
(‘malloc()’ is a memory allocation function).

funct(int x){

 int *ptr;

 while(x){

 ptr = malloc(10);

 if(x % 2 == 0)

 dummy(ptr);

 --x;

 }

}

Vulnerability 6 – Infinite loops and recursions

This vulnerability can be found in case of looping of
function management flows or calling up the function as a
result of incorrect program logics. Thus and so, the program
may go, under certain circumstances, into a cycle that does
not have any executable conditions for completion, or call
up the same function indefinitely. This vulnerability can be
identified by building complete management flow graphs
and call-ups with further analysis of the conditions for
simultaneous execution of their paths. It should be
mentioned that the software of the telecommunication
device often has an architecture, which consis ts of the single
processing cycle for the incoming network packages, and
such case must be processed separately. An example of
code, which involves this vulnerability, is presented in the
following listing.

int funct(int x){

 return funct(x+1);

}

…

bool flag = false;

do{

 …

 flag = true;

}while(flag);

Vulnerability 7 – Unused code

This situation happens, if there are code areas in the
programs with their instructions never to be run, and it
corresponds to the destructed function algorithm structure.
The reasons for such vulnerability may include errors in
function algorithm operation, and a consequence of “rough”
introduction of an alien code in the program. Although such
situation does not make the full-featured vulnerability, it is
indicative of an abnormality in the machine code, which is a
potential vulnerability of the “bookmark” type. An example
of code, which involves this vulnerability, is presented in the
following listing.

int funct(int x){

 if(x)

 return 1;

 else

 return 2;

 x += 1;

 return x;

}

B. Method for vulnerability search in the machine
code.

As offered, the method for vulnerability search in the
machine code must contain consecutive steps for source
code recovery and vulnerability search using such code with
the help of the exis ting algorithms. Although complete
source code recovery (i.e. decompilation) is not practically
possible, it may be recovered partially, which is a minimum
requirement to search performance. Thus, for example, it is
not crucially necessary to recover names of variables and
points of return from the function in order to identify buffer
overload vulnerability.

As mentioned before, a number of sub-tasks (algorithm
recovery to be specific) were solved partially in the original
method. Therefore, some phases of this method may be used
in this Method. In particular, it is reasonable to use the IDA
Pro product [7], which has the following functional. First of
all, this product is a full-scale machine code disassemble for
a large variety of processors. And second of all, this product
performs a partial machine code recovery, as long as it
divides memory areas into functions and data blocks, uses
debugging information, if any in the machine code, and
recognizes library functions by their signatures. It should be
mentioned that crucial product specifics, such as
interactivity and debugging capacity, may not be used for
this Method in practice.

The rest of the Method relies on implementation of
adapted machine code vulnerability search algorithms using
the interim representation including output of any findings.

If we sum up the above, basic phases of the Method are:

Phase 1 – Disassembling machine code
The machine code is converted to the assembler for

disassembly and analysis. This phase may be fully
implemented based on the IDA Pro. This phase may be
implemented completely on the basis of IDA Pro, which
includes an external API and supports internal scripts. A
rather correct division of code and data sections, definition
of function body and global variables, which may be used at
further phases, are the operational specifics of this product.

Phase 2 – Recovering partially source code

The assembly code is disassembled, an internal program
representation is built, necessary conversions are made,
source code elements are assumed, and algorithms and other
necessary information is recovered – this phase and all
further phases must be carried out using a specialized
software application (hereinafter referred to as the Utility). It
is obvious that SW analysis for a certain processor is not
possible, unless its machine code is supported in the IDA
Pro and FrontEnd of Utility (i.e. input parser) is available
for its assembler. The basics code recovery is made using
the IDA Pro immediately after the decompilation and it is
reflected in the assembler, which is generated in Phase 1.
This phase may be implemented in most part using
algorithms based on the original machine code algorithm
recovery method, as complemented by the algorithms
gathering the information that is required for searching the
adapted vulnerabilities. First of all, aliases must be
supported, i.e. information about common code areas that
are indicated by several different pointers or objects. Second

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 703

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

of all, calculation of any possible value ranges, which are
used in the object program, including pointers is required.
Third of all, variable life time graphs must be plotted,
including points of their first and last initialization / use.

