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Abstract—Given the huge concerns all over the world re-
garding carbon emissions from fossil fuels, energy crisis and
global warming, the renewable distributed energy resources
(DERs) are going to be integrated in electricity grids, which will
make the energy supply more reliable and decrease transmission
losses. Regrettably, one of the main practical defies in smart
grid planning, control and operation with DERs is the voltage
regulation at the distribution field level. This problem motivates
the deployment of sensors and actuators in electricity grids so
that the voltage regulation can be controlled at the desired level.
To do that the measurements from the renewable microgrid state
information is transmitted to an energy management center via
the internet of things (IoT) based communication network. In
other words, the proposed IoT communication infrastructure
provides an opportunity to address the voltage regulation chal-
lenge by offering the two-way communication links for microgrid
state information collection and estimation. Based on this smart
grid communication infrastructure, we propose a Kalman filter
based state estimation method for voltage regulation of the
microgrid. Finally, the effectiveness of the Kalman filter based
state estimation method is illustrated using the linear state space
model of a microgrid incorporating DERs.

Index Terms—Communication network, distributed energy
resource, internet of things, Kalman filter, microgrid, smart grid,
state estimation.

I. INTRODUCTION

All over the world, the global warming in one of the
major concerns. The key reason behind is the dramatically
swelling greenhouse gas emissions from burning fossil fuels
and vehicles [1]. In order to diminish this problem, the
renewable distributed energy resource (DER) is considered as
one of the future electricity generation units [1], [2]. Based
on the incentives from governments all over the world, the
penetration of DERs is growing promptly. Thus, electricity
consumer are participating in the eco-aware global community
and the excess amount of energy is sell to the smart grid.
Nevertheless, there are significant technical challenges arise
in the planning, operation and control of DERs, due to the
randomness and weather-dependence in the power generation
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patterns [3]. Therefore, an unacceptable voltage level may
frequently occur at the point common coupling (PCC). This
can lead to over-voltage or under-voltage problems for the
power network, with undesired voltages appearing at buses
of the distribution power network [4], [5]. Driven by this
factors, voltage regulators should be installed at planned
positions of the distributed feeders [2], [5]. Remarkably,
the bidirectional smart grid communication infrastructure
between the microgrid and the energy management center
can be leveraged to facilitate voltage regulation issues [4].
The key concepts of such intelligent energy management
systems are parallel to those of the internet of things (IoT)
which can exploit reasonable security and privacy of DERs
measurements, seamless interoperability and far-reaching
connectivity. To accomplish the goals, the fifth generation
(5G) communication network will be the future infrastructure
assisting the objectives of the IoT.

A. Related Research

Based on the information and communication network, the
smart grid can spread the intelligence from the central control
center to the distributed control center, thus enabling accurate
state estimation (SE) and wide-area real-time monitoring of
the renewable energy sources [6] [7]. First of all, power
system SE often practices the weighted least square method
that minimizes the sum square of the weighted residuals
errors; however, the gain matrix may be ill-conditioned [8].
Later, a comparison between the extended Kalman filter (EKF)
and nonparametric belief propagation (NBP) has been im-
plemented for distributed dynamic state estimation [9]. More
specially, a NBP method to compute the power system state
is developed, showing that the performance of the NBP is
better than that of EKF algorithm. In [10], [11], a factor
graph based message-passing algorithm for power system state
estimation is proposed. Generally, the factor graph entails of
variable and factor nodes. The factor nodes are the logical
representation of the sensor measurement, whereas the variable
nodes do not exists actually [10]. The information can be
processed and passed between the variable and factor nodes
with definite sum product rules [10], [11]. A BP algorithm
has interesting structural properties corresponding to nonlin-
ear feedback dynamical systems in the context of decoding
the received signal [12]. Generally, the BP based statistical
estimation techniques can provide a better performance if there

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016                                                  823

  Copyright ⓒ 2016 GiRI (Global IT Research Institute)



is no cycle in the graph [13]. This method can converge to the
actual system states in the tree like configuration. When cycles
are present in the graph, the technique may cause fluctuation
and the estimated state may diverge from the actual state
[13], [14].Furthermore, the ensemble KF approach uses the
probability distribution function of the system state and the
data likelihood [15]. Due to the use of stochastic measurement
rather than of the whole available data set, it is computationally
faster and performs satisfactorily for highly stochastic systems.

