
DoCloud: An Elastic Cloud Platform for Web
Applications Based on Docker

Chuanqi Kan*
*School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
kanchuanqi@gmail.com

Abstract—Internet is growing at an alarming rate, and Web

applications have permeated every aspect of people's life. Cloud
computing provides a powerful computing model that allows
users to access resources on-demand and pay as they use. Cloud
computing attracts an increasing number of developers to
migrate their Web applications to cloud platforms. Cloud
platforms should provide elasticity ability to change the amount
of resources allocated to a Web application in order to meet the
actual varying demands because of the changing workload. In
this paper, we design and implement DoCloud which is an elastic
cloud platform based on Docker. In DoCloud, we adopt adding
or removing Docker containers to change a Web application’s
resource and we build a hybrid elasticity controller that
incorporates proactive model and reactive model for scale out
coupled with proactive model for scale in. Our experiments show
that DoCloud can dynamically allocate resources to applications
within seconds and maintain higher resource utilization in a
single container.

Keywords—cloud computing; autoscale; Docker; elasticity;
hybrid controller

I. INTRODUCTION

Nowadays, with the concept of SaaS (software as a service),
Web applications have developed a lot, many companies such
as Google, Amazon etc. have achieved great success from Web
applications. Web application providers should keep the
application meeting the quality of service (QoS) requirements
specified in the SLA agreements. The load of Web application
usually vary drastically along with time. Flash crowds are also
very common in today’s Web Applications world. Figure 1
shows workload logs of the FIFA 1998 world cup website in
the number of incoming requests from day50 to day57. If we
maintain sufficient resources to meet peak requirements can be
costly, which will increase developers’ cost. Conversely, if the
developers cuts costs by maintaining only minimal or medium
computing resources, there will not be sufficient resources to
meet peak requirements and cause bad performance which may
lead to losing customers. Cloud computing is an on-demand
computing model with a usage-based payment structure. With
the help of cloud computing, developers can scale up or scale
down the applications’ resource manually or by APIs provided
by cloud platform within hours or minutes. Autoscaling
supported in Cloud computing can solve this problem totally.
Autonomous elastic cloud dynamically allocate resources
according to the current actual load. When load of Web
applications grows up, elastic cloud automatically add more
computing resource to the applications and reduce the
computing resource while the load drops.

Fig.1 Traces Logs of World Cup Soccer 1998

Elastic cloud is a hot cloud computing research area, many
researchers now are focusing on this thesis. Now, elastic cloud
is usually based on virtual machines (VMs). VM is too heavy
for Web applications, because all need of Web applications is
applications’ running environment which includes Web server
(Apache, Nginx), language support, databases and other
components, not the whole guest operation system in VMs. In
this point, Deploying Web applications in VMs results in waste
of resource and reduced performance. In more and more “flash
purchase” scenarios, clients’ requests suddenly surge, this
require that elastic cloud should scale up resource within
seconds to avoid breaking QoS. Elastic cloud based on VMs
usually can’t achieve this goal.

Docker is a new lightweight virtualization technology. With
the help of Docker, we can package a Web application and all
its running environment into one standardized unit for software
developing, testing, shipping and deploying. Docker containers
running on the same host share the same linux kernel so
containers can start up instantly and make more efficient use of
resource.

In this paper, we will use Docker container instead of VM
as the unit of resource adjustment to design and implement an
elastic cloud for Web applications. First, we will review the
relative work. Then we will focus on the design of architecture
and elasticity controller which can ensure the efficiency and
scalability. In section IV, we use Tsung to simulate different
types of load to provide an experimental evaluation of the
prototype. In the last section, we draw the conclusion and point
out the future research directions.

482ISBN 978-89-968650-7-0 Jan. 31 ~ Feb. 3, 2016 ICACT2016

II. RELATED WORK

A. Docker Containers vs Virtual Machines

Fig.2 shows the difference between Docker container and
virtual machine on architecture. Each VM includes the
application, binaries, libraries and an entire guest OS which
cost a lot of CPU, memory and storage. In a container, there are
only the application and its dependencies. Container runs as an
isolated process in userspace on the host OS. Container can
start up within 2 or 3 seconds while VMs’ startup cost minutes,
this is very suitable for handling flash crowds. In [1],
researchers from IBM compare the performance of virtual
machines with Docker containers. They use a suite of
workloads that stress the CPU, memory, storage and
networking resources, and the results show that containers
result in equal or better performance than VM in almost all
cases.

