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Abstract—Monitoring and controlling microclimate in a 

greenhouse becomes one of the research hotspots in the field of 

agrometeorology, where the application of Wireless Sensor 

Networks (WSN) recently attracts more attentions due to its 

features of self-adaption, resilience and cost-effectiveness. 

Present microclimate monitoring and control systems achieve 

their prediction by manipulating captured environmental 

factors and traditional neural network algorithms; however, 

these systems suffer the challenges of quick prediction (e.g. 

hourly and even minutely) when a WSN network is deployed. In 

this paper, a novel prediction method based on an Extreme 

Learning Machine (ELM) algorithm and KELM (Kernel based 

ELM) is proposed to predict the temperature and humidity in a 

practical greenhouse environment in Nanjing, China. Indoor 

temperature and humidity are measured as data samples via 

WSN nodes. According to the results, our approach (0.0222s) 

has shown significant improvement on the training speed than 

Back Propagation (BP) (0.7469s), Elman (11.3307s) and 

Support Vector Machine (SVM) (19.2232s) models, the 

accuracy rate of our model is higher than those models. In the 

future, research on faster learning speed of the ELM and 

KELM based neural network model will be conducted. 
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I. INTRODUCTION 

ODERN greenhouses provide a suitable indoor 

microclimate meeting the requirements of plant growth. 

A prediction model of the microclimate in a greenhouse 

therefore becomes critical for the establishment of control 

strategies and consequent evaluation [1]. The design of such a 

model becomes challenging due to the features of the 

greenhouse microclimate, i.e. nonlinear, multiple input 

multiple output, and its strong coupling between relevant 

factors. It is also affected by the indoor and outdoor climate 

environment, crops grown inside and movements of control 

facilities [2]. All reasons above make it difficult to establish a 

precise mathematical model to achieve fast and accurate 

prediction [3]. With rapid development of short-range 

wireless communication, e.g. Wireless sensor networks 

(WSN), real-time (or nearly real-time) collection of relevant 

environmental data in a greenhouse turns out to be convenient, 

but also raises new challenges on microclimate prediction [4]. 

Mechanism modelling method based on energy balance 

because of its multiple parameters and low accuracy, it is 

difficult to meet the need of practical application [1]. Another 

system identification method based on the data input and 

output because it needs less parameters, good adaptive ability 

and higher simulation accuracy [1-3]. And it has been widely 

applied. The traditional neural network algorithm, Back 

Propagation (BP) was applied to build the prediction model of 

microclimate in a greenhouse. Support Vector Learning was 

also used for the prediction [5-6]. However, the existence of 

slow training speed, easy to fall into local minima and the 

choice of learning rate sensitive etc. inherent shortcomings in 

the neural network makes its application in the greenhouse 

prediction model is not ideal. 

Extreme Learning Machine (ELM) algorithm [7] is a new 

algorithm for these mentioned shortcomings of the neural 

networks, and it has the advantages of faster training speed, 

the global optimal solution and good generalization. In 

addition, Kernel Extreme Learning Machine (KELM) has 

applied kernel function algorithm to the ELM [8]. In this 

paper, the ELM and KELM algorithms are used to establish 
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prediction models of microclimate in a greenhouse. 

This paper presents the WSN-based prediction model of 

microclimate in a greenhouse using both ELM and KELM 

algorithms is structured as follows: Section II introduces the 

related work. Section III presents the principles of ELM 

algorithm and KELM algorithms and the principles of 

modelling the greenhouse environment using the ELM and 

KELM algorithms. Section IV presents the experimental 

results from real-world data and discussion, and Section V 

presents conclusions. 

 

II. RELATED WORK 

The system identification method based on input-output 

data needs less parameter and obtains high simulation 

precision. Patril et al. [9] used the auto-regression and neural 

network to build a temperature model of tropical greenhouse. 

A greenhouse microclimate model was built based on neural 

network in [10], where it was found that outdoor wind and 

temperature is not vital input factors for the greenhouse 

microclimate model in summer. Indoor temperature was 

gathered in a greenhouse in [11], where relative humidity, the 

intensity of solar radiation and wind speed was collected as 

input items. In [12], an environment factor model was 

established in a greenhouse to predict its microclimate based 

on a fuzzy neural network. Wang et al. [13] used BP 

algorithm to establish the rainy season greenhouse 

microclimate model in Jianghuai area, and results show that 

the model has higher precision and is a beneficial supplement 

to the physical model. Ferreira [14] used Radical Basis 

Function (RBF) neural networks to establish fitting model of a 

hydroponic greenhouse, and obtained the very good fitting 

results. Fourati [15] used an Elman neural network to emulate 

the direct dynamics of a greenhouse, the Elman model was 

used to train control model. Another identification method of 

nonlinear systems, support vector machine regression (SVMR) 

was applied to the modelling of greenhouse microclimate 

system areas, such as online modelling method of weighted 

least squares support vector machine based on [16]. In [17], 

indoor data, such as inner temperature, humidity, wind speed, 

solar radiation intensity, etc. were gathered, so that a 

greenhouse microclimate humidity model was designed for 

the prediction in the north of china in winter by using a BP 

neural network improved by a genetic algorithm. 

