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Abstract—Constant amplitude multi-code (CAMC) CDMA has
the same structure as a recursively generated single parity check
product code. A top-level codeword of CAMC is recursively
constructed from lower-level codewords. In the iterative decoding
of CAMC, log likelihood ratio (LLR), a priori information and
extrinsic information (EI) of a codeword is a weighted sum of
LLR values of associated codewords from which it is despread or
into which it is spread. In this paper, we show that differentiated
assignment of EI in the computation of LLR can improve the
performance of bit error correction. The weights of CAMC
codewords are fixed at two fixed values. We let EI converge fast
to saturation value when a codeword has the correct weight.
The proposed method achieved performance improvement of
0.1 ∼ 0.3 dB in Eb/N0 over the regular iterated decoding of
CAMC. When compared with despreading ON/OFF control, a
gain of about 0.1 dB is achieved, which is meaningful near the
Shannon capacity limit.

Keywords—Constant Amplitude Multi Code, Code Weight, Ex-
trinsic Information, Iterated Decoding, Single Parity Check Product
Code

I. INTRODUCTION

PRODUCT codes were first introduced by Elias in 1954 [1].
The concept of product codes is that powerful long block

codes can be constructed by concatenating two or more shorter
constituent codes. Single parity check product code (SPCPC)
is a product code in a simple structure, where a parity bit is
appended to a sequence of information bits [2].

A codeword of 3-D (dimensional) SPCPC is shown in Fig. 1,
which is composed of the data block, the parity checks along
all three directions and parity on parity check bits. Multi-
dimensional SPCPC are constructed in a similar way. In the
encoder, a parity bit is appended to each of (n − 1)-bit-
long sequences along all the dimensions of a Q-D hypercube
consisting of (n− 1)

Q information bits. The encoded output of
nQ bits is a Q-D product code with a code rate of (1− 1/n)

Q.

Manuscript received date is November 9, 2015. This research was supported
by Basic Science Research Program through the National Research Foundation
of Korea funded by the Ministry of Education, Science and Technology (grant
number NRF-2013R1A1A2012745). This paper is a follow-up of the invited
journal to the accepted conference paper of the 16th International Conference
on Advanced Communication Technology.

Wonsun Bong is with the department of Electrical and Computer Engineer-
ing, University of Seoul, Seoul 02504, Korea (email: gaam@uos.ac.kr). Yong
Cheol Kim is with the department of Electrical and Computer Engineering,
University of Seoul, Seoul 02504, Korea (corresponding author; +82-2-6490-
2331; e-mail: yckim@uos.ac.kr).

p p p p

p     p    p     p

p     p    p     p

p     p    p     p

v00 v01 v02    

v10 v11 v12

v20 v21 v22

v00 v01 v02    

v10 v11 v12

v20 v21 v22

v00 v01 v02    

v10 v11 v12

v20 v21 v22

Fig. 1: 3-D SPCPC: Parities are in all three directions.

Kim presented a recursive SPCPC, where a codeword is
recursively constructed by pseudo-Hadamard spreading of
three lower-dimensional codewords concatenated with their
parity bits [3]. Recursive SPCPC was originally developed as
a constant amplitude multi-code (CAMC) CDMA.

Multi-code CDMA is a technique of providing versatile data
rates by assigning multiple channels to a single user [4] [5] [6].
Multi-code signal has a large amplitude variation since it is
a sum of random binary signals from several channels. Large
variation signal requires a highly linear power amplifier, which
consumes a large power. CAMC was developed to perfectly
remove the amplitude fluctuation of multi-code signal.

The encoder of CAMC accommodates M(= 3Q) informa-
tion bits, bM = [b0, b1, ..., bM−1], and generates a N(= 4Q)-
bit-long string, vN = [v0, v1, ..., vN−1], of constant amplitude
by pseudo-Hadamard spreading in a recursive manner. The
code rate of CAMC is R = (3/4)Q, which is equivalent to
that of SPCPC with n = 4. Throughout this paper, recursive
SPCPC with n = 4 is interchangeably referred to as CAMC.