Fig.2 VM vs Docker Container [2]

B. Elastic Cloud

There has been a large amount of research on elastic cloud,
but almost all of them are based on VMs. Reviewing these
work will have a certain reference value in the design of
DoCloud. In [3, 4], researchers adopt horizontal scalability to
adjust the amount of resource allocated to a specific application.
Horizontal scalability means changing the number of instances
of resource unit (VMs). Cloud platforms using this method
need a load balancer component to route the requests to all the
instances. Horizontal scalability can achieve high availability
of Web applications, because one instance breaks down, others
can take charge of the requests belonging to it. On the contrary,
[5, 6] use vertical scalability to build elastic clouds. Vertical
scalability adds or reduces the amount of specific resource such
as CPU, memory and network within a single instance (VM).
Vertical scalability can dynamically adapt the resource more
quickly, but it need to interact with hypervisor with higher
authority. Higher authority means more complex and insecure.

Elasticity controller is the core of elastic cloud. How to
scale the resource just in time and efficiently calls for our
premier consideration. There are two frequently-used
approaches which are proactive approach and reactive
approach to solve this problem. With the first approach,
elasticity controller will initiatively predict the demands of
resource in the near future based on historical data, and allocate
or deallocate resource in advance. [7] uses an online prediction
system which includes a fast analytical predictor and an

adaptive machine learning based predictor to solve the
translation problem from service-level metrics to resource-level
metrics. [8] presents a resource prediction model based on
double exponential smoothing. The reactive approach is based
on threshold-based rules set by application developer. When
the conditions are reached, the actions of resource adjustment
will take place. Amazon applies the reactive approach to its
EC2, developers can configure thresholds of resource
utilization to let EC2 scale out/in automatically.

In this paper, we will apply horizontal scalability to
DoCloud and build an hybrid elasticity controller incorporating
proactive approach and reactive approach.

III. SYSTEM DESIGN

A. Architecture Design

Fig.3 Architecture of DoCloud

We design DoCloud to let Web applications automatically
adjust to the varying load without breaking QoS by growing or
shrinking the amount of Docker containers on demand quickly.
Figure 3 shows the general architecture of DoCloud. The
architecture design includes a load balancer, a number of web
application Docker containers, a monitor sub-system, and a
provisioning sub-system with an elasticity controller. In
DoCloud, we also consider the requirement of frequent
upgrades of Web applications, because more and more
developers are using agile software development to develop
Web applications. We add a private Docker registry to
DoCloud, which will make developers feel convenient to ship,
deploy and upgrade Web applications in DoCloud. And also
DoCloud provides hot-upgrade function to make the
application still available without downtime during upgrading
the application.

483ISBN 978-89-968650-7-0 Jan. 31 ~ Feb. 3, 2016 ICACT2016

B. Load Balancer

Load balancer is the entrance of a Web application, it
receive all incoming requests, route them to real application
servers in containers and then send back the responses to
clients. It can be seen that load balancer is very important to
Web applications, and this requires the load balancer must have
good performance and robustness. We use HAProxy as the
load balancer in DoCloud because of its first-class performance
and stability. We also use keepalived to provide simple and
robust facilities for high-availability. Keepalived maintains two
running HAProxy instances, when master instance failed the
backup one will take in charge. The structure of load balancer
is shown in Figure 4. Confd [9] is adopted to automatically
update HAProxy’s configuration when DoCloud dynamically
adds or removes containers.

Fig. 4 Structure of Load Balancer

C. Monitor and Provisioning Sub-systems

Monitor sub-system collects current resource utilization in
every container from Docker daemons on each host via Docker
remote RESTful API (GET /containers/ (id)/stats), and reactive
model in elasticity controller will use this data to decide
whether need add containers. Additionally, monitor sub-system
gathers request rate (requests per second) from HAProxy stats
page and store this data to database. Proactive model will use
this data to predict the load in the near future.

Provisioning sub-system is also based on Docker remote
RESTful API. Provision sub-system interact with Docker
daemon to start or stop containers and maintains the exact
number of containers which elasticity controller determines.
When some container stops unexpectedly, provisioning sub-
system should try to restart it or start a new container to replace
it. Provisioning sub-system also take responsibility for hot-
upgrade. After developers take upgrade actions, provisioning
sub-system will start new containers from newer application
image when elasticity controller decide to grow the number of
containers, provisioning sub-system will first stop old
containers that come from older image when elasticity
controller determines to shrink the number of containers. Then
the running old containers will be replaced by new container
one by one (start a new container then stop one old container)
until all the running containers come from the newer image.