B. Key Contributions

This paper proposes an approach for microgrid state estima-
tion using the IoT networks. First of all, a renewable microgrid
incorporating multiple DERs is modelled as a continuous
linear state space model. This model is transformed to the
discrete linear state space system considering the uncertainty.
Then the smart sensors are positioned around the microgrid to
obtain the measurements. Afterward, the measurements from
the microgrid is transmitted to an energy management center
via the IoT based 5G communication network. This IoT com-
munication technology affords an opportunity to address the
estimation challenge by offering the two-way communication
links for microgrid state information collection and estimation.
Based on this smart grid communication infrastructure, we
propose a KF algorithm for state estimation. The effectiveness
of the KF method is verified by numerical simulations using
a microgrid incorporating DERs.

The remaining of this manuscript is organized as follows.
The fundamental description of the IoT and its vision is
described in Section II. Section III explores the IEEE 4-bus
distribution system with microgrid model and IoT communica-
tion network. In addition, the proposed KF based dynamic SE
scheme is described in Section IV, followed by the simulation
results and discussions in Section V. This is followed by the
conclusion in Section VI.

Notation: Bold face lower and upper case letters are used
to represent vectors and matrices, respectively; and I is the
identity matrix.

II. ARCHITECTURE AND VISION OF THE IOT

The IoT is a vision that encompasses and surmounts several
technologies at the confluence of power systems, informa-
tion technology, medicines, nanotechnology and biotechnology
[16], [17]. In fact, the application scenarios of the IoT in
diverse areas is illustrated in Fig. 1. The IoT has been
considered as the latest revolution in the digital technology
after the invention of computers and the internet [16], [18].
From the aspect of electricity network, it brings major benefits
to the smart grid infrastructure design. Technically, it repre-
sents a world-wide network of heterogeneous things such as
smart devices, smart objects, smart sensors, smart actuators,
radio frequency identification (RFID) tags and readers, global
positioning systems (GPS) and embedded computers [18].
Such things can be deployed and exploited in different physical
environments to support diversified cyber physical applica-
tions such as information collection, information processing,
identification, control and actuation [18], [19]. For clarify of
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Fig. 1. The application scenarios of the IoT [16].

understanding, Fig. 2 shows the information flow between the
cyber and physical space using the IoT infrastructure. It can
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Fig. 2. Information flow between the cyber and physical space using the
IoT with 5G networks [18].

be seen that the information produced in the physical space
is transmitted to the cyber space for interpretation, which in
turn affects the physical environment such as plug in hybrid
electric vehicle and smart grid communications [18].

Due to the economic, environmental as well as technical
reasons, the energy sector has a growing awareness of smart
grid technologies to enhance the efficiency and reliability of
electricity networks [1], [20]. From this perspective, renew-
able DERs such as solar cells, photovoltaic arrays and wind
turbines, have been integrated into the grid in the form of
smart distribution grids. From the aspect of smart devices and
smart metering, they play a vital role for remote monitoring
and power systems’ state estimation [21]. The reliable state
estimation is a key technique to fulfil the automation of power
grids. In order to monitor the DER state, the proposed IoT
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based communication network architecture for sensing the
DER states describes in the next section.

III. DERS MODEL AND IOT COMMUNICATION NETWORK

This section illustrates the multiple DERs model that is
connected to the IEEE 4-bus distribution system, observation
model, uniform quantization and IoT communication systems.

A. DERs Connected to the IEEE 4-bus distribution system

Fig. 3 shows IEEE 4-bus distribution test feeders that are
interfaced to the local load through converter [22]. We adopt
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Fig. 3. An illustration of the IEEE 4-bus distribution system.

the model of interconnected DERs from [23], [22], as shown
in Fig 4. It is assumed that four DERs are modelled as
 

DER 1

vp1

Lc1

v1

vp2

Lc2

v2

vp3

Lc3

v3

vp4

Lc4

v4

Network

DER 2 DER 4DER 3

PCC PCC PCC PCC

InputInputInputInput

Fig. 4. Four DERs are connected to the power network [22].