Previous works show that CAMC outperforms conven-
tional SPCPC. CAMC has some advantageous features as
follows [7] [8]. First, CAMC benefits from the despreading
process which is performed after the iterative decoding. Sec-
ond, CAMC does not have any low weight codewords which
usually degrade the performance at low SNR. The weights of
codewords are evenly distributed at two fixed values. Third,
the property of fixed weight can guide the computation of
extrinsic information (EI) which is the key element in the
iterative decoding.
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Analysis on the first and the second features were reported
in [8] [9]. In this paper, we focus on the third feature. We
show that, with differentiated assignment of EI based on the
integrity of code weights, we get performance improvement of
0.1∼0.3 dB when compared to previous works.

This paper is organized as follows: In Section II, encoding
and decoding of CAMC are briefly presented. In Section III,
iterated decoding of conventional SPCPC is described. In
Section IV, iterative decoding and despreading of CAMC are
presented. In Section V, ON/OFF control of despreading after
iterative decoding is presented. In Section VI, the proposed
differentiated assignment of EI, based on the fixed weight
property of CAMC, is presented. In Section VII, computer
simulation results on performance improvement are presented.
Finally, a conclusion is drawn in Section VIII.

II. CONSTANT AMPLITUDE MULTI CODE

In this Section, the generation of CAMC signal vectors is
briefly described [3]. Throughout this paper, the polarity of a
bit is bipolar, either (+1) or (-1). An encoded CAMC vector
at J-level has a length of L(= 4J) bits. Then, for every three
J-level vectors, a bit-by-bit J-level parity vector is generated.
Spreading the concatenation of three J-level vectors and their
parity vector generates a (J +1)-level vector with a length of
4L bits. Inversely, despreading a J-level vector results in three
(J − 1)-level signal vectors and their bit-by-bit parity vector,
each with a length of L/4 bits.

In the following notations, a superscript represents the
size of the vector, except when the subscript is of the form
i/4. Integer subscripts of {0, 1, 2, 3}, if any, stand for the
distinct number of vectors. Either vL

i or vL is a L-bit-long
CAMC vector, There is no meaningful difference between
them. Subscripts of {0/4, 1/4, 2/4, 3/4} represent the index
of the four quadrants of a regular CAMC vector. For example,
vL
i/4, i ∈ {0, 1, 2, 3}, is not a regular CAMC vector by itself,

but just a quadrant of a regular L-bit-long CAMC vector, vL,
as shown in (1). The vertical bar represents concatenation.

vL = [vL
0/4 | vL

1/4 | vL
2/4 | vL

3/4] (1)

Fig. 2 and Fig. 3 show the generation of parity bits in a
CAMC vector [3]. An input of M information bits is divided
into M/3 strings of three bits each. Each 3-bit-long string is
encoded at the basic-level encoder Q4. For input [b0, b1, b2],
a parity bit p3 = −b0 · b1 · b2 is appended to them. Then, four
bits of unit amplitude, v4

0 = [v0, v1, v2, v3] are generated from
spreading by 4× 4 Hadamard matrix.

v4
0 =

1

2
· [b0 b1 b2 p3] ·H4 (2)

H4 =

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (3)

In a similar way, [b3, b4, b5] and [b6, b7, b8] are encoded into
v4
1 and v4

2 of constant amplitude. A 4-bit-long parity p4 is
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Fig. 2: Generation of 4-bit CAMC vector
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Fig. 3: Generation of N-bit CAMC vector

generated from bit-by-bit product (denoted as .∗) of v4
0, v4

1
and v4

2.

p4 = −v4
0. ∗ v4

1. ∗ v4
2 (4)

For the spreading of concatenation of three CAMC vectors
and one parity vector, we use a pseudo-Hadamard matrix, H̃N.
This is in the form of Hadamard matrix with ”1” element in
(3) replaced by an identity matrix IN/4 of size N/4 × N/4.
As a special case, H̃4 is identical to H4.

