
 

  
Abstract—Energy efficiency is one of the most important 

design metrics for wireless sensor networks. As sensor data 
always have redundancies, compression is introduces for energy 
savings. However, different emphases on algorithm design 
influence the operation effect of compression under various 
applications and network environments. In order to improve 
the energy utilization efficiency for the whole network, an 
adaptive data compression is proposed in this paper, which 
realizes a real-time adjustment of compression strategy. By 
prediction and feature extraction of several relevant 
parameters, the algorithm provides optimal execution strategies 
for each sensor node in the network. The simulation results 
show that, the proposed compression scheme enables all nodes 
to complete data communication with near optimal energy 
consumptions, and the maximum deviation against the ideal 
condition is no more than 5%. Moreover, the algorithm can 
effectively act on different data precision, transmit power and 
retransmission rate to meet the dynamic requirements of the 
network with only a few costs introduced. 
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I. INTRODUCTION 
IRELESS sensor network (WSN) is an emerging and 
promising networking technique that has attracted 

more and more attention in recent years. It facilitates humans 
to sense and monitor the region of interest, and is widely used 
in many application fields such as agricultural planting, 
medical care, smart homes, ecological monitoring and so on 
[1]–[3]. 

Since the power of sensor nodes supplied by batteries is 
high-limited and not easy to complement commonly, the 
most important issue in WSNs is prolonging network lifetime 
by energy-efficient strategy. Data compression is introduced 
into WSNs due to its ability to reduce the data amount by 
exploiting the redundancy resided in sensing data [4]. 
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Meeting the application requirement as a prerequisite 
condition, such kind of in-network information processing is 
strongly recommended to decrease energy consumptions in 
data communication and prolong the lifetime of WSNs. 

However, from the implementation perspective and 
reevaluation, data compression may not achieve total energy 
savings in any case [5]. On one hand, sensor nodes are 
densely deployed which permits a low transmit power during 
data collection. On the other hand, if high-resolution data are 
required by applications, it is hard to get a satisfied 
compression ratio. Thus, in-network data compression may 
increase rather than decrease the total energy consumptions 
when the savings in communication cannot compensate the 
additional costs in data processing. Thus, a compression 
arbitration system has been proposed in [6] by which 
compression algorithm in time domain is examined carefully 
to assess its energy efficiency before compression. The case 
in which compression is unnecessary will be avoided and 
sensor node will transmit raw data directly instead of the 
compressed ones. 

Based on our previous works, it is reasonable to believe 
that data compression in WSNs should be carefully carried 
out. The variety of application scenarios will affect its 
efficiency profoundly. In order to obtain more energy savings 
for whole networks, more researches need to be done on data 
compression. Among them, the adaptability of algorithm is 
one of the most important design considerations, because it is 
an effective way to deal with the variability of different 
situations. In this paper, we pay greater attention to this 
adaptability and propose an adaptive algorithm that enables a 
real-time adjustment of compression strategy to increase the 
energy efficiency of the whole network. 

The remainder of this paper is structured as follows: in 
Section 2, we discuss the related work on the adaptability of 
compression algorithms and the motivation for our adaptive 
data compression. The proposed system and its mathematical 
analysis are presented in Section 3. The process of building 
prediction models is detailed described in Section 4, and 
subsequently, Section 5 presents the results of algorithm 
simulation and implementation using an environmental 
application. Finally, Section 6 concludes the paper. 

II. RELATED WORK AND MOTIVATION 
Most existing works enhance the adaptability of 

compression algorithm in WSNs by using tunable data 
processing methods. In these researches, data precision is 
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restricted as an error tolerance, which is specified by each 
application. The compression can be lossless or lossy for 
different needs, such as wavelet transformation [7], 
predictive compression [8], data fitting [9], discrete cosine 
transform (DCT) [10], compressive sensing [11]–[12], fuzzy 
transform [13], and so on. Moreover, some lossless 
compression methods are improved to adapt to WSN 
applications. For example, an adaptive Huffman code is 
proposed in [14] that can achieve tunable compression with 
required accuracy. 

