

Abstract—In high-performance computing systems, each

computing node communicates via a high-speed serial bus to
ensure sufficient data transfer bandwidth. However, each
computing node of different bus protocols is very difficult to
communicate directly, which is not conducive to the
extensibility of HPC (High performance computing) clusters. In
this paper, we propose UPI, a inter-node communication
interface based on FPGA, which can transmit different bus
protocols (PCIe protocol and Ethernet protocol) simultaneously.
More importantly, many different bus-supported computing
nodes can be connected to the same HPC system. We
implemented our UPI system on “Gemini” prototype
verification board with two Xilinx Virtex-6 FPGAs. The results
show that the transmission speed of the UPI can reach
11.04Gpbs (PCIe Gen2 X4) and 4.32Gpbs (Gigabit Ethernet)
when DMA payload sizes is greater than 260KB and 80KB,
respectively.

Keyword—FPGA-based SoCs, PCIE, Gigabit Ethernet, HPC

I. INTRODUCTION
ith the rapid development of high-performance
FPGA-based devices, high-performance computing

system performance bottleneck has shifted from the ability of
single node to the architecture of the HPC clusters. In the
system-level or board-level interconnect system, high-speed
serial bus technology with its enormous advantage is rapidly
replacing traditional parallel bus technology and becoming
the main technology of high-speed FPGA-based SoC design.
As the applications of the high-speed serial bus technology
gradually expand to all research area, more and more articles
focus on the technology, especially the multi-node
interconnect technology and the high-speed I/O interface
technology.

———————————————————————
Manuscript received February 24, 2016. This work is a follow up of

the invited journal of the accepted conference paper for the 18th
International Conference on Advanced Communication Technology. This
research was supported by the “Strategic Priority Research Program” of the
Chinese Academy of Sciences, Grant No.XDA06010402-4.

An Wu is with the Department of Physics, University of Science and
Technology of China, Hefei, Anhui Province, China (corresponding author
to provide phone: +86-159-5510-2092; e-mail: wuan@ mail.ustc.edu.cn).

Xi Jin is with the Department of Physics, University of Science and
Technology of China, China (e-mil:jinxi@ustc.edu.cn).

XueLiang Du is with the Department of System verification, Chinese
Academy of Science Institute of Automation, China (e-mil:
xueliang.du@ia.ac.cn).

Shuaizhi Guo is with the Department of Physics, University of Science
and Technology of China, China (e-mil:dybjxmg@mail.ustc.edu.cn).

Effective inter-node communication is receiving
significant attention due to its increasingly important
applications in high-performance computing, thus inter-node
interconnection technology is drawing lots of attractions
from more and more researchers. The interconnection
methods are based on three main protocols: PCIe, Ethernet,
and Serial RapidIO (SRIO). However, they have their own
using domain. They can't communicate each other directly,
and for the same reason, each computing node can't be
compatible on the means of communication.

In order to achieve a good compatibility between these
protocols, many problems cannot be neglected. For example,
different bus communication requires bridging conversion,
the process is complicated and performance loss is hard to
avoid. The problem appears in these bus controllers'
hardware design. In FPGA-based SoCs, both of Ethernet
controller and PCIe controller have an external physical layer
(PHY) chip. The controllers' PHY chip of mentioned three
types are different, mainly due to its PHY's interface signals
and communication speeds are not identical. Ethernet PHY
chip mainly realizes 64b/66b encoding (Gigabit Ethernet),
and PCIe PHY chip completes the 8b/10b encoding (PCIe 2.0
and below). However, they still have a lot in common, e.g.,
scrambling and parallel-to-serial conversion all need to be
implemented in PHY chip.

The simplest way to solve the compatibility issue is to add
all these bus protocols to a computing node, but it requires
more PHY chips, differential pairs and hardware resources. A
better approach is to communicate with these computing
nodes through the same interface without changing the
interface types. Generally, the physical layer of PCIe,
Ethernet and SRIO cannot be shared. We try to merge the
physical layer of three bus protocols, finally, we built a
unified physical layer interface which is actually the same
functions for their upper layer protocols.