Phase 3 – Vulnerability search

Search for each of adapted vulnerabilities is made using
the internal code presentation obtained. It is obvious that
such presentation must not be a sophisticated text (usually
used for SW development), but a set of specialized graphs,
tables and structures determining program run. Such
presentation will allow for more effective searching.
Generalized search algorithms for each vulnerability have
been provided earlier.

Phase 4 – Gathering findings

Machine code analysis findings are generated, i.e.
information about the code (scope, number of functions),
identified vulnerabilities or suspected locations of
vulnerabilities etc. This processed SW code for the
telecommunication device is especially characterized by its
possible large size, various variations, and contents. Thus
and so, this Method must be applicable multiple times with
summarization of the findings obtained. Therefore, the
presentation format of the vulnerabilities found must be
suitable for program processing (i.e. its syntax must be
strict) and for investigation by the Expert (i.e. human
friendly). YAML [8] is a suitable presentation option for
this task, which is characterized by such peculiarities as
formalization and readability.

Diagram of Method phases and data used for such phases
can be found in Fig. 2.

Phase 1.
Disassembling
machine code

(IDA Pro)

Phase 2. Recovering partially source
code Phase 3.

Vulnerability
search

Phase 4.
Gathering
findings

Analysis
findings
(YAML)

Machine code

Internal
representation

Assembler

Building internal
representation

Processing
internal

representation

Partially
recovered source

code

Information
about

vulnerabilities

Telecommunication
device

Method for Restore Code’s

Algorithms of
Telecommunication Devices

for Search Vulnerability

Database and methods
for vulnerability

search in the source
code

Fig. 2. Method phases and used data

Note. The process of obtaining the telecommunication
device firmware and reducing such firmware to the machine
code is out of scope of this Method, as long as it is a
separate and purely technical task that may be solved quite
effectively.

III. EVALUATING THE METHOD

An imaginary experiment of application of individual
phases of the offered Method on typical abstract machine
codes, containing each of vulnerabilities in the original
source code was done to study the specifics of such Method.
We will get an unambiguous assembly code representation
after the Phase 1. This representation will also include
vulnerabilities of all types, as long as IDA Pro converts
binary processor instructions into text lines including

operations unambiguously. The machine code does not
usually include any debugging information, and, therefore, a
partial code recovery in the Phase 2 will be done without
any source code meta information, such as function names
and arguments. This does not appear to be rather significant;
however, it may still affect the accuracy of our findings. To
the contrary, machine code obfuscation could worsen
recovery efficiency significantly, as long as it usually
destructs the algorithm structure, albeit it is used quite
rarely. Machine code optimization (source code compilation
involving optimization options to be specific) is not applied
to all SW types; in particular, it is not used often the
telecommunication device. Various steganography messages
embedded in the executable file, at this phase, will be lost;
nevertheless, it is likely note rather than a disadvantage [9].
Efficiency of the Phase 3 depends on the outcomes of the
Phase 2 completely, i.e. on the quality of the partially
recovered source code. Therefore, assigning of some degree
of reliability to the found vulnerabilities may be reasonable.
This may prove useful for a semi-automatic application of
the Method, i.e. including further analysis done by the
Expert. Phase 4 involves flow-by-flow output of
vulnerability search findings in a special format and does
not depend on the previous phases or analyzed machine
code greatly. YAML does not have any application
limitations. Therefore, any vulnerability details (if any) for
each typical machine code will be gathered in one place and
converted into the uniform base suitable for the manual
analysis.

According to our imaginary experiment, application of
the Method and its individual phases for vulnerability search
in the telecommunication device machine code can be
justified strictly and logically. The machine code for the
processor supported by IDA Pro and Utility will be Method
input, and a list of vulnerabilities in YAML will be Method
output. Unsuitability for any obfuscated machine codes and
average efficiency for any optimized code are among
Method limitations.

IV. A HYPOTHETICAL EXAMPLE

Let us consider a hypothetical example of operation of
this technique, and pay special attention of Phase 2, which is
most complicated. As it was mentioned before, phase
realization must be in the form of a separate automating
utility and may be taken partially from the utility of the
basic technique [3]. At the moment, development of a utility
prototype for the technique is in progress; however, we may
already predict a scheme and operational details of such
utility. Various program representations at all phases of the
technique and utility (from a source code to a formalized list
of vulnerabilities) are presented below.

A. Input data (source code)

Let us assume we have a program that comprises ‘funct()’

function, which involves a vulnerability in the form of a
possible division by zero (a code of such function is
presented in the following listing, using the high-level C
language).