Another meaningful work is about the energy consumption 
in compression that has received more and more attentions 
instead of compression ratio. Different from other 
applications, energy saving is the ultimate design purpose of 
WSNs in most cases. As a result, compression cannot merely 
pursue high compression ratio, but take energy costs into full 
consideration [15]–[16]. It also reflects the adapt degree to 
WSN applications. Several studies have begun to focus on 
this. In order to reduce the total energy consumptions, a 
trade-off between computation during data compression and 
communication energy is made carefully. [15] constructs 
several energy models of computation and communication 
for mathematical analysis, but gzip is adopted which cannot 
be implemented in the resource constrained sensor nodes. In 
[17], error radius of prediction algorithm are tuned for 
optimizing the desired tradeoffs between data quality and 
energy saved, and a similar work is proposed in [18] based on 
the discrete cosine transform. 

Once the energy consumption of compression is 
considered, the practicality of several algorithms will be 
greatly reduced, especially for the one with high 
computational complexity. What is more, compression itself 
cannot get energy saving in some situations. According to 
this point, we introduce a novel pre-judgment mechanism to 
data compression. Once system estimates that compression 
cannot save energy, sensor node will send raw data directly. 
A similar work is presented in [19], which decides whether 
compressing or not based on time delay. 

As shown in our previous works, using “compression 
pre-judgment” can remarkably make sensor nodes more 
energy efficiency in most cases. It also makes our 
compression system more suitable for WSN applications [20]. 
Nevertheless, this system is still insufficient in two aspects. 
Firstly, the compression arbitration in [20] focuses on a 
single node, but not a whole network. Decisions about 
whether or not to compress data are made at the node-level, 
which are not involved in the ubiquitous multi-hop 
communication mode. As a result, data receiving is neglected 
when the total energy costs are calculated and subsequently 
compared. Since data reduction not only affects the energy 
dissipation in sending, but also in receiving, it is not 
comprehensive to estimate the energy-saving benefits of 
compression algorithms without data reception at the 
network-level. 

More importantly, the compression arbitration is proposed 
under the assumption that only one compression algorithm is 
adopted in the whole network, which would be unable to 
make the best use of data compression. According to the 
evaluation results of compression algorithms presented in [5], 
different algorithms show different properties though they 

are all aimed to be used in WSNs. Take the existing 
algorithms for example: LAA [21] and predictive coding [22] 
represent one kind of algorithms that have low complexity, 
whereas their compression effects are not prominent. 
Conversely, PMC-MR [23] and LTC [9] tend to achieve 
better compression ratio at the costs of more energy losses in 
calculation. It is clear that, in those algorithms, compression 
effect and algorithm complexity are two major considerations, 
but have different emphasis during the design. This is 
probably the main reason causing the differences between 
compression algorithms. As a result, when various settings of 
applications are selected such as data type, precision 
requirement, communication quality, node location, and so 
on, energy-saving benefits obtained by compression 
algorithms are distinct. 

In summary, from the point of view of the entire network, 
it is reasonable to believe that single compression algorithm 
cannot achieve better energy efficiency. An adaptive data 
compression with tunable precision is urgently needed which 
is able to determine the optimal execution strategy according 
to different application requirements and network settings. 
Benefit from the adaptability, compression algorithms with 
distinct characteristics will be adopted to maximize energy 
savings at the network-level. 