The benefits of a unified physical layer design are as
follows:

 A unified physical layer can provide a compatible
interconnection bus with three protocols.

 Either PCIe, Ethernet or SRIO devices can be plugged
into the same interface for communication.

 The problem of performance loss in bridging process
can be settled.

In this paper, we proposes UPI (Unified PHY Interface)
system, a flexible interconnection system of inter-node
communications based on FPGA devices. Our design shares

A Flexible FPGA-to-FPGA Communication
System

An Wu*, Xi Jin*, Xueliang Du**, ShuaiZhi Guo*
*Department of Physics, University of Science and Technology of China, Hefei, Anhui Province, China

**Department of System verification, Chinese Academy of Science Institute of Automation, Beijing, Beijing
Province,China

wuan@mail.ustc.edu.cn, jinxi@ustc.edu.cn, xueliang.du@ia.ac.cn

W

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 836

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

mailto:2second.author@second.com

Fig.1. Hardware structure of UPI system

the same portion of PCIe 2.0 and Gigabit Ethernet's physical
layers, and merges their different parts. The UPI can transmit
PCIe and Ethernet packets with one physical layer chip. The
computing node of HPC (High performance computing)
clusters using different protocols can connect with each other,
meanwhile, the bridging delay and loss in performance can
be eliminated, and through the interface design we can
implement a more flexible and efficient FPGA-based
computing clusters.

The remainder of this paper is organized as follows:
background and related work are discussed in section II. We
describe the design of UPI in section III. The experiments and
results are discussed in Section IV. Finally, we present a
conclusion in Section V.

II. RELATED WORK

A. Background on PCIe and Gigabit Ethernet
PCIe is a high-speed serial bus includes transaction layer,

data link layer and physical layer. The Transaction layer
contains TLP (Transaction Layer Packets) control
mechanism. The Data Link layer primary responsibility is to
provide a reliable mechanism for exchanging TLPs between
the two components on a link [1]. At the physical layer
(PHY), the PCIe bus provides a serial high throughput
interconnect medium between two devices. PCIe PHY
contains two sub-layer: Physical Coding Sub-layer (PCS) and
Physical Media Attachment (PMA)[2]. There have been
three versions of the PCIe bus. For a single lane, data transfer
rate for versions 1.x, 2.x and 3.x are 2,4 and 8Gbps [3].

There are two layers in hardware of Gigabit Ethernet,
including physical layer and data link layer (DLL). The main
function of DLL is to complete the frame transmission and
frame reception. Gigabit Ethernet PHY has three main
functions: First, It's provide transferring path of data to data
terminal equipment; Second, to be a proper entities for data
transmission, not only to ensure that data transfers properly
on it, but also to provide sufficient bandwidth and reduce
channel congestion; third, complete management of PHY.
Upper layer and PHY interconnect with each other via a
MII/GMII/RGMII/SGMII interface, through the manage
interface in MII, the upper layer can control and monitor
PHY [4].

B. Xilinx GTX
Xilinx GTX is a programmable high-speed serial

transceiver capable of speeds from 500Mbps to 12.5Gbps.

Fig.2. Software structure of UPI system

GTX module in Xilinx FPGA can be realized different serial
interconnect protocols, such as SATA, PCIe, EMAC and
SRIO. Dynamic Reconfiguration Port (DRP) is an interface
module which allows the dynamic change of parameters of
the GTX. Through the DRP interface, we can realize the
dynamic changes of each interconnect protocol, making it
possible for system to adapt to the protocol change. QPLL
(Quad PLL) and CPLL (Channel PLL) are two kinds of PLL
circuit with different clock rates embedded in GTX module
[5].

C. Existing Work
Ethernet is a widely used protocol in HPC computing

sysems, which key is its inter-node routing policy. Most
system designers make use of the Ethernet protocol to
constitute multi-node communication network, the
transmission rules follows the Ethernet protocol. However, as
more and more high-performance embedded devices appear,
researchers are turning their attentions to the direct communi-
cation of GPU, FPGA, DSP and other processing units. As a
high-speed communication interface, the performance and
bandwidth of PCIe meets our design requirements.