01: int funct(int x, int y){

02: int z = 0;

03: if (y == 0) {

04: z = x / y;

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 704

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

05: } else {

06: z = x * y;

07: }

08: return z;

09: }

The vulnerability is located in line '04:' and it occurs, if

the IF-ELSE condition is fulfilled in line ’03:’, which leads
to dividing variable ‘y’ equalling to 0.

B. Input data (machine code)
Machine code of this example for the PowerPC

processing has the following listing.

94 21 FF D0 93 E1 00 2C 7C 3F 0B 78 90 7F 00 18

90 9F 00 1C 38 00 00 00 90 1F 00 08 80 1F 00 1C

2F 80 00 00 40 9E 00 18 81 3F 00 18 80 1F 00 1C

7C 09 03 D6 90 1F 00 08 48 00 00 14 81 3F 00 18

80 1F 00 1C 7C 09 01 D6 90 1F 00 08 80 1F 00 08

7C 03 03 78 39 7F 00 30 83 EB FF FC 7D 61 5B 78

It is obvious that we will not be able to discover the fact

of vulnerability existence by an expert manual technique in
this representation. Application of automated search
algorithm may be successful; nevertheless, realization of
such algorithms will be highly non-trivial in this
representation.

C. Phase 1 – Disassembling machine code

Application of the IDA Pro will result in an assembly
representation of the program, like the one in the following
listing.

0x00: stwu r1, -0x30(r1)

0x04: stw r31, 0x2C(r1)

0x08: mr r31, r1

0x0C: stw r3, 0x18(r31)

0x10: stw r4, 0x1C(r31)

0x14: li r0, 0

0x18: stw r0, 8(r31)

0x1C: lwz r0, 0x1C(r31)

0x20: cmpwi cr7, r0, 0

0x24: bne cr7, loc_3C

0x28: lwz r9, 0x18(r31)

0x2C: lwz r0, 0x1C(r31)

0x30: divw r0, r9, r0

0x34: stw r0, 8(r31)

0x38: b loc_4C

0x3C: loc_3C:

0x3C: lwz r9, 0x18(r31)

0x40: lwz r0, 0x1C(r31)

0x44: mullw r0, r9, r0

0x48: stw r0, 8(r31)

0x4C: loc_4C:

0x4C: lwz r0, 8(r31)

0x50: mr r3, r0

0x54: addi r11, r31, 0x30

0x58: lwz r31, -4(r11)

0x5C: mr r1, r11
0x60: blr

Despite the fact that such representation may already be

analyzed by experts, required efforts for such process are
critically high.

D. Phase 2 – Recovering partially source code

This phase and all further phases must be implemented,
using a utility that is being developed at the moment. Most
of its algorithms and representations will be similar to those
of the basic technique, which uses the operational utility
prototype [10].

First of all, the assembly representation will be converted
into an abstract syntax tree that describes the source
program in a formalized and structured way. Then, it will be
converted into a similar internal representation. Complete
independency from the run-time processor and source
assembler is the specifics of such representation, as long as
all operations and variables are fully abstract. The
appearance of such trees is quite similar. A text form of such
trees is presented in the following listing, where left indent
is indicative of the depth of an element.

IrList()

 IrFunct('funct') // Function 'funct()'

 IrArgs

 IrReg('r1') // Function arg N_1

 IrReg('r2') // Function arg N_2

 IrLocalVars

 IrReg('r3'), value='0' // Local var N_1

 IrList() // Function body

 IrBranch // if (r2 == 0) goto label_1

 IrCond('beq'), kind='=='

 IrReg('r2')

 IrInteger('0')

 IrLabel('label_1')

 IrOperation('mr'), kind='=' // r3=r1*r2

 IrReg('r3')

 IrOperation('mul'), kind='*'

 IrReg('r1')

 IrReg('r2')

 IrGoto('b') // goto label_2

 IrLabel('label_2')

 IrLabel('label_1') // label_1:

 IrOperation('mr'), kind='=' // r3=r1/r2

 IrReg('r3')

 IrOperation('div'), kind='/'

 IrReg('r1')

 IrReg('r2')

 IrLabel('label_2'), name='label_2' //

label_2:

 IrReturn('blr') // return r3

 IrReg('r3')

Second of all, a graph of basic blocks, which reflects the

sequence of operations and conditional transfers will be
constructed, based on the internal representation tree. Third
of all, the internal representation tree will be analyzed for
any possible values of the variables. We will obtain the
following graph, as a result.