III. ADAPTIVE COMPRESSION SYSTEM 

A. System Description 
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Fig. 1.  Framework of the adaptive compression system 

 
In order to make the best use of different compression 

algorithms for the total energy savings, a lightweight strategy 
selection mechanism is proposed in this paper. Before 
compressing, an optimal executive strategy for each sensor 
node is derived by predicting and feature extracting of all 
related parameters, which makes the whole network achieve 
energy efficiency to the greatest degree. The adaptive 
compression system framework is shown in Fig. 1. 
According to the function of each module, the whole 
procedure can be divided into four steps: 

1. Prediction modeling 
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Before deciding on the optimal strategy, two models are 
established to predict the compression ratio and compression 
time on-line. Data compression under various algorithms is 
performed during this initial stage. Compression ratio and 
execution time for each algorithm based on different datasets 
and application requirements are recorded. These data are the 
basis for the prediction model building. Since this is done 
on-line, only a few samples are used to save energy. 

2. Feature extraction 
When starting the decision-making process, three types of 

feature need to be extracted, including raw data, algorithm 
and network. Among them, data type, error tolerance and 
algorithm type, which represent the features of raw data and 
algorithm respectively, are used to calculate the compression 
ratio and the required time. Moreover, the useful information 
extracted from the network include node position, 
communication power and retransmission rate. 

3. Compression evaluation & strategy selection 
Once the required parameters are ready, system can 

evaluate all kinds of alternative strategies by calculating the 
total energy consumptions including data compression and 
data transmission from each source node to sink. The optimal 
executive strategy can be obtained based on the comparison 
results. The selected strategy leading to the lowest energy 
loss may be an alternative compression algorithm, or may not 
perform any compression. 

4. Model modification 
Since compression ratio and execution time will greatly 

influence the energy consumptions in communication and 
calculation respectively, ensuring the predict precision can 
effectively improve the accuracy of the strategy selection. In 
view of this, model modification is used to guarantee the 
accuracy of the two predictions. Raw datasets are randomly 
selected to verify the predicted results. The model parameters 
will be modified if the prediction accuracy is not satisfied. 

B. Mathematical Analysis 
In our system, the optimal strategy choosing is based on 

the total energy costs of each sensor node in data 
communication. Correct energy calculation is very important, 
because it will directly affect the judgment of the strategy. 
Thus, the energy losses in both communication and 
calculation are considered here. 
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The proposed system is analyzed where Euncomp denotes the 

energy consumption for transmitting the raw data directly 
and Ecomp denotes the total energy costs for compressing the 

same data and then transmitting the compressed one. It is 
clear that Euncomp only involve the communication costs, 
whereas Ecomp is related to the compression costs in MCU and 
the communication costs in RF module. Considering that the 
cost in RF wake-up is the same, regardless of whether 
compression is executed, it will not affect the final decision 
results. On the other hand, since the length of the frame head 
is much smaller than the data part, it also can be ignored. As a 
result, Ecomp and Euncomp can be simplified as (1) to (4). 

L denotes the original data size and CR describes the 
compression ratio which is a function of the error bound e. 
Ttran is the time cost for transmitting one byte of data and 
TMCU is the time overhead for compressing one byte, which is 
strongly dependent on e. The transmit power PTX is closely 
related to the communication distance d, while the MCU 
power PMCU and the received power PRX are approximately 
constant when the related modules work in the active mode. 
It is clear that CR (e) and TMCU (e) are obtained by the two 
prediction models. As the sink is a super node with unlimited 
energy, there is no need to consider receiving energy 
consumption for its neighbors whose hop count h is equal to 
1. The data retransmission rate γi reflects the quality of 
communication channel in the multi-hop routing. The worse 
the communication channel becomes, the higher the data 
retransmission rate is. 

(2) shows that for different compression methods, the 
characteristics of each algorithm determine the energy saving 
benefits of sensor nodes. For the compression with low 
complexity, TMCU will be very small, which leads to a lower 
computational energy costs. If sensor nodes are close to the 
sink (h is small), computational costs will account for a large 
proportion, especially when PTX is turned down for the 
short-range communication. In this regard, algorithm with 
low complexity will bring a huge advantage. With the 
increase of h, the proportion of computational costs will be 
decreased, while the corresponding communication costs is 
obviously increased. At this point, the influence of 
compression ratio on communication energy consumptions 
will directly act on the total energy costs. Therefore, 
compression algorithm, which focuses on the compression 
effect gradually, shows its energy saving advantages with the 
increase of node hops. 

