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 Abstract—MapReduce (MR) has been widely used to process 

distributed large data sets. MRV2 working on Yarn, as a more 

advanced programing model, has gained lots of concerns. 

Meanwhile, speculative execution is known as an approach for 

dealing with same problems by backing up those tasks running 

on a low performance machine to a higher one. In this paper, we 

have modified some pitfalls and taken heterogeneous 

environment into consideration. Besides, Node classification is 

used and a novel hierarchy index mechanism is created. We also 

have implemented it in Hadoop-2.6 and the strategy above is 

called Speculation-NC while optimized Hadoop is called 

Hadoop-NC. Experiment results show that our method can 

correctly backup a task, improve the performance of MRV2 and 

decrease the execution time and resource consumption 

compared with traditional strategies. 
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I.  INTRODUCTION 

HE time that data grow bigger and bigger is coming. The 

fast development of Cloud Computing makes that big 

data can be faster and more easily processed [1]. Nimbus 

provides a high quality of extensible architecture, which 

supports Xen and KVM virtual machine, and can be used as a 

PBS resource scheduler. OpenStack is an open source cloud 

computing platform designed by Rackspace and National 

Aeronautics and Space Administration (NASA) for public 

and private cloud. It is compatible with Amazon's EC2 and S3, 

and can provide the same service as the Amazon [2]. Sector 

and Spheres [3] is another open source platform designed 

implemented by Gu, which is used to process geographically 

dispersed large data sets in parallel. Hadoop cloud computing 

is one of the most popular open source cloud platforms, it is 

mainly supported by Yahoo, and applied to the Facebook and 

Amazon, Twitter, Baidu and other companies like IBM and 

the New York times. At present, in the latest Release version 

is 2.7.1. In 2010, Facebook announced that it has the largest 

Hadoop cluster. In 2011, its data storage space has reached 30 

PB. 

MapReduce, proposed by Google, which is one of the most 

important parts in Hadoop, has been the most popular 

distribute programming model in a cloud environment. With 

map and reduce procedures used in the cloud infrastructure 

transparently, those datasets can be processed easily and 

efficiently.  

Many enterprises and companies obtain a large amount of 

business profits through analyzing and dealing with a lot of 

new data in time [4]. Data analysis application may have 

different complexity, resource requirement and data delivery 

deadlines. As a result, this diversity creates new requirement 

of job scheduling, workload management and program design. 

Although different users have different goals, a similar goal is 

to improve the performance of the framework. Several 

projects have been launched to relieve the difficulty in writing 

complex data analysis or data mining programs, e.g., Pig [5] 

and Hive [6] built above the MapReduce engines in the 
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Hadoop environment. 

However, cloud systems suffer from poor load-scheduling 

strategies, which can consume much more execution time and 

temporary space than expected. While theoretically infinite 

computing resources can be provided in a cloud, 

unreasonable increment of mappers/reducers cannot achieve 

process efficiency, and may waste more storage to complete. 

Many optimization schemes have been proposed [7-13].  

II. RELATED WORK 

General solutions on performance evaluation and load 

efficiency in a cloud system have been examined and 

presented. PQR2, an approach to accurate performance 

evaluation of distributed application in a cloud was presented 

[8]. Jing et al. presented a model that can predict resource 

consumption of MapReduce processes based on a 

classification and regression tree [9].  

 Mars were developed to run on NVIDIA GPUs, AMD 

GPUs as well as multicore CPUs and implemented in Hadoop. 

Mars hides the programming complexity of GPUs behind the 

simple and familiar MapReduce interface, and automatically 

manages task partitioning, data distribution, and 

parallelization on the processors. Six representative 

applications also have been implemented on Mars The 

experimental results show that integrating Mars into Hadoop 

enabled GPU acceleration for a network of PCs [10]. 

However, the implementation is much more complex while in 

a cluster, the performance of GPUs and CPUs. 

PrIter, a distributed computing framework was developed. 