Many technologies based on PCIe protocol are proposed,
such as InfiniBand and Hypertransport. The InfiniBand
Architecture (IBA) is an industry-standard fabric designed to
provide high bandwidth/low-latency computing, scalability
to ten-thousand nodes and multiple CPU cores per server
platform, and efficient utilization of compute processing
resources. InfiniBand adapters and switches deliver 56Gb/s
bandwidth today and are expected to deliver 100Gb/s by

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 837

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

2016 [6].
For chip-to-chip communications, AMD HyperTransport

(HT) are used to connect between CPUs, as well as between
CPU and memory. It provides the integral interconnect
backbone structure that links all of the core functional units
(processor, memory and I/O elements) in a board-level
system. As an optimized board-level architecture,
HyperTransport provides the lowest possible latency,
harmonizes interfaces and supports scalable performance [7].

BlueLink is custom interconnect toolkit for commodity
FPGA clusters. Traditional standard protocols such as
Ethernet and Interlaken are a boon for FPGA-to-other-system
interconnect, they are inefficient and unnecessary for
FPGA-to-FPGA interconnect. BlueLink can use all the
transceivers available on an FPGA board, over any physical
medium. Comparing to 10G Ethernet, 10G BlueLink uses
65% of the logic and registers of 10G Ethernet and uses 15%
of the memory of 10G Ethernet. To consider throughput,
BlueLink's latency is about equivalent to Ethernet in the
fully-loaded case.

III. SYSTEM DESIGN

In this section we illustrate UPI hardware architecture and
software API, as well as explaining the flexibility and
compatibility of UPI architecture.

A. Overall System Architecture
Classic HPC cluster structure is shown in Figure 1. The

letter M indicates the the computing machine, and letter R
indicates the routing policy. We implemented this structure
on FPGA-based devices as shown in the middle of Figure 1.
In our UPI system, the computing machine and routing policy
are integrated into FPGA's user logics. Each FPGA-based
computing node is communicate with each other through our
high-speed UPI bus. The UPI interface is responsible for
connecting each FPGA-based node between user logics and
UPI bus.

The UPI interface consists of a hardware component and a
software component as shown in the right of Figure 1 and
Figure 2. The hardware component mainly consists of two
different types of bus controllers, the unified FIFO interface,
Interface Convertor and the DRP control module. Interface
Convertor is used to convert two different physical layer
interface signals into a standard GTX interface signals. The
DRP control module is used to dynamically reconfigure the
parameters of GTX.

Software component is divided into two parts, including
standalone board driver and testing code. Our standalone
board driver consists of PCIe and Ethernet device driver,
DRP control module driver and DMA driver. Test code
consists of PCIe TLP packets reading and writing tests,
Ethernet TCP/UDP packets reading and writing tests,
equipment switching test. To make our architecture more
flexible, the software API provides the simplest and effective
way to call the underlying driver functions, as well as
shielding the details of low-level operations. By switching
the functions of high-speed serial transceiver, user logics can
easily achieve the mutual communication between the two
protocols.

B. DRP Control Module
DRP control module (DCM) needs to complete link speed

selection task and link training control task. Thus, two
important parameters for DCM to consider are link width and
link data rate. After system boot up, PCIe requires link
training process to negotiate the link width and link speed
between two sides of PCIe controller. Ethernet also has a
similar link training process. The key function of DCM is a
link training state machine, which stores the link state of two
protocols. When the link is switched on, DCM stores current
link state and jump to the next state without need to retrain
link. The switching time of the two controller is CPLL reset
to CPLL locked. The DCM state machine is shown in Figure
3.

At the beginning of link initialization process, both sides
are in Silent mode. Host side starts to seek Device side by
sending training sequence in Seek mode. If device side sends
its training sequence back, the state will jump to the
Discovery mode. In this state, each side sends current link
width and link rate for handshaking.