IV. ADAPTIVE MECHANISM IN PREDICTION MODELING 
Accurate prediction of compression ratio and execution 

time is an important part of ensuring the correct selection of 
strategy. Thus, an adaptive mechanism is introduced into our 
proposed system. This mechanism requires fewer samples to 
build the prediction models, which makes on-line modeling 
possible. Even if the initial models are somewhat inaccurate, 
they will be adjusted adaptively to the best results. The 
adaptive mechanism is illustrated in Table I. 

The beginning of the adaptive mechanism uses an initial 
sample step with a given range. Once a new sample is ready 
for verification, the compression ratio and execution time are 
both measured. The comparison then determines whether the 
difference between the predicted value and the real one 
exceeds a preset error bound. If the prediction error is large, 
the information including the compression ratio and time 
overhead are recorded for the new model. Two prediction 
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models are rebuilt when the sample step (step) reaches the 
minimum value or the sample step is reduced continuously. 
Alternatively, the sample step is increased until the maximum 
value. 

 
TABLE I 

PROCESS OF THE ADAPTIVE MECHANISM 

Algorithm   Adaptive mechanism for prediction modeling 

1:  set an initial sample step (step)  
2:  set an allowable step range [stepmin, stepmax] 
3:  if (sample is awaiting verification) then 
4:    measure CR and TMCU 

5:    if ((|prediction error of CR|>=error bound) 
                 or (|prediction error of TMCU |>=error bound)) then 

6:      record compression ratio and time overhead for the sample 
7:      if (step == stepmin) then 
8:          rebuild the models with the recorded samples 
9:          reset step 

10:      else 
11:          decrease step 
12:      end if 
13:    else 
14:      increase step until stepmax 
15:    end if 
16:  end if 

 

V. PERFORMANCE EVALUATION 

A. Experimental setting 

In order to verify the energy saving effect of the proposed 
system, the experimental settings are confirmed, such as 
original datasets, network topology, alternative strategies and 
experimental platform. 

1. Original datasets 
Datasets from the Tropical Atmosphere Ocean Project 

(TAO) [24], which collects real-time oceanographic and 
meteorological data in the Pacific Ocean, are selected for the 
experiments. Among the various types of datasets, air 
temperature, sea level pressure and relative humidity are 
chosen because of their very different data characteristics. 

2. Network topology 
Grid-based network topology is adopted with nodes even 

distribution, as show in Fig. 2. 

 
Fig. 2. Network topology in the test 

 

The network size is 25*25, and the total number of sensor 
nodes is 625. In these nodes, sink node is located in the center 
of the whole network, which is denoted by a large solid circle. 
The rest of the nodes are homogeneous. Each source node is 
routed to the sink using SPT (Shortest Path Tree) [25]. 
Because of the even distribution, sensor nodes are assumed to 
transmit data with a uniform RF power level and 
retransmission rate. 

3. Alternative strategies 
Based on the evaluation results of data compression in [5], 

the tests select four different algorithms with better 
performances, as shown in Table II. Combined with the 
implementation of not compressed, sensor nodes can choose 
the best on from these five alternative strategies. 