H̃N =


IN/4 IN/4 IN/4 IN/4

IN/4 −IN/4 IN/4 −IN/4

IN/4 IN/4 −IN/4 −IN/4

IN/4 −IN/4 −IN/4 IN/4

 (5)

Both H̃N and HN are orthogonal, subject to a scaling factor.

H̃N · (H̃N)t = H̃N · H̃N = 4 · IN (6)

HN · (HN)t = HN ·HN = N · IN (7)

The 16-bit-long concatenation of v4
0, v4

1, v4
2 and p4 is

spread into v16 of unit amplitude.

v16 =
1

2
· [v4

0 | v4
1 | v4

2 | p4] · H̃16 (8)

Continuing this way, the output of three QN/4 encoders
(3N/4 bits, in all) and their bit-by-bit parity vector (N/4 bits)
are generated.

pN/4 = −v
N/4
0 . ∗ vN/4

1 . ∗ vN/4
2 (9)
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Finally, thee N -bit-long concatenation of vN/4
0 , vN/4

1 , vN/4
2

and pN/4 is spread by H̃N, into vN = [v0, v1, ..., vN−1] of
unit amplitude.

vN =
1

2
· [vN/4

0 | vN/4
1 | vN/4

2 | pN/4] · H̃N (10)

While a top-level codeword vN is encoded from recursive
spreading by pseudo-Hadamard H̃N, decoding of vN is ob-
tained from one-time despreading by a regular HN.

vN ·HN (11)

= 2[v
N/4
0 HN/4 | vN/4

1 HN/4 | vN/4
2 HN/4 | vN/4

3 HN/4]

= 2(log4 N−1)[v4
0H

4 | v4
1H

4 | v4
2H

4 | v4
3H

4 | . . .]
= 2log4 N [d0, d1, d2, d3, d4, . . .]

The values of correlation vector, D, of noise-free vN are
di = ±1. But, D obtained from a noisy received signal at the
receiver takes on non-binary values. In this case, we hard-limit
D into binary values. The correlation vector [d0, d1, d2, ...] is
in the form of a hypercube consisting of information bits and
parity bits, just like a conventional SPCPC as shown in Fig. 1.
The information bits are extracted from the corresponding
positions. Bits {d3, d7, d11, d12, d13, d14, d15, d19, ...} are in
the positions which correspond to the parity positions in the
hypercube. Removing such bits, we get the information-only
bits [b0, b1, b2, b3, b4, b5, b6, b7, ...].

III. ITERATIVE DECODING OF A PRODUCT CODE

The decoding process of a product code is similar to solving
a crossword puzzle. In the product array, one symbol is
associated with two values through diversity effect: One is the
very value of the received symbol itself and the other is the
extrinsic value which can be inferred from the other symbols.
When bit errors through a channel , these two values may
be different. This discrepancy can be relaxed in the iterative
decoding process where the range of the possible values of
a target symbol is adjusted through exchange of EI among
neighboring symbols.

Being a product code, SPCPC has powerful error correct-
ing capability, SPCPC has the same basic features of turbo
codes: interleaving, iteration and soft-output decoding [10].
Hagenauer developed a soft input, soft output-based decoding
algorithm for a multi-dimensional product code [11].

Rankin [2] extended the works of [11] and proposed an
iterative decoding algorithm for SPCPC. It is an iterative
algorithm which refines the log likelihood ratio (LLR) for
each bit by iteratively exchanging information in a relaxational
scheme.

In SPCPC, a parity bit is appended along all the dimensions
of a Q-D interleaved hypercube. The LLR, Lq(Xk), for the k-
th bit in the q-th dimension is iteratively refined by exchanging
the extrinsic information between dimensions.