#1:

 funct(r1, r2)

 local: r3 = 0

r2 == 0

#3:

 label_1:

 r3 = r1 / r2

#2:

 r3 = r1 * r2

 goto label_2

truefalse

#4:

 label_2:

 return r3

 r1: any

 r2: any

 r3: 0

 r1: any

 r2: 0

 r3: unknown

 r1: any

 r2: any

 r3: any | unknown

 r1: any

 r2: not 0

 r3: any

Fig. 3. Intermediate Representation Graph with variables value ranges

According to the graph in Figure 3, Block#1 is a function

header, including arguments ‘r1’, ‘r2’ and local variable

‘r3’, which is initialized with ‘0’ value. Conditional check

‘r2 == 0’ and transitions to blocks #2 and #3, depending on

the results of such conditional check, will form the first

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 705

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

block of the function. Block #2 performs a multiplication of
variables ‘r1’ and ‘r2’, and the result is entered into variable

‘r3’. Thus and so, according to the conditional transition,

variable 'r2' may take any values, except for '0', and variable
‘r3’ may take any values. Block #3 performs a division of
variables ‘r1’ and ‘r2’, and the result is entered into variable

‘r3’. In this case, according to the conditional transition,

variable ‘r2’ equals to 0. Therefore, ‘Divide by zero’

exclusion occurs after the division in the program, and value
of variable 'r3' will not be defined. Block #4 performs an
exit from the function and return of the value in variable 'r3'.

E. Phase 3 – Vulnerability search

Vulnerability search algorithms are applied at this phase.
According to the internal representation graph and possible
variable values, one of the search algorithms may detect the
fact of dividing by 0 in block #3, which leads to the
exclusion. This means an incorrect program behaviour in
general. This way the error in the form 'Vulnerability –
Dividing by 0' is discovered. Thus and so, the algorithm will
find the vulnerability in the code and will add details about
such vulnerability to the resulting list.

F. Phase 4 – Gathering findings

The final phase of the technique will gather all
information about the vulnerabilities and will generate such
information in a formalized, but operator-friendly way, i.e.
in the YAML format (see the following listing).

Sources:

 - Name: "test.asm"

 - Vulnerabilities:

 -

 - Type: "Dividing by 0"

 - Machine address: 0x00000030

 - Machine instruction: "divw r0, r9, r0"

 - BasicBlock: 3

 - IRSubTree: "

 IrOperation('div'), kind='/'

 IrReg('r1')

 IrReg('r2')"

This example justifies to some extent the accuracy of

implementation of the proposed technique, as well as the
automating utility that is being developed.

V. CONCLUSION

 This methods aims at solving the most important task of
machine code vulnerability search, which is critical
specifically for the telecommunication device, as long as the
SW of such device affects the security the information
transferred. Application of the available developments in the
area of vulnerability search by the source code as combined
with the previous research of the authors [11] are the
specifics of implementation of this Method. Completion of
implementation of a software tool to operate the Method
automatically and approbate such Method using existing
telecommunication device software will be the only next
logical step and will allow to prove Method feasibility, in
which case the theoretical value of the Method will be the
development of the methodology of the highly popular
machine code security area in terms of vulnerability search.
Combination of the offered and previous original methods
forms a methodological basis for search of vulnerabilities of

all possible types in the machine code. Practical value of the
Method is priceless, as long as identification of a vast
number of machine code vulnerabilities for a tremendous
number of existing telecommunication device firmware is
foreseen upon automated application of such Method. Some
of such vulnerabilities are still in action, which reduces
significantly the overall security of information transferred
via telecommunication networks.

ACKNOWLEDGMENT

In the end, we would like to express our gratitude to the
Bonch-Bruevich Saint-Petersburg State University of
Telecommunications for the possibility and support in
development of the area of scientific studies, which was
described in this and other articles.

The authors are thankful to their parents and Teachers for
their craving for knowledge cultivated since their childhood
and scientific achievements, which have been demonstrated
multiple times using their own examples. First of all, to
Evgeny Izrailov for development of source beams ultracold
polarized H-atoms for metrology and physical
investigations. Second of all, to Vladimir Rosenberg for
developing the special mathematical management support
methodology.