 
TABLE II 

COMPRESSION ALGORITHM IN THE TEST 

Algorithm Type Remark 

Single Moving Average Predictive compression N=3 
LAA Linear regression —— 
PMC-MR Linear regression —— 
LTC Linear regression —— 

 
4. Experimental platform 
We choose MicaZ nodes as the test platform for our 

experiments. They are commonly used in WSNs. The 
processor is an 8-bit Atmel ATmega128L microcontroller, 
and the processor speed is fixed at 8MHz. As the results 
shown in [26], supply current of processor is nearly constant 
in active mode. Therefore, we consider PMCU as a fixed value 
in the test. TMCU is obtained by ATMEL AVR Studio [27]. In 
MicaZ node, a CC2420 unit is responsible for 
communicating with other nodes. It is a single-chip RF 
transceiver that operates at 2.4 GHz. According to [28], the 
data transmission rate of a MicaZ node is up to 250 kbps. 
Besides, transmit power is configurable; in that case, CC2420 
can be powered down by setting control register when 
communication distance is short. In the test, we assume that 
source nodes send information up to 100 m when the transmit 
power level is set to 31. Experimental parameters mentioned 
above are listed in Table III. 

 
TABLE III 

VALUES OF THE EXPERIMENTAL PARAMETERS 

Symbol Value Unit Remark 

d 5-100 m Outdoor monitoring 
PMCU 26.4 mW 8mA current draw 
PTX 57.42 mW PA_Level=31 
PRX 62.04 mW 18.8mA current draw 

Ttran 32 µs 250kbps data rate 

 
5. Relevant assumption 
Several reasonable hypotheses are given in our 

experiments. First, when source nodes, which are 
homogeneous, establish a communication route with the sink 
using SPT, they are able to get the communication hops h and 
the transmit power PTX. Second, accuracy requirement of the 
data is given by WSN applications, and this information is 
sent to the whole network by the sink. Third, the test network 
is uniform distribution, so the node density determines the RF 
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transmit power required by the single hop communication. 
With the failure of the nodes, the density will be reduced, and 
the RF power and data retransmission rate will be increased 
accordingly. 

B. Impact of the characteristics in data and network 
In order to explore the impact of the characteristics in 

original data and network on energy saving strategy selection, 
we choose data accuracy, transmit power level and data 
retransmission rate as test variables for the deeply analysis. 

Taking air temperature as an example, Fig. 3 shows the 
results of selecting the best compression implementation 
strategy by our adaptive compression method, which are set 
by the different data accuracy requirements, the transmit 
power level and the data retransmission rate. Among them, 
taking into account the actual situations of WSN applications, 
the variation grades of data accuracy, transmission power and 
retransmission rate are set to 1-12, 3-31, 10%-150%, 
respectively. 

Comparing Fig. 3(a) and Fig. 3(b) reflects the impact of 
the data accuracy on strategy selection. It can be seen that 
there are three alternative strategies in the results: PMC-MR, 
LTC and no compression. When the accuracy level is set 
higher (the numerical value is small), source nodes near the 
sink are more inclined to choose no compression, which is in 
good agreement with the conclusion that compression may 
not achieve total energy savings in any case. At that time, due 
to the compression algorithms cannot achieve satisfactory 
compression effect, the energy savings in communication 
may not compensate for costs in calculation. Therefore, from 
the point of view of total energy costs in nodes, transmitting 
raw data without compression will obtain lower energy losses. 
With the increase of the distance between source nodes and 
the sink, the benefit of compression is also increasing. As a 
result, the nodes tend to select the algorithm (LTC in Fig. 3) 
which has a better compression effect. 

Reducing data accuracy requirements, the effect obtained 
by data compression is gradually clear. Sensor nodes mostly 
choose to compress at first, and send the compressed data 
instead of the original ones. Furthermore, during the 
selection of different algorithms, nodes near the sink will 
make a trade-off between computational complexity and 
compression effect, whereas nodes away from the sink will 
still consider the compression effect as a primary goal. 
Therefore, from the results of Fig. 3(b), although LTC can 
achieve the minimum compression ratio among the four 
compression algorithms, source nodes near the sink still 
select PMC-MR as the best energy saving strategy in virtue 
of its high computational costs. 