LLR consists of three terms: the channel reliability which
is proportional to the signal strength, the a priori infor-
mation (API, Aq(Xk)) and the extrinsic information (EI,

Eq(Xk)). X = [X0, X1, ..., XN−1] is the input vector and
Y = [Y0, Y1, ..., YN−1] is the received signal vector through a
binary-input AWGN channel.

Lq(Xk)=log
Pr(Xk=+1 |Y)

Pr(Xk=−1 |Y)
=

2

σ2
Yk+Eq(Xk)+Aq(Xk) (12)

Eq(Xk)=2 tanh−1

[
N−1∏

j=0,j ̸=k

tanh

(
Aq(Xj)+

2
σ2Yj

2

)]
(13)

Aq(Xk) =

Q∑
i=1,i ̸=q

Ei(Xk) (14)

IV. DECODING OF CAMC
CAMC is generated by direct sequence spreading of lower

dimensional codewords concatenated with their bit-by-bit par-
ity vector. The internal structure of CAMC has both aspects
of a product code and a spread spectrum signal.

The decoding process of CAMC consists of two stages: the
iterative decoding for SPCPC and the despreading for spread
spectrum signal. First, the noisy received bits, Y, are iteratively
decoded into X, which consists of information bits and parity
bits, as encoded in the recursive encoder. X is despread into
D, which consists only of information bits. Fig. 4 illustrates
the flow of data, the recursive spreading, transmission through
a noisy channel, iterated decoding and despreading.

Since CAMC belongs to SPCPC, a similar decoding algo-
rithm could be used for CAMC. The decoding algorithm for
conventional SPCPC described in Section III, however, cannot
be directly applied to CAMC. Unlike SPCPC, there are no raw
parity bits in a CAMC vector since parity bits are mixed with
information bits through the spreading process.

Kim developed a decoding algorithm which separates parity
bits and then iteratively refines the LLR of the bits [7]. Parity
bits required for the iterative decoding are recursively extracted
by decomposing higher level CAMC vectors into lower level
vectors. One J-level vector, vL, is despread by H̃L into four
(J − 1)-level vectors, (vL/4

0 ,v
L/4
1 ,v

L/4
2 ,pL/4).

1

2
· vL · H̃L (15)

=
1

4
· [vL/4

0 |vL/4
1 |vL/4

2 |pL/4] · H̃L · H̃L

= [v
L/4
0 |vL/4

1 |vL/4
2 |pL/4]

The fourth vector, pL/4, is the bit-by-bit parity vector of the
three preceding CAMC vectors. Each of the three vectors,
{vL/4

0 ,v
L/4
1 ,v

L/4
2 }, can be despread into four (J − 2)-level

CAMC vectors, [vL/16
0 |vL/16

1 |vL/16
2 |pL/16].

The parity relation among four J-level vectors holds only
in the context of the J-th dimension. Likewise, EI and API
associated with J-level CAMC vectors are valid only in the
J-th dimension. For other dimensions, we need to spread
or despread CAMC vectors as needed. Hence, when EI is
exchanged between dimensions, it needs to be spread or
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Fig. 5: EI is despread/spread between dimensions.

despread to fit into the structure of three CAMC vectors plus
one parity vector in the corresponding dimensions.

Fig. 5 illustrates the block diagram for the decoding of
CAMC for N = 64. The blocks S(.) and D(.) stand for
the spreading process and the despreading process, respec-
tively. Expressions for LLR (Lq(X

q
k)), EI (Eq(X

q
k)) and API

(Aq(X
q
k)) for CAMC are shown in (16) through (18).

Xq
k is the k-th bit of the vector reconfigured into the q-th di-

mension. [Xq
0 , X

q
1 , . . . , X

q
L−1] and [Y q

0 , Y
q
1 , . . . , Y

q
L−1], (L =

4q), stand for an input vector and the received vector recon-
figured into the q-th dimension.