UPI has three configuration modes for link width:

1) If both sides are four lanes, DCM will jump to
ISM_4X_MODE state;

2) Theoretically, two lanes have six kinds of interconnect
methods. Considering that each channel sends the same
packets data, DCM will jump to ISM_2X_MODE state;

3) In this mode, DCM will jump to
ISM_1X_MODE_LANE3, ISM_1X_MODE_LANE2,
ISM_1-X_MODE_LANE1 or ISM_1X_MODE_LANE0 state,
the details is as follows.

The configuration modes can be dynamically changed by
ISM_2X_RECOVERY, ISM_1X_RECOVERY or
Discovery state. We build a 32-bit width data interface to
transmit packet and connect it to Interface Convertor module.
Each channel has different negotiation methods
corresponding to UPI channel features in mode three.

Fig.3. DRP control module link training state machine

The link speed can be changed by modifying QPLL or
CPLL multiplication factor and crossover factor. GTX
supports 16, 32, 64 and other data width, higher data width
can be achieved by stitching several GTXs. In order to
complete the link speed and width adjustment, DRP control

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 838

Copyright ⓒ 2016 GiRI (Global IT Research Institute)

module generates different interface signals in different states.
For example, when the bus controller is PCIe Gen2 X4, the
CPLL reference clock can be adjusted to 125MHz, CPLL
output rate 2.5GHz and data link width can be adjusted to 32
bit data with 4bit k symbol indicator.

C. Interface Convertor
PCIe PHY interface is called PIPE interface, and Ethernet

PHY interface is called RGMII In order to achieve a mutually
compatible interfaces, we need to make PCIe and Ethernet
physical layer interface convert to the same GTX interface.
This conversion process is completed in Interface Converter.
Table 1 shows the interface signals associated with the GTX,
including indicators sending and receiving 32-bit words with
4-bit k symbol and link status control signals.

TABLE I
INTERFACE CONVERTOR RELATED SIGNAL

Signal I/
O Description

GTX

mac_phy_rxdata[31:0] I receive data

mac_phy_rxdatak[3:0] I K character
indication

mac_phy_txdata[31:0] O transmit data

mac_phy_txdatak[3:0] O K character
indication

phy_mac_rxvaild[3:0] O receive data is valid

phy_mac_rxelecidle[3:0] O receive electrical
idle

phy_mac_phystate[3:0] O PHY functions
mac_phy_txdetectrx_loopba
ck[3:0] I enable receiver

detec-tion sequence

mac_phy_txelecidle[3:0] I transmit electrical
idle

mac_phy_txcompliance[3:0] I Compliance
sequence

macphy txpolarity[3:0] I Invert the received
data when asserted

mac_phy_powerdown[2:0] I PHY power down

DRP

bus_state_write[5:0] O
current controller
state
write to DRP

bus_state_read[5:0] I
current controller
state
read to DRP

bus_switch_en O bus switch enable
bus_link_speed[3:0] O bus link speed
bus_link_width[15:0] I bus link width

The Interface Convertor mainly includes the following
features:

 A set of dual-port RAM, the amount of which is equal
to the converted upper interfaces.

 Combining and scattering data to meet UPI interface
data width.

 Generating PHY's control signals. If the control signals
provided by GTX interface, it can be directly
connected to GTX. Signals that GTX does not provide
will be generated in Interface Converter according to
the control signals' relations or be set to a constant
value. For example, the PCIe PIPE interface signal
mac_phy_blockaligncontrol is only used in PCIe 3.0,
which isn't used in our design, so we give it a constant
value in Interface Converter.

 Transmitting link information to the DCM module,
completing real-time parameter changes for GTX. The
link status signals will change into the DCM signals.

Interface Convertor signals are illustrated in Table 1.
Some signals, such as clock and reset, are omitted in this
table.

D. Data structures
There are three kinds of data structure in our UPI system:

Primary data with DMA descriptors, PCIe and Ethernet
packets data with their own protocols, GTX data with Control
symbol. The Primary data has been stored into DDR with
some DMA descriptors. When PCIe or Ethernet controller
obtains a writing command from CPU, a segment of primary
data will be sent to the controller. PCIe controller transfers
primary data to Transaction Layer Packets(TLP). Data Link
Layer Packets(DLLP) are in charge of link maintenance. TLP
packets will be assembled with a sequence number and a
LCRC code in Data Link Layer. Each TLP can accommodate
4096 Bytes data payload. In Ethernet controller, related
packets are TCP, UDP, etc., which have 256 Byte's data
payload.