The prioritized execution of iterative computations is 

supported in it. PrIter either stores intermediate data in 

memory for fast convergence or stores intermediate data in 

files for scaling to larger data sets. PrIter achieves up to 50 × 

speedup over Hadoop for a series of iterative algorithms. In 

addition, PrIter is shown better performance for iterative 

computations than other state-of-the-art distributed 

frameworks such as Spark and Piccolo [11]. But, the biggest 

pitfall is that it only adapts to iterative algorithms and cannot 

be applied to all algorithms. 

Besides the above methods, some researchers are studying 

optimizing the speculative execution strategy in MapReduce. 

Zaharia et al. [12] proposed a modified version of speculative 

execution called Longest Approximate Time to End (LATE) 

algorithm that uses a different metric to schedule tasks for 

speculative execution. Instead of considering the progress 

made by a task so far, they compute the estimated time 

remaining, which gives a more clear assessment of a 

straggling tasks’ impact on the overall job response time. But 

the time every stage occupies is not stable and the std 

representing standard deviation used in LATE cannot 

represent all cases. To solve the disadvantages in LATE, 

MCP [13] was proposed by QI CHEN et al. MCP uses 

average progress rate to identify slow tasks while in reality the 

progress rate can be unstable and misleading. Straggles can be 

appropriately judged when there is data skew among the tasks. 

However, there are still a lot of pitfalls in MCP. Moreover, it 

can only be used in MR, not including MRV2. 

All research works above have devoted themselves to 

particular and/or comprehensive load and usage efficiency in 

a distributed environment. However, in a Heterogeneous 

environment, reasonable scheduling is still a hard problem. In 

LATE, MCP or the newest speculative execution strategy in 

Hadoop-2.6, the biggest pitfall is that situation of 

heterogeneous environment is not well concerned. 

III. OUR STRATEGY 

A. Remaining Time Estimation of Current Task 

Remaining time of the current task can be calculated by 

adding the remaining time of current phase and following 

phases. Detailed method is shown in (1) (2) and (3). dfactor  

represents the volume of current input data and average value 

of historical tasks. where remT  represents the remaining time 

of current task, which consists of the remaining time of 

current phase and following phases, marked as cpT  and 

fpT .
pAvg includes the average consumption of shuffle 

phase, sort phase and reduce phase on some node. While the 

type of current task is map task, the remaining time only 

includes map phase. 

 
rem cp fpT T T   (1)  

 _
*

cp

rem p p

p in fpcp

rem data
T Avg factor

bandwidth
     (2) 

 input

d

avg

data
factor

data
   (3) 

While there is no historical information on the node, global 

historical data is used to calculate the average finishing time 

of current phase 

B. Time Prediction of a Backup Task 

When a task finishes, our strategy automatically stores task 

running time on some node. If current task is a map task, 

stored data would be hostname and average duration. 

Otherwise, while it is a reduce task, duration of per-phase 

would be written down and the duration of whole phase would 

be recorded at the same time. We have established a storage 

mechanism to help us store information while having a low 

space occupation. The detailed storage method is shown in 

Fig.1. 
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 Fig.1 Hierarchy Index Mechanism 

 

As show in Fig.1, a data set is found according to hostname 

at the beginning of storage procedure. In a same data set, data 

are collected from the task running on the same host. Every 

storage area is further divided in two sub storage areas called 

Map and Reduce. If the task finished just now is map type, the 

running time is directly recorded in Map. Moreover, while it 

is a reduce task, detailed running information, containing 

shuffle time, sort time and reduce time, is respectively written 
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in 3 sub blocks. Finally, summary information of last level 

(shuffle sort or reduce) is stored in its up level: Reduce. We 

need to search some data, a binary search is started based on 

index mechanism. 

While detailed average running time of a task on some 

node needs to be known (such as shuffleAvg , sortAvg  or 

reduceAvg ), hostname is first gotten. If a data set hostname 

mapping to is empty, overall running time of different hosts 

would replace the detailed one. Otherwise, average time of 

some phase is directly obtained. Detailed algorithm is shown 

in Algorithm 1. 