 

III. PREDICTION MODEL 

A. Principles of ELM 

For a given set of random samples, , 

where , is the input 

vector, ti is the output corresponding to , n is the embedded 

dimension. An ELM regression model containing the L 

hidden layer neurons can be expressed as in [18]: 

   (1) 

where Q is the number of samples in the training set,  is the 

input weights between the ith neuron and the input layer, 

and ,  is the output weights between 

the ith neuron and the output layer,  is the threshold values 

of the ith neuron. Eq. (1) can be written in a matrix form as: 

          (2) 

where H is an output matrix of the hidden layer, can be written 

specifically as: 

  (3) 

β is an output weight, which can be written specifically as: 

.  

T is an output weight, which can be written specifically as:  

. 

In most cases of Eq. (3), Q is much greater than L. By 

solving Eq. (2), the output weights β can be calculated as in 

[19]: 

          (4) 

where  is the Moore-Penrose generalized inverse of the 

hidden layer output matrix H, and it can be calculated as: 

. 

Therefore, after training the final prediction model using 

ELM can be written as: 

      (5) 

where x is the input vector of prediction model using ELM, t 
is the output vector of prediction model using ELM. 

B. Principles of KELM 

Due to the fact that two thresholds, w and b in the ELM 

model are generated randomly, the performance of an ELM 

based prediction model suffers from its poor stability. KELM 

is therefore designed in order to introduce a stable kernel for 

the ELM algorithm for constant fitness [8]. 

The KELM algorithm can be summarized as follows: 

Input: the training set  ,i ix t , the kernel function K, the 

ridge regression parameter C. 

Output: prediction of test set f(x). 
Step 1. Calculate kernel matrix K: 

: ( ) ( ) ( , ) 
ij

T
ELM ELM i j i jh h K    Ω HH x x x x  

Step 2. Calculate matrix inverse: 

  
1( Ω )ELM


I

C
 

Step 3. Calculate the mapping of test data set: 

1( , )

( , )

x

N

K

K

 
 


 
  

x x

K

x x

 

Step 4. Calculate the predicted results: 

1( ) ( Ω )x ELM
 

I
f x K T

C
 

C. Prediction Model of Microclimate in a Greenhouse 
Using ELM and KELM 

Greenhouse microclimate is an extremely complicated 

system, influenced by outdoor environmental factors, the 

structures of greenhouse and the operation status of 
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environmental control equipment, etc. So the historical 

sample of indoor temperature and humidity imply the above 

information. Hence in order to predict temperature and 

humidity in greenhouse that can only use the historical sample 

of indoor temperature and humidity to establish prediction 

models. While establishing prediction model To predict the 

next sample prediction model uses the three past samples: 

, and the current sample . Hence, the tth 

input-output instance is: 

𝑥𝑡 = [𝑠𝑡−3, 𝑠𝑡−2, 𝑠𝑡−1, 𝑠𝑡], t𝑡 = 𝑠𝑡+1 

where s can be temperature or humidity value. 

The ELM algorithm can be represented as follows: 

Step 1. Initialization. Set the number of the neurons and 

activation function in the hidden layer, randomly 

generate input weights  and the threshold value 

b; 

Step 2. Use the parameters obtained in Step 1 and the input 

matrix of the training set to calculate the output 

matrix H of the hidden layer; 

Step 3. Use H and T to calculate the output weights 

; 

Step 4.  Use Eq. (5) to calculate the predicted results. 

 

IV. RESULTS AND DISCUSSION 

A. WSN 

A weather observation system is implemented based on a 

ZigBee enabled wireless sensor network. Customised sensor 

nodes are designed providing four open communication 

interfaces for wide compatibility of sensors. The nodes also 

support multiple wireless data communication methods 

including free short-range ISM radio bands at 2.4GHz and 

915MHz, as well as enhanced mobile telecommunication 

technologies, e.g. EDGE and HSDPA. The prototype design, 

hardware block diagram and PCBs of the sensor node are 

shown in Fig. 1.  