voltage sources whose input voltages are denoted by vp =
(vp1 vp2 vp3 vp4)T , where vpi is the i-th DER input voltage.
The four DERs are connected to the main power network at
the corresponding Point of Common Coupling (PCCs) whose
voltages are denoted by vs = (v1 v2 v3 v4)T , where vi is the
i-th PCC voltage. In order to maintain the proper operation of
DERs, these PCC voltages need to be kept at their reference
values. A coupling inductor exists between each DER and
the rest of the electricity network. Now applying the Laplace
transformation in this microgrid to obtain the nodal voltage
equations. The nodal voltage equation is given by:

Y(s)vs(s) =
1

s
L−1
c vp(s), (1)

where Lc = diag(Lc1 , Lc2 , Lc3 , Lc4) and Y(s) is the
admittance matrix of the power network. Based on the typical
assumptions of the IEEE 4-bus distribution feeder [22], the
admittance matrix is given in (2). Now we can transform the
Laplacian form into the linear state space model. The brief
conversion can be found in [22]. Normally, the dynamic of
the physical state space system is given by:

ẋ(t) = Ax(t) + Bu(t) + n(t), (3)

where x(t) = vs − vref is the PCC state voltage deviation,
vref is the PCC reference voltage, u(t) = vp − vpref is the
DER control input deviation, vpref is the reference control
effort, n(t) is the zero mean process noise whose covariance
matrix is Qn, the state matrix A and input matrix B are given
by:

A =


175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5

 , (4)

B =


0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

 . (5)

The continuous state space model (3) can be written into
the following discrete state space form:

x(k + 1) = Adx(k) + Bdu(k) + nd(k), (6)

where Ad = I + A∆t, ∆t is the discretization step value,
Bd = B∆t and nd(k) = ∆tn(k) with the variance Qnd [24],
[25]. The smart sensors can sense the microgrid states to form
an observer model as follows:

y(k) = Cx(k) + w(k), (7)

where y(k) is the measurement, C is the measurement matrix
and w(k) is the measurement noise whose variance is Qwd.
The observation noise comes from the distributed wireless
sensors measurements. The observation information by the
wireless sensor networks (WSN) powered by 5G technologies
is transmitted to the nearby base station (BS) as shown in
Fig. 5. The uniform quantizer of this base station maps each
measurement signals to a sequence of bits.
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Fig. 5. Interfacing microgrid measurements to the base station.

B. IoT Communication Network

For transmitting the microgrid state information to the
energy management system, we used binary phase shift keying
(BPSK) as a modulation technique. The bit sequence b(k) is
goes through a BPSK and get modulated signal s(k). The s(k)
goes through the internet and add noise. To demonstration,
Fig. 6 shows the IoT communication network and dynamic
state estimation process. The received signal at the energy
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Fig. 6. The IoT communication network and microgrid dynamic state
estimation process.

management system is given by

r(k) = s(k) + e(k), (8)

where e(k) is additive white Gaussian noise AWGN noise.
Then the received sequence is followed by dequantization and
finally KF algorithm is used for this microgrid.

IV. KALMAN FILTER BASED MICROGRID STATE
ESTIMATION METHOD

This section tries to answer the following question: (i)
What is the optimal smart grid SE method for the microgrid
incorporating multiple DERs?

The discrete time KF is a set of recursive mathematical
equations that provides an efficient recursive means to estimate
the state of a process in a way that minimizes the mean squared
error between the measurement and prediction. The KF oper-
ates recursively on streams of the noisy measurers to produce
a statistically optimal estimate of the underlying microgrid
system states. This method works in two-steps (prediction and
correction step). The energy management system computes the
following steps [26]:

x̂−(k) = Adx̂(k − 1) + Bdû(k − 1), (9)

where x̂−(k) is the microgrid estimate states of the earlier
step. The predicted estimate covariance matrix is given by:

P−(k) = AdP−(k − 1)AT
d + Qnd, (10)

where P−(t) is the microgrid estimate covariance matrix of the
earlier step. The microgrid estimated update state (correction
step) is given by

x̂(k) = x̂−(k) + K(k)[yrd(k) − Cx̂−(k)], (11)

where yrd(k) is the dequantized and demodulated output bit
sequences and the Kalman gain K(t) is given by:

K(k) = P−(k)CT (CP−(k)CT + Qwd)−1, (12)

and

P(k) = P−(k) − K(k)CP−(k). (13)

Based on the KF steps, the energy management system can
obtain the predicted distribution of the measurement which is
a Gaussian distributed with the expectation given by Eq. (9)
and the covariance matrix given by Eq. (10). Considering the
aforementioned expressions taking into account, the flow chart
for the KF state estimation algorithm is sketched in Fig. 7.
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Fig. 7. The flow chart for the Kalman filter based microgrid state estimation.