REFERENCES

[1] Cova. M, Felmetsger V., Banks G., and Vigna G., "Static Detection of
Vulnerabilities in x86 Executables," in Proc. 22nd Annu. Computer
Security Applications Conference, Miami Beach, 2006, pp. 269-278

[2] Buinevich M.V. and Izrailov К.Е., “Architectural software

vulnerabilities,” theses, 6th Congressional Research Undergraduate
and Graduate Students “Engecon-2013”, 2013

[3] Buinevich M.V. and Izrailov К.Е., “Method and Utility for
Recovering Code Algorithms of Telecommunication Devices fo r
Vulnerability Search,” in Proc. IEEE 16th Int. Conf. on Advanced
Communications Technology, PyeongChang, 2014, pp. 172-176

[4] Xin L. and Wandong C., “A program vulnerabilities detection frame
by static code analysis and model checking,” in Proc. IEEE 3rd Int.
Conf. on Communication Software and Networks, Xi'an, 2011, pp.
130-134

[5] Ivannikov V. P., Belevantsev A. A., Borodin A. E., Ignatiev V. N.,
Zhurikhin D. M., and A. I. Avetisyan, “Static analyzer Svace for
finding of defects in program source code,” in Proc. Institute for
System Programming of Russian Academy of Sciences, vol. 26, no. 1,
pp. 231-250, 2014

[6] Rawat S. and Mounier L., “Finding Buffer Overflow Inducing Loops
in Binary Executables,” in Proc. IEEE 6th Int. Conf. on Software
Security and Reliability, Gaithersburg, 2012, pp. 177-186

[7] The IDA Pro website [Online]. Available: https://www.hex-
rays.com/products/ida/

[8] The official YAML website [Online]. Available: http://yaml.org
[9] Shterenberg S.I. and Krasov A.V., “Variants of embedding

information in the executable file with format .Intel HEX,” Spb.:
Information Technology and Telecommunications, no. 4, pp. 52-64,
2013

[10] Izrailov К.Е., “The internal representation of a prototype utility for

the algorithmization of the code,” in Proc. 2th Int. Scientific and
Practical Conf. on Fundamental and Applied Research in the Modern
World, Saint Petersburg, 2013, pp. 79–90

[11] The research area and method of the authors [Online]. Available:
http://www.demono.ru

Mikhail Buinevich was born in 1958 in the USSR.
He received education of the military engineer of
electronic engineering.
He served in the naval fleet and government agencies
for information security. He held classes at various
universities. His research interests include methods
of information security. He has more than 100
scientific works. His primary publications are as

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 706

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

follows:
1. M.V. Buinevich and others. Safety provision of high-security objects of
the naval fleet in relation to damage effects in crisis and emergency
situations in peacetime./ Under the editorship of the admiral V.S.
Vysotskii.- Saint Petersburg: Publishing house ELMOR, 2008.- 300 p.
2. M.V. Buinevich and others. Provision of organizational and technical
support of stability of function and safety of general communications
network./ Under the general editorship of S.M. Dotsenko.- Saint
Petersburg: Publishing house SPbSUT, 2013.- 142 p.
Dr. Prof. Buinevich, at the present time, is the professor of the Protected
Communications System Chair of Saint Petersburg State University of
Telecommunications (SPbSUT).

Konstantin Izrailov was born in 1979 in the city of
Saint Petersburg (Russia). In 1996 he graduated from
Saint Petersburg State Polytechnic University,
Physical and Mechanical Department.
At the moment he is a postgraduate student of the
Protected Communications System Chair of Saint

Petersburg State University of Telecommunications (SPbSUT). He has
about 20 published articles; he is an author of 3 scientific and research
works and has a patent on the software tool. His scientific interests include
information security, search of vulnerabilities in machine code, reverse
engineering and telecommunication devices.
Mr. Izrailov has the title of the best postgraduate student of SPbSUT in
2012 and is the presidential scholar in 2013.

Andrei Vladyko (IEEE member (M'14)) acquired his
Degree of the Candidate of Sciences at Komsomolsk-
on-Amur State Technical University, Russia in 2001.
At present he is a head of the Scientific Work
Organization and Researchers Training

Administration of Bonch-Bruevich Saint-Petersburg State University of
Telecommunications, Saint -Petersburg, Russia. His major interests include
control systems, soft computing, communication networks, network
security management.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 4, Issue 6, November 2015 707

 Copyright ⓒ 2015 GiRI (Global IT Research Institute)