Comparing Fig. 3(a) and Fig. 3(c) reflects the impact of the 
transmission power level on strategy selection. The lower the 
transmission power level is, the higher the probability that 
compression wastes the total energy costs. As a result, there 
are over 50% of the nodes do not compress the raw data in 
Fig. 3(a). With the increase of the transmission power, the 
advantage of compression in energy savings becomes more 
obvious. Thus, more nodes choose to perform the 
compression operation, as shown in Fig. 3(c). 

The impact of the retransmission rate on strategy selection 
can be seen in Fig. 3(b) and Fig. 3(d). The lower the data 

retransmission rate, the more likely that node that is close to 
the sink selects no compression. With the deterioration of 
channel quality, retransmission rate and communication 
energy costs increase correspondingly, and nodes will 
gradually tend to select the algorithm which has good 
compression effect. 
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(d) 

□: PMC-MR    +: LTC    ◊: No compression 
Fig. 3. Best compression strategy in different situations: (a) data accuracy: 
level 1; transmission power: level 3; retransmission rate: 10%; (b) data 
accuracy: level 12; transmission power: level 3; retransmission rate: 10%; (c) 
data accuracy: level 1; transmission power: level 23; retransmission rate: 
10%; (d) data accuracy: level 1; transmission power: level 3; retransmission 
rate: 100%. 
 

C. Energy-saving effect of the adaptive compression 
In order to evaluate the energy-saving effect of the 

proposed compression algorithm quantitatively, the total 
energy consumptions of the sensor nodes are measured in the 
following two cases. One is that all nodes use a single data 
compression algorithm or do not perform any compression, 
and the other is that each node adopts the adaptive 
compression to choose the best one from the five alternative 
strategies. 

In fact, if the nodes use the optimal strategy in each data 
transfer, it can be considered as the best situation of energy 
costs. Taking this ideal case as a reference, the statistical 
results of the total energy costs in different cases are 
compared in the form of maximum deviation (expressed as a 
percentage), as shown in Table IV. In this table, E, RF and γ 
represent the level of data accuracy, transmission power and 
retransmission rate, respectively. That is to say, 
E2_RF7_γ0.1 denotes that the data accuracy and the 
transmission power are in level 2 and level 7, and the 

retransmission rate is 10%. 
From the results of Table IV, it is clear that the proposed 

compression method can make the whole sensor nodes 
complete data transfer tasks with nearly optimal energy 
consumptions, no matter how the precision requirement, 
transmit power and retransmission rate change. It should 
mainly owe to the adaptive mechanism introduced into the 
data compression that uses strategy selection for energy 
efficiency. When the accuracy requirement is high, like E2, 
data compression cannot obtain a satisfied compression ratio. 
Instead of saving energy costs, compression increases the 
additional computational losses. Thus, the total energy 
consumption has a greater deviation from the optimal once 
complex compression is executed. At that time, no 
compression or compression algorithm with lower 
complexity will make the energy consumption approximate 
to the optimal. With the decrease of the accuracy requirement, 
the compression method gradually reveals the advantages of 
energy savings. More and more sensor nodes adopt 
compression methods, especially the one with good 
compression effect and low implementation complexity, and 
no compression gradually increases the degree of deviation 
from the ideal situation. 

Due to the limitation of prediction accuracy in 
compression ratio and execution time, erroneous judgment 
will inevitably occur during the process of compression 
evaluation and the following strategy selection. It also 
probably leads to that a single compression algorithm is more 
close to the optimal energy consumption than the proposed 
one in some cases, for example E10_RF7_γ0.1. But in 
general, the adaptive compression method can provide a 
relatively accurate energy efficient strategy, so that sensor 
nodes can complete data transmission under an approximate 
optimal energy costs, and the highest degree of deviation is 
no more than 5%. 

Certainly, the introduction of adaptive mechanism will 
also bring two aspects of the costs, namely the overhead of 
computation and storage. By simulation, the time cost of 
executing the proposed method once is about 0.4ms (about 
3000 clock cycles), which is approximately equal to the time 
overhead of using the LAA algorithm to compress 50 bytes 

TABLE IV 
MAXIMUM DEVIATION OF THE TOTAL ENERGY COSTS IN DIFFERENT SITUATIONS 

Parameters Forecast LAA PMC-MR LTC No comp. Adaptive comp. 