D. Private Docker Registry

Docker registry is a stateless, highly scalable server side
application that stores and lets developers distribute Docker
images. Developers can ship and share images easily via
pushing and pulling images. The official Docker registry is
Docker Hub (https://hub.docker.com), every developer can pull
official images from it. Docker registry itself also is packaged
as an image. We build a private Docker registry from that
image to integrate image storage and deployment tightly into
DoCloud for developers’ convenience. We use an nginx as the
frond-end proxy to provide basic authentication and HTTPS
access for external developers. With the basic authentication
only legal developers can push and pull images which may be
business secrets. For internal components in DoCloud, the
private Docker registry opens port 5000 without authentication,
components can pull and deploy images more quickly via this
port.

IV. ELASTICITY CONTROLLER

In [10], Ahmed Ali-Eldin et al. explore nine different ways
to build a hybrid controller with proactive model and reactive
model. In DoCloud, the elasticity controller incorporates
proactive model and reactive model for scale out and uses
proactive model for scale in.

A. Proactive Model

Proactive model will estimate the incoming workload
(requests per second) after a short period T and then
translate the workload to the number of containers. To predict
the workload in the near future, we use a second order ARMA
(autoregressive moving average) method [11]. The equation is

1 1 2(1 ())t t t ty y y y             (1)

Fig.5 Predicted Workload vs Actual Workload

We use this method to predict workload shown in figure 1,
and figure 5 shows the predicted workload compared to the
actual workload. With the predicted workload, next step is to
estimate the amount of containers on demand. We think the
number is in direct proportion to the workload, so we translate
the predicted workload to the number of containers by the
following equation. The f in the equation can be simply

explained as the number of requests a single container can

484ISBN 978-89-968650-7-0 Jan. 31 ~ Feb. 3, 2016 ICACT2016

handle per second. The f can be set manually or set by

reactive model. The tl is the predicted workload.

/t
proactive tN l f (2)

B. Reactive Model

Developers set upper threshold for some resource
utilization, the monitor sub-system collect the resource
utilization data in every container periodically. If some
containers’ resource utilization above the given upper threshold

upperT , some containers will be started and added to the load

balancer. The detailed reactive model algorithm is described by
the following pseudo procedure.

Algorithm 1 Reactive Model Scaling

1. function reactiveScaling()

2. 0exceedN  ， 0reactiveN 

3. for container i in all running containers tanins ceN do

4. if(i upperR T) then

5. exceedN  

6. end if
7. end for

8. (1) /reactive exceed upper upperN N T T    

9. return reactiveN

10. end function

Algorithm 1 output reactiveN how many containers DoCloud

should add according to reactive model.

C. Scaling Algorithm

While elasticity controller adjusts the amount of containers,
scale out should be quick enough to avoid breaking the QoS
and affecting user experience. When proactive or reactive
model determines to increase the number of containers,
elasticity controller will invoke provisioning sub-system to
start more containers immediately.

On the other hand, scale in should not be premature,
otherwise it may cause oscillations in the number of containers
if clients’ requests flood in quickly just after scale in takes
place. Scale in should only occur when the Web application
does not need the containers any more in the near future. In our
elasticity controller, only during the following continuous k
periods, the numbers of containers predicted by the proactive
model are all below current running containers, then some
containers will be stopped.

The total scaling algorithm in the elasticity controller is
shown as the following pseudo procedure. The algorithm
outputs the total containers Web application should have
during the next period. The elasticity period should be set short
but longer than the container’s startup time, this can make
DoCloud sensitive to flash crowds.

Algorithm 2 Total Scaling

1. 0lastTimes  // global variable for delay scale in

2. function totalScaling(tan , ins ceN k)

3. // tanins ceN is the running containers now

4. ()proactiveN proactiveScaling

5. ()reactiveN reactiveScaling

6. if 0reactiveN  then

7. if f in ()proactiveScaling is not set

8. 1() / 2t tf R R   // tR means load at t period

9. end if
10. 0lastTimes 

11. return tan(,)reactive ins ce proactiveN Max N N

12. else if tanproactive ins ceN N

13. 0lastTimes 

14. return proactiveN

15. else if lastTimes k // delay scale in

16. 0lastTimes 

17. return proactiveN

18. else
19. lastTimes  
20. end if
21. end function

V. EXPERIMENTAL EVALUATION

In this section, we use Tsung to simulate three types of
load in different scenarios and monitor the number of
containers during the experiments. In the experiments, we set
the prediction period T =5s to take advantage of container’s
short startup time, and with this setting DoCloud can adapt
containers to the changing load more quickly. We set the

upper threshold upperT =0.8 for CPU and memory utilization.