When GTX receives packets data form controllers, each
kind of packets is marked with a identifier and two kinds of
control symbols (CON symbol and END symbol). We
distinguish PCIe and Ethernet packets with binary code ''01''
and ''10'', respectively. Different packets have different CON
symbol. For example, STP symbol is added to the head of
TLP packets corresponding to the identifier. The details of
CON symbols are listed in table 2. In our design, the packets
with identifier is only generated and digested in UPI layer.

TABLE II
CONTROL SYMBOLS IN DCM

E. Hardware Interface and Software API
Our UPI system interface includes the following

functions:
 FIFO-based DMA interface.
 DCM interface.
 System interrupt interface.
We use FIFO as the DMA interface for three reasons. First,

FIFO can be used between two clock domains. Our PCIe
system clock is 125MHz while Ethernet is 100MHz. Two
clock domains can be isolated by FIFO interface. Second,
FIFO is a standard interface. It can shield the low-level
details of UPI hardware, so the transmission process in UPI is
transparent for user logic. Third, the width and depth of FIFO
can be configured by circumstances of the design and it's
convenient for developers to comprehend packet structures.
FIFO-based DMA interface is used to transmit data from
system's memory to system's I/O controller.

The DCM interface uses a simple DCM bus to read and
write DCM registers. We provide DCM interface to make our
system easier to operate. For some customized HPC clusters,
the DCM interface provides a function to change the bus
protocol to meet developers' requirements. Through the
DCM Interface, developers even can change the type of
communication protocol, which makes the system more
flexible of protocol switching.

System interrupt interface is a standard vectored interrupt
interface. The main functions provided by the system
interrupt interface are software interrupt generating, interrupt

Standard identifier Control symbol
TLP 01 K27.7
DLLP 01 K28.2
TCP 10 K28.0
UDP 10 K28.4

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 839

Copyright ⓒ 2016 GiRI (Global IT Research Institute)

source searching, interrupt number generating and interrupt
priority setting. Different interrupt numbers mean that
different interrupt exceptions and different CPU response
process.

Fig.4. Structure of FPGA-based verification system

Fig.5. Flow chart of UPI testing program

Therefore, a interrupt-supported CPU is required to handle
PCIe and Ethernet interrupts. We set these two kinds of
interrupts to the same priority, and provide the appropriate
interrupt number and interrupt type functions, make CPU to
poll interrupt easily after the interrupt exceptions is
generated.

Corresponding to the hardware modules, software API is
also provides three functions: 1: DMA data read and write. 2:
DCM read and write. 3: software interrupts. These APIs are
listed as follows, some basic functions such as system reset
are omitted in this list:

unsigned int drp_write(unsigned char addr, unsigned int data);
unsigned int drp_read(unsigned char addr);

int PCIe_dma(int len, int *ddr_data_1, int *ddr_data_2);
int GMAC_dma(int len, int *ddr_data_1, int *ddr_data_2);

void PCIe_Interrupt(unsigned int ictl_prio,int ictl_number);
void GMAC_Interrupt(unsigned int ictl_prio,int ictl_number);

IV. EVALUATION

In this section we implemented UPI system on “Gemini”
prototype verification board. Then we evaluate UPI's
performance and compare it with other I/O technologies.
Finally, we show UPI's flexibility by presenting three
practical applications that employ UPI as their
communication interface.

A. System Verification Platform
Our system verification platform called “Gemini” is shown

in Figure 6. The main hardware components provided by
“Gemini” board are two PCIe slots, two Xilinx
xc6vlx365tff1156-1 FPGAs, a SODIMM (Small Outline
Dual In-line Memory Module) DDR3 and a CF Card's slot.
The UPI with a DMA-oriented Synopsys PCIe controller and
a Synopsys Ethernet controller is integrated into each FPGA.
we also implemented a SoC (system on chip) with a
Microblaze CPU. The structure of FPGA-based verification
system is shown in Figure 4. The Microblaze CPU
communicate with UPI by ARM AXI (Advanced Extensible
Interface) bus.