E2_RF7_γ0.1 59.84% 31.99% 36.17% 43.17% 12.99% 4.77% 
E2_RF7_γ1.0 32.07% 17.66% 15.69% 19.32% 13.89% 3.07% 
E2_RF15_γ0.1 46.78% 25.17% 26.51% 31.94% 13.17% 4.00% 
E2_RF15_γ1.0 25.69% 14.64% 11.08% 13.86% 13.99% 3.08% 
E2_RF23_γ0.1 38.07% 20.66% 20.07% 24.45% 13.32% 3.54% 
E2_RF23_γ1.0 21.57% 13.68% 8.15% 10.36% 14.07% 3.08% 
E5_RF7_γ0.1 52.98% 40.97% 15.70% 32.13% 48.00% 4.96% 
E5_RF7_γ1.0 34.34% 41.80% 5.89% 12.47% 49.56% 3.83% 
E5_RF15_γ0.1 43.44% 41.13% 9.29% 22.33% 48.30% 3.87% 
E5_RF15_γ1.0 32.76% 41.89% 5.86% 9.84% 49.73% 3.76% 
E5_RF23_γ0.1 37.61% 41.27% 5.69% 16.16% 48.56% 3.64% 
E5_RF23_γ1.0 32.77% 41.97% 5.88% 8.41% 49.88% 3.78% 
E10_RF7_γ0.1 64.93% 97.17% 3.37% 40.58% 133.31% 3.55% 
E10_RF7_γ1.0 65.65% 99.70% 3.79% 24.36% 137.68% 3.79% 
E10_RF15_γ0.1 65.04% 97.57% 3.43% 36.29% 134.01% 3.43% 
E10_RF15_γ1.0 65.59% 99.50% 3.75% 26.82% 137.34% 3.75% 
E10_RF23_γ0.1 65.14% 97.93% 3.49% 32.92% 134.62% 3.49% 
E10_RF23_γ1.0 65.78% 99.85% 3.81% 24.44% 137.77% 3.81% 
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of raw data. Since the execution frequency of the method 
depends on the change frequency of error tolerance, transmit 
power and retransmit rate, it can be considered that the 
computational energy consumptions of the adaptive 
mechanism is acceptable. 

On the other hand, the implementation of the adaptive 
mechanism is based on a set of alternative strategies. 
Therefore, it needs to embed all kinds of alternative strategies 
into sensor nodes. Through the realization of each 
compression algorithm, the storage overhead is obtained, as 
shown in Table V. Compared to the overhead of data 
acquisition and communication (about 12540 bytes), the 
storage cost of the adaptive mechanism is also acceptable. 

 
TABLE V 

STORAGE OVERHEAD OF COMPRESSION ALGORITHMS 

Algorithm Storage cost Unit 

Single Moving Average 902 byte 
LAA 356 byte 
PMC-MR 690 byte 
LTC 2490 byte 

 

VI. CONCLUSION 
Different emphases on algorithm design will influence the 

energy efficiency of data compression under various 
applications and network environments. In order to raise the 
energy efficiency of data compression for the whole network, 
this paper presents an adaptive data compression with tunable 
precision, which enables a real-time adjustment of 
compression strategy. 

By the prediction and feature extraction of the relevant 
parameters, the method can provide the optimal energy 
saving strategy for different sensor nodes. Experimental 
results show that, by means of the network level 
energy-saving improvement, all nodes can complete the data 
transfer task with near optimal energy consumptions, and the 
deviation degree is no more than 5%. Furthermore, the 
method only introduces low costs in computation and storage, 
and can effectively act on different error tolerance, transmit 
power and retransmission rate to meet the dynamic 
requirements of the network. 
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