Lq(X
q
k) =

2

σ2
Y q
k + Eq(X

q
k) +Aq(X

q
k) (16)

Eq(X
q
k)=2 tanh−1

[
N−1∏

j=0,j ̸=k

tanh

(
Aq(X

q
j )+

2
σ2Y

q
j

2

)]
(17)

Aq(X
q
k) =

q−1∑
i=1

S(Ei(X
q
k)) +

Q∑
i=q+1

D(Ei(X
q
k)) (18)

The final estimate of XQ
k , is obtained from hard-limiting

of the top-level LLR. In the case of conventional SPCPC, the
decoding process would end here. Unlike SPCPC, the decoding
process of CAMC passes through one more stage, as shown
in Fig. 4. In CAMC, the decoded output is obtained from
despreading of iteratively decoded signal. The LLR values of
the iteratively decoded bits are multiplied by HN and then the
information bits are extracted from the despread hypercube.

Though the structure of CAMC is similar to conventional
SPCPC, some distinct features of CAMC provides advantage
over SPCPC. The first advantage is the processing gain which
comes from the spread spectrum property of CAMC. While,
in conventional SPCPC, correction of bit errors is performed
only in the iterative decoding stage, additional correction of
bit errors is also achieved in the despreading of the iteratively
decoded bits in CAMC.

Another advantageous feature is the fixed weight of CAMC,
as will be described in Section VI. In error correcting codes,
the minimum distance of the code has been regarded as an
important factor for BER performances. Battail [13] suggested
that, in SPCPC, the weight distribution is more important than
the minimum distance.

Later, Biglieri [14] showed that iterated product codes have
Gaussian weight distribution even when they are relatively
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short codes. The random-like criterion for designing a prod-
uct code (or a turbo code) was supported by several other
works [15]. A product code with Gaussian weight usually has
good performance. Some of the codewords, however, at the
tail of the Gaussian distribution have small weights and can
affect the performance adversely.

While conventional SPCPC usually has Gaussian weight
distribution, the codeword weights of CAMC are very close
to the N/2. Hence, CAMC does not have any low weight
codewords which usually degrade the performance at low SNR.

As a comparison of (12),(13),(14) with(16),(17),(18) shows,
iterative decoding of CAMC is more expensive than the
iterative decoding of conventional product codes since the
computation is crossing over the whole dimensionality of
CAMC. This computational cost, however, helps to achieves a
performance improvement in error correction.

In Fig. 6 is shown the performance of CAMC compared with
that of corresponding SPCPC with n = 4 [7]. BPSK modulated
signal is transmitted through a binary-input AWGN channel.
The code rates are R2 = 9/16 (2-D), R3 = 27/64 (3-D) and
R4 = 81/256 (4-D), respectively. For BER of 10−5, CAMC
outperforms SPCPC by 1.3∼1.4 dB. The Shannon capacity
limit of the binary-input AWGN channel for code rate 81/256
is −0.55 dB. Hence, 4-D CAMC is only 0.95 dB away from
Shannon limit [12].

V. ON/OFF CONTROLLED DESPREADING OF CAMC

EI is a rough estimate of the reliability for the received
signal. We examined how the distribution of EI changes over
the iterative steps [8]. Fig. 7 shows the histogram of |EI| during
the process of the iterated decoding. At the initial stage, a large
part of the EI values are randomly distributed in the range
between −Emax and +Emax. Gradually, EI converges either
to +Emax for a positive bit or to −Emax for a negative bit.
±|Emax| is the saturation value of EI which is set to prevent
EI from diverging.

Fig. 7: Over iterations, |EI| converges to |Emax|

The convergence of EI is highly correlated with the process
of error correction. Fast convergence to ±|Emax| implies
that errors continue to be corrected. On the contrary, slow
convergence or no convergence imply that soft decision values
are close to zero and the polarity of EI randomly toggles.
Practically, no errors are being corrected when EI does not
converge.