Figure 5 shows the whole process of UPI verification test.
Primary data has been stored into DDR with some DMA
descriptors. When UPI obtaining a writing command from
CPU, a data segment will be sent to UPI system. UPI
systemtransfers primary data to physical layer. A typical
program for UPI test is as follows:

1) Download bit and elf file to the board.

2) Initialize the CF card, DDR controllers, UPI system.

3) Configure DMA descriptors, move data from CF card
into DDR, configure GTX to PCIe gen2.0 X4 mode.

4) Transfer data from FPGA A to FPGA B.

5) Store data in another DDR address in FPGA B.

6) Calculate complete time.

7) Compare the two data segments, calculate error amount
if they are different.

8) Switch GTX to Ethernet mode. Repeat steps 3-5.

9) Reconfigure switching speed, and repeat steps 3-6.

B. System test
The UPI simulation process uses standard functional test to

simulate UPI system as shwn in Figure 7. The simulation
model used in our test is described as follows: 1: UPI_top is
the top-level module of UPI system. The gmac, pcie and gpio
are some sub-modules in UPI_top module. 2: Our UPI test
system have two differential input clock. The host provide
100MHz reference clock and transmit the clock to Gemini
board. We use an extra BUF module to receive reference
clock before clock is divided in PLL module. After clock is
divided in PLL, it connected with GTX input clock, auxiliary
clock and AXI interface clock. 3: The test system has only
one global reset clock, which comes form Gemini board reset
pin. The GTX reset process is faster than controllers, so we
build a 10us delay circuit to make the GTX and controllers
reset at the same time.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 840

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

System test uses Vivado 14.3 ISIM simulation and VCS

Fig.7. Structure of UPI system test

2014.09-3 simulation tools to verify our design. After
functional simulation pass, system test uses Synplify Premier
H-2013.03 for RTL implementation and Vivado Chipscope
for testing signals observation. The simulation result is
shown in Figure 7.
The signal uli_lane_oe_3 available after the other three
channels' signals because of the UPI system treat lane four as
a special channel. Lane four is used to send control signal and
some special communication signals.

Fig.8. UPI system simulation test

Figure 9 shows the FIFO state when UPI system starts to
work.

Fig.10. DCM and Interface Convertor states of UPI system

Fig.9. FIFO state of UPI system

Using chipscope to observe the signals come form DCM
and Interface convertor, we can clearly see that the current
link is in the negotiation state before time of 124us as shown
in Figure 10.

After time of 124us, DCM state machine will jump into the
next state for exchange link information and link width.

The final placement and layout of the UPI system are
shown in Figure 11. Under the control of the PCIe and
Ethernet function can be switched by DCM. It uses fewer
resources to complete switching function and improves the
flexibility of UPI system. This process needs cost some extra
area. However, it would increase the system running time
significantly for low data throughput or real time
applications.

Fig.11. UPI system layout diagram

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 841

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

The design was constrained to the right hand corner of the
device where the PCIe and Ethernet blocks resides, as shown
in Figure 2. The place with red marked is our UPI wrapper.
The maximum clock rate of UPI system is limited only by the
design, build tools, and FPGA placing and routing methods.

Fig.12. Performance of UPI system

C. Experimental Results
Maximum data rates of PCIe and Ethernet are 20Gbps and

4Gbps, respectively. Effective data rate(MB/s) =serial bus
clock frequency * 1 Byte(bit/8)* number of ports * encoding
format * half-duplex/ full-duplex.

For our design, using X4 lanes, 8/10encoding, full-duplex
mode and 2.5GHz(PCIe)/1.25G(GMAC) serial bus clock,
effective data rate is 16Gbps/8Gpbs, i.e., 4Gpbs/2Gpbs per
lane. System performance can't reach the maximum data rate
because of some limits. The highest data rate in test is about
74% of the maximum data rate, calculated from the clock
frequency of PLL.