 
Algorithm 1 Get the estimated running time of a backup task 

Input: TaskId  Tid  ,NodeId Nid   ,TaskType ypeT   

Output: Running time of a backup task 
backT   

1  Get hostname according to Tid   

 of current task 

2  Get the data set that hostname mapping to 

3    If the data set is empty 

4       If Type  equals Map 

5     Get the average running time of different hosts, Recorded as 

mapAvg ,
back mapT Avg  

6       Else if Type  equals Reduce 

7          Get the per phase average running time of different hosts,  

Recorded as 
shuffleAvg  

sortAvg  and 
reduceAvg  

8           back shuffle sort reduceT Avg Avg Avg  
 

9      End If 

10   Else 

11     If Type  equals Map 

        Get the average running time of the same host as 
mapAvg  and 

back mapT Avg  

13     Else  

14        Get sum of per phase average running time of same host, Recorded 

as 
backT  

15     End If 

16  End If 

17  Return 
backT   

 

C. Node Selection and Task selection 

Node selection is import for that data-local would help 

framework execute job faster. Besides, node to be selected 

should have relatively good performance at that time. The 

object of task selection is judging whether a task runs on a 

poor performance node. Also, in our strategy, the condition of 

start a back task is continuously changing according to (4). 

That is to say, if current progress is 50% and remT  equals 15 

seconds, backT  must smaller than 10, then the backup task 

would start. Once a backup task starts, we kill the native task 

immediately. 

1rem

back

T
Condition TaskProgress

T
       (4) 

 

IV. EXPERIMENT AND ANALYSIS 

In order to test the performance and benefits of our load 

balancing strategy, we simulate a real environment. Test-bed 

is made up of a personal computers and a server. The server is 

equipped with 288 GB of memory, a 10 TB SATA driver. The 

personal computers is equipped with 12GB of memory, a 

single 500GB disk and four Intel(R) Core(TM) 2.4GHz 

two-core processors. On the server, we run eight virtual 

machines and each virtual machine is given different amounts 

of memory and different number of processors. The detailed 

information is shown in Table I in Section IV.  

Then, the virtual machines run as the data nodes and the 

server run as the name node. To evaluate the performance of 

load strategy, we use WordCount, Sort and Grep. They are 

common applications used in MRV2 to evaluate strategy. The 

Purdue Benchmarks Suite provides us with this application 

workload and we use the free datasets [14] as the workloads 

input. Detailed inputs of these applications are shown in 

Table II.  
TABLE I  

THE DETAILED INFORMATION OF EACH VIRTUAL MACHINE 

NodeId Memory(GB) Core processors 

Node1 10 8 

Node2 8 4 

Node3 8 1 

Node4 8 8 

Node5 4 8 

Node6 4 4 

Node7 18 4 

Node8 12 8 

 
TABLE II 

INPUT OF THESE APPLICATIONS 

 WordCount Sort Grep 

Input(GB) 50 30 30 

Number of Mappers 200 200 200 

Number of Reducers 16 15 15 

 

The evaluation method is this paper can be expressed as the 

Eq. (5), which represents the different between another 

strategy and our Hadoop-NC divided by another strategy. 

 
OtherStrategy NC

Improvement
OtherStrategy


   (5) 

A. Evaluation of Node Classification 

To prove Node of classification is reasonable, we first ran 

WordCount for 5 times under the circumstance that 

speculative execution is disable. Then we collected the 

running information of map phase, and average consuming 

time was calculated. 

Fig.2 shows average consuming time of each node to finish 

a task. Difference is obvious and tasks running on node3 

consume much longer time than others. This proves that it is 

unreasonable to use mean consuming time to calculate.  
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Fig.2 Average Consuming Time of Each Node 

Fig.3 shows detailed running time of tasks on node1 and 

node8. This picture is depicted by 24 groups of sample s from 

all samples. Although lots of peaks in the figure, if we replace 

these data with mean value, these 2 lines would be relatively 

smooth. Those points have been smoothed can be seen as 

tasks generated by soft straggler, as shown in Fig.4. 