A closed polycarbonate casing design makes the dust 

particle and liquid ingress protection of our nodes reach IP6x 

and IPx5 respectively. Four generic communication 

interfaces are offered to accept third-party analogue and 

digital sensors. Adapters/converters, shown in the perception 

part of Fig. 1(c) have been organised and fitted into the 

corresponding pins of the interfaces, as depicted in Fig. 2. 

B. Results of the predicting using the ELM model 

To establish the temperature model, the training parameters 

of ELM were as follows: the number of neurons in the hidden 

layer is 26 and the activation function of neurons in the hidden 

layer is sin. In order to meet the requirements of the prediction 

model, all data have been normalized to range [0, 1] 

according to Eq. (6): 

     (6) 

where  is the minimum number of sample series,  is 

the maximum number of sample series. 

Establishing humidity model used the same method with 

temperature model, the difference is the sample set, so 

establishing humidity model was not described in detail. 

The fitting results of using the ELM algorithm to predict 

the temperature and humidity have been done through 

simulation tests using Matlab. The results are shown in Fig. 3 

and Fig. 4, where the red line indicates the actual value, and 

the blue line indicates the predicted value. As can be seen 

from the figures, using ELM algorithm to predict the 

greenhouse environmental factors basically reached the 

expected results. The models have higher accuracy, with a 

good fit between the predictive values and the actual values. 

This shows that the simulation of greenhouse environment 

factors using ELM algorithm is effective and can meet the 

needs of agricultural production. And, the effect in the 

temperature simulation is more superior. 

 

  

 
Fig. 1.  The hardware implementation of a customised WSN node. (a) The 

prototype design; (b) the PCB design of communication module and the 

entire assembled design of a node; (c) the block diagram. 

 

 

 
Fig. 2. The pin arrangement of four interfaces. (a) Pin numbers and their 

names specified in four pin tables; (b) the pin names and their corresponding 

description. 
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Fig. 3. The curve fitting of predicted and actual data for the greenhouse 

temperature. 

 
Fig. 4. The curve fitting of predicted and actual data for the greenhouse 

humidity. 

 

C. Results of the predicting using the KELM model 

Same history samples as from the ELM were used for the 

KELM model. Related parameters for Genetic Algorithms 

(GA) configuration to Optimize KELM learning parameters 

were set as well, as shown in Table I. 
TABLE I 

GA SETTINGS 

GA Parameters Value 

Max. Population No. 20 

Max. Evolution Generation 200 

Gap Rate 0.9 

Crossover Probability 0.7 

Mutation Probability 0.07 

 

Fig. 5 and 6 depict that when using genetic algorithm to 

optimize KELM learning parameters, the optimal fitness 

value of GA can quickly reached extremes. It can also be used 

to find the optimal learning combination (C, σ), which makes 

the fitting performance of KELM prediction model optimal. 

D. Discussion 

In order to better evaluate the performance of the ELM 

models, three algorithms are used to compare with ELM. 

Three algorithms were selected, i.e. BP, Elman, and SVM. 

These models have same training and testing sets with ELM 

models, the input and output data also take the same way with 

ELM models.  

BP neural network has 5 hidden neurons of temperature 

and humidity model, the maximum number of iterations is 

1000, the learning rate is 0.2, and the mean squared error goal 

is 0.0001, other parameters default. Elman neural network has 

13 hidden neurons of temperature model and 18 hidden 

neurons of humidity model, the hidden layer transfer function 

is the tansig, the output layer transfer function is the purelin, 

and the mean squared error goal is 0.0001, other parameters 

default. Kernel function of SVM model is RBF. In 

temperature Model penalty factor parameter c = 16, variance 

g= 0.125, in humidity model c = 11.3137, g = 0.353553, other 

parameters are set as default values. 
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Fig. 5. The Fitness of  temperature using GA to optimize KELM parameters. 
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Fig. 6. The Fitness of Humidity using GA to optimize KELM parameters. 

 

Table II shows the results of predicting the environment 

factors using three algorithms just mentioned. Since the input 

weights and thresholds are generated randomly, for without 

loss of generality, performance evaluation parameters for all 

algorithms were taken average of 50 times as the results. The 

performance evaluation parameters are training time, root 

mean square error (RMSE) and the coefficient of 

determination (R2). And the smaller training time, the smaller 

RMSE and the higher R2 indicated a better performance of 

the model. Specific calculation formulas are shown as Eq. (7) 

and (8): 

      (7) 

  (8) 

where,  is the number of testing samples,  is 

the actual value for the ith sample,  is the 

predicted value for the ith sample. 