We repeat our test more than 200 times. With the DMA
payload sizes keep growing, the performance of UPI also
keeps increasing. In DMA payload test, the data rate of both
controllers increases as the amount of data increase, as shown
in Figure 12. When the DMA payload sizes is larger than
80KB, data rate of Ethernet hold steady at 1.1Gbps while data

rate of PCIe still increasing. The data rate of PCIe becomes
saturated at 2.8Gbps when payload sizes is larger than
260KB. Ethernet data rate entering saturation more quickly
than PCIe because of the maximum packet sizes of Ethernet.
Although the data rate of Ethernet is slower than PCIe, the
Ethernet physical layer uses 64b/66b encoding, makes
Ethernet more effective than PCIe in terms of transmission
efficiency.

TABLE III
RESULTS OF DEVICE SWITCHING TEST

bit error
Switching time(us) full_duplex_PCIe full_duplex_Ethernet

2.58 100% 100%
1.85 92.6% 93.72%
1.43 46.71% 72.7%
1.04 18.5% 29.35%
0.61 0.037% 0.045%

In Device switching test, we recorded the relationship
between bit error and switching time as shown in table 3. UPI
can normally work at 2.58us. But as the switching speed
accelerated to 1.85us, the bit error increase significantly.
When the switching time is less than 500ns, no data entered
FPGA B. There are three reasons why the system appears this
phenomenon: 1) The switching time is close to the GTX's
required reset time, when switching time is less than 500ns,
GTX's CPLL is always in the unlocked state, and GTX is
unable to complete the transfer task. 2) Some transferring
data are stored in FIFO, the data will be flushed after GTX's
CPLL reset. In this situation, all data already transmitted are
no error. 3) High speed switching causes analog circuits
crosstalk especially differential pairs.

When the switching time is more than 2.58us, and the
transmission data is greater than 260KB, all transmitted date
can be received with no bit errors, except for the write data
errors generated by DDR itself.

The resource consumption of UPI system is listed in table
4. We also compare the performance of UPI system with
other interconnect I/O technologies as shown in table 4. The
results showed that despite the fact that our systems take
more resources, UPI system achieves a better flexibility and
compatibility. When performance and resources are able to
meet the demand of bandwidth between nodes, we made
computing nodes of two different protocols compatible.

TABLE IV
RESOURCE CONSUMPTION OVERVIEW

Resource Our Design in FPGA A Our Design in FPGA B UPI system Resource Available
LUTs 94528(41.5%) 101064(44.4%) 11853(5.2%) 227520
I/O 5(0.4%) 5(0.4%) N/A 1156

Flip-Flops 65372(14.4%) 84432(18.6%) 8224(1.8%) 455040
BRAM 38(9.1%) 45(10.8%) 6(1.4%) 416

TABLE V
SYSTEM PERFORMANCE OF DIFFERENT INTERCONNECT I/O TECHNOLOGIES

System Link Rate Configuration Link Rate PCI support Ethernet support LUTs
Bluelink[8] 10G, 40G 1x, 4x 10G No Yes 2009
Infiniband[9] 40G LLC QDR 4x 10G Yes No 64105

1000 based-X Ethernet MAC 1G 1x 1.25G Yes No 11853
PCIe soft IP(stratix IV) 5G 1x Gen2 5G No Yes 1805

UPI 11.04G/4.32G 1x, 2x, 3x, 4x 2.76G/1.08G Yes Yes 5500

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 842

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

D. Practical Application of UPI
UPI has been used in three practical applications in various

institutes. These applications include: MaPU (Mathematics
Process Unit) commodity FPGA clusters; HDR (High
Dynamic Range) vedio clouding system; MOND (Modified
Newtonian Dynamics) hardware accelerator for astronomical
data. All these applications require real-time communication
with multiple computing nodes. UPI can be used in the
application of a good compatibility with the traditional single
protocol HPC clusters, as well as adding new UPI-based
computing node into computing system. UPI provides a
better system compatibility and interface flexibity as shown
in table 5.