We can use EI as a performance predictor of despreading
control, where the information bits are finally obtained from
despreading of iteratively decoded signal. In the despreading
process of the previous work [7], the LLR values of all the
iteratively decoded bits are multiplied by HN.

We modified this scheme such that such that only those bits
with EI converged to ±|Emax| keep their LLR values. The
other bits with |EI| < |Emax| are assigned LLR values of
zero [8]. The basic idea is that we perform despreading only
when it is likely to help to reduce the bit errors. This algorithm
has been tested and it brings a performance gain of about 0.2
dB for 4-D CAMC [16].

VI. DIFFERENTIATED ASSIGNMENT OF EI BY WEIGHT

An interesting feature of CAMC is that, unlike conventional
SPCPC, the weights of CAMC are evenly distributed at two
fixed values [9].

w(vN) = (N ±
√
N)/2 (19)

This is true of codewords at any level. When a N -bit-long
codeword is despread into sub-level codewords of L-bit-long,
they also have weights of (L±

√
L)/2. Weights for code length

of N = 4 ∼ 64 are shown in Table I.

TABLE I
Weights of CAMC for N = 4 ∼ 64

Code Length (N) 4 16 64
Dimension 1 2 3

Weights 1,3 6,10 28,36
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The property that CAMC has fixed weight can be used to
detect erroneous received vectors. When the weight of yL

is not equal to (L ±
√
L)/2, then at least one bit of yL is

erroneous. The uncertainty range of the bit error is the entire
length of the received vector. This range can be reduced to
1/4 by despreading yL into four quarter-sized vectors and
examining the weight of each of them. This is the motivation
of differentiated assignment of EI to codewords in accordance
with their weight integrity.

A. Reduction of Uncertainty Range by Despreading

The received signal yL is a sum of a CAMC vector and a
noise vector.

yL = vL + nL (20)
vi ∈ {+1,−1}

yi

{ no error −1 ≤ ni ≤ +1
error if vi = −1 AND ni ≥ +1
error if vi = +1 AND ni ≤ −1

Despreading yL by H̃N generates three CAMC vectors and
a parity vector. Using (6) and (10), we get:

1

2
· yL · H̃L (21)

=
1

2
· [vL

0/4 + nL
0/4 | vL

1/4 + nL
1/4 | . . .] · H̃L

= [y
L/4
0 | yL/4

1 | yL/4
2 | yL/4

3 ]

Then, it follows that each of the four despread vectors,
{yL/4

0 ,y
L/4
1 ,y

L/4
2 ,y

L/4
3 } is a sum of a regular CAMC vector

(or a parity vector) and noise vectors.

nL = [nL
0/4 | nL

1/4 | nL
2/4 | nL

3/4] (22)

y
L/4
0 = v

L/4
0 +

1

2

{
nL
0/4 + nL

1/4 + nL
2/4 + nL

3/4

}
(23)

y
L/4
1 = v

L/4
1 +

1

2

{
nL
0/4 − nL

1/4 + nL
2/4 − nL

3/4

}
y
L/4
2 = v

L/4
2 +

1

2

{
nL
0/4 + nL

1/4 − nL
2/4 − nL

3/4

}
y
L/4
3 = pL/4 +

1

2

{
nL
0/4 − nL

1/4 − nL
2/4 + nL

3/4

}
The added noise is one half of the sum of four quadrants of

the noise vector. If we assume that nL is an AWGN random
process, then the noise component in y

L/4
i is also an AWGN

random process and the noise variance in each bit of y
L/4
i is

the same as that of each bit of yL.
With equal noise power, the expected number of bit errors

is also the same in yL and in [y
L/4
0 | yL/4

1 | yL/4
2 | yL/4

3 ]. For
example, if yL has a single bit error, then it is highly likely
that only one of yL/4

i , i ∈ {0, 1, 2, 3}, is in error and the other
three are free from errors. In that case, we can easily find which
one of the four is in error by examining the weight of each of
y
L/4
i . As a result, the uncertainty range of the position of bit

error is reduced to 1/4 of the initial range.