Seen from Table II, the ELM algorithm ran around 33 times 

faster than BP, 510 times faster than Elman, and 865 times 

faster than SVM for predicting the temperature in the 

greenhouse. So the ELM model showed great superiority in 

training speed. At the same time, the RMSE of ELM model 
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are lower than and R^2 was higher than BP, Elman and SVM 

model, the ELM model showed the high accuracy and fitting 

ability. The ELM model of humidity also exhibited the same 

advantages. It can also been that ELM models can quickly 

predict the greenhouse environmental factors in the context of 

maintaining the accuracy. Therefore, ELM model is more 

suitable to predict the greenhouse environmental factors. 

From Table III, it can be seen the KELM model 

outperforms the training speed and generalization ability. 

First, the train speed of the KELM model is 2.9 times faster 

than the ELM model. In addition, the standard deviation of 

the KELM model is 0, showing its stability. The results on 

humidity have shown similar trends. Compared to BP, Elman 

and SVR, the KELM has also depicted better performance, as 

shown in Table IV. 

 

TABLE II 

PERFORMANCE COMPARISON OF THE ELM, BP, ELMAN AND SVM ALGORITHMS 

Environment 

factors 
Algorithms 

Training 

Time(seconds) 
RMSE R2 

Nodes of 

Neurons 

temperature 

ELM 0.0222 1.0586 0.9883 26 

BP 0.7469 1.1841 0.9858 5 

Elman 11.3307 1.1840 0.9853 13 

SVM 19.2232 1.1537 0.9865 - 

humidity 

ELM 0.0187 1.4177 0.9648 18 

BP 0.6833 1.6398 0.9586 5 

Elman 11.5784 1.4191 0.9641 18 

SVM 20.0633 1.4635 0.9605 - 

 

TABLE III 

PERFORMANCE COMPARISON OF THE ELM AND KELM ALGORTHAMS 

Environment 

Factors 
Algorithms Parameter Value 

Training Time 

(seconds) 
R2±SD 

temperature 
KELM (C，σ) (216.1170，2-6.1797) 0.0023 0.9762±0 

ELM L 13 0.0068 0.9749±0.0019 

humidity 
KELM (C，σ) (2999.9870，21.2519) 0.0026 0.9829±0 

ELM L 27 0.0069 0.9828±0.0003 

 

TABLE IV 

PERFORMANCE COMPARISON OF THE ELM, BP, ELMAN AND SVR ALGORITHMS 

Environment 

Factors 
Algorithms Parameter Value 

Training Time 

(seconds) 
R2±SD 

temperature 

KELM (C，σ) (216.1170，2-6.1797) 0.0023 0.9762±0 

BP L 5 0.9126 0.9727±0.0033 

Elman L 10 15.8528 0.9748±0.0009 

SVR (C，σ) (21.4142，21.4142) 0.0318 0.9731±0 

humidity 

KELM (C，σ) (2999.9870，21.2519) 0.0026 0.9829±0 

BP L 5 0.9999 0.9809±0.0026 

Elman L 12 15.0532 0.9807±0.0006 

SVR (C，σ) (216，21.4142) 0.0330 0.9827±0 

 

V. CONCLUSION 

This paper applied ELM algorithm and KELM algorithm to 

predict the greenhouse environmental factors. Different from 

the traditional learning algorithms, ELM algorithm randomly 

generated input weights and thresholds, and simply set the 

number of hidden layer neurons, we can obtain the unique 

global optimal solution. The algorithm is simple, fast and high 

simulation precision. Comparison of BP, Elman and SVM 

algorithms in environmental factors prediction, ELM showed 

better performance. It proved that it is feasible to use ELM 

algorithm to predict environmental factors, and which can 

provide support for the intelligent control of greenhouse. 

Compared with the prediction model based on the ELM, the 

refined model based on the KELM depicts better results on 

computing speed and accuracy, with the stability of the model 

being maintained. Compared with the prediction models 

based on BP, Elman and SVR, the KELM model requires less 

training time, but shows stronger fitness and more stable 

performance. 

Because of the influence of environment factors in 

greenhouse by different types of greenhouse structure and 

material, the types of crops and planting mode, the weather 

changes, human disturbance and run state of control 

equipment and many other factors, the steady model to predict 

the environmental factor is inappropriate. In future research, 

the model will be improved further. Building an online model 

of greenhouse environment factors is very necessary. 

Moreover, if shortening time interval (e.g. 5min, 10min), 

whether or not to make model more perfect, there is need for 

further study. 
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