The results are shown in figure 6.
In experiment 1, the load has three stages, on the first stage

the load grows smoothly, on the middle stage load keeps
stable and on the last stage load drops slowly. We can see the
number of containers varies quickly with the changing load
(within seconds). In experiment 2, Tsung produces the shaking
load and DoCloud does not decrease containers hastily until
the load tends to be stable. In experiment 3, we simulate the
real load shown in figure 1. To shorten the time of the
experiment and narrow the gap in the Internet between 1998
and today, we choose part of the load and compress two
minutes to one second. We also scale down the original data in
consideration of the capability of our experimental equipment.
The result shows that DoCloud can handle real workload
including flash crowds.

We also evaluate the resource utilizations in a single
container during the experiment 1, and figure 7 shows the
results. From the results, we can find that DoCloud can
maintain the resource utilizations of containers to a high level,
which will ensure high efficiency of resources on the hosts.

485ISBN 978-89-968650-7-0 Jan. 31 ~ Feb. 3, 2016 ICACT2016

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig 6 The Number of Containers vs Changing Load

Fig. 7 Resource Utilizations

During another experiment 1, we perform a hot-upgrade
operation, the number of new containers grows step by step as
shown in figure 8.

Fig. 8 Hot-Upgrade during Experiment 1

VI. CONCLUSION

In this paper, we design and implement an elastic cloud
platform for Web applications based on Docker and we build a
hybrid elasticity controller to dynamically grow or shrink the
number of containers within seconds. The experiments show
DoCloud has good efficiency and scalability. For developers’
convenience, we integrate a private Docker registry into
DoCloud. DoCloud also supports hot-upgrade in consideration
of high availability of Web applications.

REFERENCES

[1] Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014). An updated
performance comparison of virtual machines and linux containers.
technology, 28, 32.

[2] Docker: https://www.docker.com/what-docker .

[3] Li, Yunchun, and Cheng Lv. "The Elastic Cloud Platform for the Large-
Scale Domain Name System." Practical Applications of Intelligent
Systems. Springer Berlin Heidelberg, 2014. 305-316.

[4] Tighe, Michael, and Matthias Bauer. "Integrating cloud application
autoscaling with dynamic VM allocation." Network Operations and
Management Symposium (NOMS), 2014 IEEE. IEEE, 2014.

[5] Shen, Z., Subbiah, S., Gu, X., & Wilkes, J. (2011, October). Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In Proceedings
of the 2nd ACM Symposium on Cloud Computing (p. 5). ACM.

[6] Blagodurov, Sergey, et al. "Maximizing server utilization while meeting
critical SLAs via weight-based collocation management." Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on. IEEE, 2013.

[7] Reig, G., Alonso, J., & Guitart, J. (2010, July). Prediction of job
resource requirements for deadline schedulers to manage high-level
SLAs on the cloud. In Network Computing and Applications (NCA),
2010 9th IEEE International Symposium on (pp. 162-167). IEEE.

[8] Huang, J., Li, C., & Yu, J. (2012, April). Resource prediction based on
double exponential smoothing in cloud computing. In Consumer
Electronics, Communications and Networks (CECNet), 2012 2nd
International Conference on (pp. 2056-2060). IEEE.

[9] Confd: https://github.com/kelseyhightower/confd.

[10] Ali-Eldin, A., Tordsson, J., & Elmroth, E. (2012, April). An adaptive
hybrid elasticity controller for cloud infrastructures. In Network
Operations and Management Symposium (NOMS), 2012 IEEE (pp. 204-
212). IEEE.

[11] Roy, N., Dubey, A., & Gokhale, A. (2011, July). Efficient autoscaling in
the cloud using predictive models for workload forecasting. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on (pp. 500-
507). IEEE.

486ISBN 978-89-968650-7-0 Jan. 31 ~ Feb. 3, 2016 ICACT2016

Chuanqi Kan was born in Xuzhou city, China, on
November 8, 1990. He received the B.E. degree from
Xidian University in 2013. He is currently a M.S.
candidate in School of Electronic Information and
Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, China. His research interests
include adaptive cloud computing, light-weight
virtualization, artificial intelligence and Big Data.

487ISBN 978-89-968650-7-0 Jan. 31 ~ Feb. 3, 2016 ICACT2016