V. PERFORMANCE EVALUATIONS AND DISCUSSIONS

We consider four DERs in which the system state is a
four-dimensional vector. Each DER is connected to the IEEE
4-bus distributed systems operated as an island mode [27].
The continuous state space system has been approximated to
the discrete time state space system with a small step size
parameter. The simulation parameters of the IoT networks are
summarized in Table I. The simulation of this proposed KF
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Fig. 8. ∆v1 comparison between the true and estimated state using 4 sensors.
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Fig. 9. ∆v2 comparison between the true and estimated state using 4 sensors.

based microgrid SE for the IoT communication network is
carried out for two different sensing scenarios.

TABLE I
THE SYSTEM PARAMETERS AND ASSUMPTIONS USING MATLAB.

Parameters Values Parameters Values
Step size ∆t 0.00001 Quantization Uniform
Modulation BPSK Channel AWGN
Time slots 50 Quantization Uniform 16 bits

A. Number of sensors equal to states

First of all, it assumes that the four voltage sensors can
sense the four PCC voltage states directly. From the simulation
results as shown in Figs. 8 to 11, it can be seen that the
proposed KF is able to estimate the PCC state voltages
properly and it needs few iterations to track the original states.
However, in practical scenario there are the possibility that

the smart sensors battery gets low so that they cannot sense
the system state properly.

B. Number of sensors less than states

When the smart sensors battery gets low and it cannot sense
the system state properly. In this case, one assumes that the
two voltage sensors are out of order among four sensors to
sense the four PCC voltage states. From the simulation results
as shown in Figs. 12 to 15, it can be seen that the proposed
KF is able to estimate system states properly and it needs
more iterations to track the original states. Due the two sensors
sensing problems, the PCC state voltages v2 and v3 are not
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Fig. 10. ∆v3 comparison between the true and estimated state using 4
sensors.
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Fig. 11. ∆v4 comparison between the true and estimated state using 4
sensors.
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Fig. 12. ∆v1 comparison between the true and estimated state using 2
sensors.
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Fig. 13. ∆v2 comparison between the true and estimated state using 2
sensors.

able to be sensed directly by the corresponding sensors. But
the KF is able to track these states with small considerable
errors. However, there are the possibility that the number of
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Fig. 14. ∆v3 comparison between the true and estimated state using 2
sensors.
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Fig. 15. ∆v4 comparison between the true and estimated state using 2
sensors.

smart sensors is greater than the system states.

C. Number of sensors greater than states

Finally, we assume that the number of sensors is greater
than the system states. This simulation it is assumed that
the observation matrix has eight sensors. From the simulation
results as shown in Fig. 16 to 19, it can be seen that the
proposed KF is able to estimate system states properly and
it needs few iterations to track the original states. Due the
more sensors, the PCC voltage are not able to sense by the
the sensors correctly. But using the proposed KF is able to
track these states with very small errors. Therefore, it is better
to use same number of sensors and states to properly estimate
system states in the IoT communication network.

VI. CONCLUSIONS

This paper addresses the voltage regulation issue from the
communication perspective. To do so, wireless sensor network
components such as sensors and actuators have been applied
into the microgrid to coordinate DER states regulation. In
order to transmit the sensing information to the observer,
the proposed innovative communication systems have been
utilized. Based on this infrastructure, this paper proposes a
KF algorithm for centralized DER state estimation. Finally,
the effectiveness of the developed approaches is verified by
numerical simulations. In the future, we will use least square
based Kalman filter in order to obtain the better initial state
value.
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Fig. 16. ∆v1 comparison between the true and estimated state using 8
sensors.
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Fig. 17. ∆v2 comparison between the true and estimated state using 2
sensors.
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