B. Assignment of EI Based on Weight Integrity
The fixed value of code weight can guide the iterative

decoding. In a product code, the magnitude LLR of a bit is a
rough estimate of the reliability of the bit, that is, how well
the parity relation is consistent with other bits. The magnitude
of LLR for noisy bits is usually low.

In the iterative decoding of CAMC, the LLR of a codeword
is a weighted sum of LLR values of associated codewords
from which it is despread or into which it is spread. If any of
the codewords have a wrong weight, then they are definitely in
error. The iterative decoding can be improved by differentiated
handling of EI of codewords in accordance with their weight
integrity. We can give larger confidence to those codewords
with correct weights.
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We propose to let EI quickly converge to ±Emax if the
weight is correct. When the weight of the codeword has the
correct weight, EI for the bits in the codeword takes on the
saturation value. We set EI = +|Emax| or EI = −|Emax| if
the sum in (17) is positive or negative, respectively. For the
other bits in codewords with wrong weights, the computation
of EI follows the normal computation in (17).

Fig. 8 is the modified block for EI computation which
replaces the dotted block in Fig. 5. The modified version of
EI computation in (17) is shown in (24).

Eq(X
q
k)=


2 tanh−1

[∏N−1
j=0,j ̸=k

tanh
(
Aq(X

q
j )+

2
σ2 Y q

j

2

)]
bits in wrong codeword

±Emax

bits in correct codeword
(24)

VII. RESULTS OF DIFFERENTIATED EI
The performance of the differentiated EI assignment is

tested in a computer simulation. Comparison with two previous
results are presented. Both results are for BPSK modulations of
2-D, 3-D and 4-D of CAMC in binary-input AWGN channel.
First, a comparison with plain iterated decoding of CAMC [7]
is shown in Fig. 9. A gain of 0.1∼0.3 dB in Eb/N0 is achieved.

Second, a comparison with despreading On/Off control in
Section V is shown in Fig. 10. We get a gain of about 0.1
dB. Though the amount of gain appears small, this gain is
meaningful near the Shannon capacity limit, which is achieved
by CAMC. We can observe that most of the improvement are
obtained in channels of high SNR. For low SNR channel, little
improvement is obtained. A logical analysis is as follows:

There are two possibilities of a codeword having the correct
weight. One is that an erroneous codeword with even number
of bit errors with opposite polarity canceling each other
happens to have a correct weight. When the channel SNR is
low, this probability is not negligible. Favored assignment of
EI to these unqualified codewords does not help. It may even
slow down the convergence of EI.

The other possibility is that the codeword is indeed error-
free. This probability gets larger as SNR is higher. Preferred
assignment of EI at high SNR helps.

VIII. CONCLUSIONS

The codewords of CAMC have fixed weight of (N ±√
N)/2. This feature provides outperformance of CAMC over

conventional SPCPC. The uncertainty range of the position of
bit errors can be reduced to 1/4 by examining the weights of
despread quarter-sized vectors. We showed that differentiated
computation of EI depending on the integrity of a code weight
helps to improve the performance.

In the proposed scheme, a codeword with a correct weight
is given a larger confidence. EI values for their bits quickly
converge to ±Emax. Performance improvement of 0.1 ∼ 0.3
dB in Eb/N0 are obtained, when compared with plain iterated
decoding. A gain of about 0.1 dB is when compared with
despreading control of CAMC where the improvement is
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Fig. 9: Differentiated EI vs. plain decoding
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mostly found in high SNR channel. Near the Shannon capacity
limit, which is achieved by CAMC, even slight values of gains
are meaningful.
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