 

 
Fig.3 Detailed Running Time of Tasks on node1 and node8 

 
Fig.4 Data After Smoothing 

Concluded from Fig.3 and Fig.4, peaks are in Fig.3 can 

been seen as software straggles. And in figure.4, we assume 

that this the straggles have been processed and these tasks 

have been transferred in other nodes. Then, the tendency of 

time that tasks running on the same node is relative stable. So, 

we our method classify the time according to node is 

reasonable. Based on these, further experiments were 

operated, we used WordCount and Sort to evaluate our 

performance, which can respectively represent 2 types of 

application that one consumes CPU and the other is more 

sensitive to Memory. 

B. Evaluation of Hierarchy Index Mechanism 

In this part, we will evaluate it from the prosperity of time 

complexity. 

If we put all running information into a same list, then, 

when we search the list for a piece of data, the time 

complexity of search would be O(k) (k represents the number 

of all pieces of data). However, in our storage mechanism, if 

we successfully find data, average search time can be can 

simplified as log2(n)+k/n (n is the number of nodes). So the 

average time complexity can be simplified as O(log2(n)). 

Obviously, our hierarchy index mechanism can get a better 

performance, which has a smaller time complexity. 

C. Overall Evaluation of Performance 

Fig.5 shows for WordCount case, NC finishes jobs 12% 

faster than Hadoop-Original and 20% faster than 

Hadoop-None on average.   

Fig.6 shows that on average, NC finishes jobs 3% faster 

than Hadoop-Original and 19% faster than Hadoop-None. It 

is very terrible that Original speculative execution strategy 

has poor performance, but our Hadoop-NC still can reduce 

the execution time. 

Fig.7 shows for Grep case, NC finishes jobs 18% faster 

than Hadoop-Original and 10% faster than Hadoop-None on 

average.   

 
Fig.5 Job Execution Time of WordCount 

To analyze the reason why Original strategy has worse 

performance, we calculated the running information of these 

two applications under different strategies and drew a table. 

As shown in Table III. For WordCount, the backup success 

rate of Hadoop-NC is 20% and 16.7% higher than 

Hadoop-Original for map and reduce tasks. For Sort, the 

backup success rate of Hadoop-NC is 24.3% and 30.7% 

higher than Hadoop-Original. For Grep, the backup success 

rate of Hadoop-NC is 30% higher than Hadoop-Original. 

Also, resource consumption in cloud environment is also 

an important indicator to evaluate the performance of PaaS 

platform. Traditional speculative strategies only evaluate the 

performance from the prosperity of job execution time. 

However, resource consumption is usually ignored. In this 

paper, resource consumption is represented the number of 

containers and the time of the container occupied. So an Eq. is 

gotten as shown in (6). 

*Consumption Containers Seconds     (6)
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TABLE III 

DETAILED COMPARISON 

Workloads Strategy 
Sum of Backed-up 

Map Tasks 
Sum of Successful 

Backed-up Map Tasks 
Backup success rate (%) 

WordCount 
Hadoop-Original 85 40 47.1 

Hadoop-NC 55 38 69.1 

Sort 
Hadoop-Original 84 24 28.6 

Hadoop-NC 70 37 52.9 

Grep 
Hadoop-Original 68 32 47.1 

Hadoop-NC 35 27 77.1 

 

 

 
Fig.6 Job Execution Time of Sort 

 
Fig.7 Job Execution Time of Grep 

 

When it comes to resource consumption, shown in Fig.8, 

our strategy has an obvious improvement for WordCount 

samples, it save about 10% and 13% than Hadoop-None and 

Hadoop-Original. However, for Sort samples, although our 

strategy has an improvement over Hadoop-Original, more 

resource than Hadoop-None is consumed. It is very normal 

that if the speculative strategy cannot find straggle on time. 

For Gerp, because it consumes little time and the saved 

resource is not very obvious, but our strategy still has an 

improvement compared with Hadoop-None and 

Hadoop-Original. 

 

 

 

 

 

 

 
Fig.8 Resource consumption 

I. CONCLUSION 

In this paper, a new strategy called Speculation-NC is 

introduced and implemented in Hadoop-2.6. Experiment 

results have shown that our method can relatively save time 

and resource for WordCount sample. However, there is still 

much work can be done to improve the performance of MRV2 

for Sort sample further, both in execution and resource 

consumption. 
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