V. CONCLUSIONS AND FUTURE WORK

A flexible and compatible interconnect interface has been
proposed for FPGA-based multi-node communication. We
completed a multi-node communication interface with the
benefits of high flexibility and good compatibility. We
implemented our design on “Gemini” prototype verification
board with two Xilinx Virtex-6 FPGAs. The experimental
results show that both two bus protocols can be received and
transmitted without error when DMA payload size is greater
than 260KB (PCIe) and 80KB (Ethernet) and switching time
is greater than 2.58us. Through the interface we can easily
connect two different HPC clusters. The performance loss
caused by traditional bridge equipment is eliminated.

ACKNOWLEDGMENT

This research is supported by the “Strategic Priority
Research Program” of the Chinese Academy of Sciences,
Grant No.XDA06010402-4.

REFERENCES

[1] Budruk, Ravi, Don Anderson, and Tom Shanley., “PCI express system
architecture,” Addison-Wesley Professional, 2004.

[2] Intel Corporation’s, PHY Interface for the PCI Express(TM)
Architecture, Specification Version 0.5. pp. 1-15, Aug. 16, 2002.

[3] Gong, Jian, et al., “An efficient and flexible host-fpga pcie
communication library,” Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on. IEEE, 2014.

[4] Koch D, Beckhoff C.,“Hierarchical reconfiguration of FPGAs,” Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on. IEEE, 2014: 1-8.

[5] Xilinx Inc., 7 Series FPGAs GTX/GTH Transceivers User Guide, April
22,2013.

[6] Islam, Nusrat S., et al.,“High performance RDMA-based design of
HDFS over InfiniBand.,” Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 2012.

[7] Shainer, Gilad, et al.,“Maximizing application performance in a
multi-core, NUMA-aware compute cluster by multi-level tuning.,”
Supercom-puting. Springer Berlin Heidelberg, 2013.

[8] Theodore Markettos, “A Interconnect for commodity FPGA clusters:
standardized or customized?,” Field Programmable Logic and
Ap-plications (FPL), 2014 24th International Conference on. IEEE,
2014.

[9] TPolybus Systems Corporation, “InfiniBand cores. ,”
http://www.polybus.com/iblink layer website/ibcores brochure alt.pdf

An Wu received his B.S. degree in 2011 from School
of Anhui University, Anhui province, China, and he is
currently a Ph.D. student in Department of Physics in
University of Science and Technology of China,
Anhui, China, under the supervision of Prof. Xi Jin.
His current research work is mainly on SoC design
technology, VLSI design and FPGA-based Hardware
Accelerator design.

Xi Jin received the B.S. degree from University of
Science and Technology of China, Anhui, China, and
he is currently an associate professor in Department of
Physics in University of Science and Technology of
China, Anhui, China. His research interests include
SOC design technology, VLSI design,
computer-aided design methodologies for SoC system
integration and FPGA-based Hardware structure
design.

Xueliang Du received the Ph.D degree from
University of Science and Technology of China,
Anhui, China, and he is currently an associate
professor in Institute of Automation Chinese Academy
of Sciences, Beijing, China. His research interests
include High-Performance SoC Design, DSP Design
and FPGA-based prototyping.

Shuaizhi Guo received his B.S. degree from
University of Science and Technology of China, and
he is currently a M.S. student in Department of
Physics in University of Science and Technology of
China, Anhui, China, under the supervision of Prof.
Xi Jin. His current research work is mainly on
FPGA-based Hardware Accelerator design.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 3, May 2016 843

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

	 INTRODUCTION
	RELATED WORK
	Background on PCIe and Gigabit Ethernet
	Xilinx GTX
	Existing Work

	SYSTEM DESIGN
	Overall System Architecture
	DRP Control Module
	Interface Convertor
	Data structures
	Hardware Interface and Software API

	EVALUATION
	System Verification Platform
	System test
	Experimental Results
	Practical Application of UPI

	CONCLUSIONS AND FUTURE WORK

