



 Abstract—MapReduce (MR) has been widely used to process

distributed large data sets. MRV2 working on Yarn, as a more

advanced programing model, has gained lots of concerns.

Meanwhile, speculative execution is known as an approach for

dealing with same problems by backing up those tasks running

on a low performance machine to a higher one. In this paper, we

have modified some pitfalls and taken heterogeneous

environment into consideration. Besides, Node classification is

used and a novel hierarchy index mechanism is created. We also

have implemented it in Hadoop-2.6 and the strategy above is

called Speculation-NC while optimized Hadoop is called

Hadoop-NC. Experiment results show that our method can

correctly backup a task, improve the performance of MRV2 and

decrease the execution time and resource consumption

compared with traditional strategies.

Keyword—MapReduce; Speculative Execution; Time

Prediction; Node Classification; Hierarchy Index Mechanism

———————————————————————

Manuscript received March 23, 2016. This work is a follow up of the

invited journal of the accepted conference paper for the 18th International

Conference on Advanced Communication Technology. This work is

supported by the NSFC (61300238, 61300237, 61232016, U1405254,

61373133), Marie Curie Fellowship (701697-CAR-MSCA-IFEF-ST), Basic

Research Programs (Natural Science Foundation) of Jiangsu Province

(BK20131004), Scientific Support Program of Jiangsu Province

(BE2012473) and the PAPD fund.

Q. Liu is with the College of Computer and Software, Nanjing University

of Information Science and Technology, Nanjing, 210044, China (e-mail:

qi.liu@nuist.edu.cn).

W. Cai is with the College of Computer and Software, Nanjing University

of Information Science and Technology, Nanjing, 210044, China

(corresponding author to provide phone: +8615251708925; fax:

+86-15251708925; e-mail: caiweidongsuzhou@163.com).

S. Jian is with the College of Computer and Software, Nanjing University

of Information Science and Technology, Nanjing, 210044, China (e-mail:

s_shenjian@126.com).

Z. Fu is with the Jiangsu Engineering Centre of Network Monitoring,

Nanjing University of Information Science and Technology, Nanjing,

210044, China (e-mail: wwwfzj@126.com).

X. Liu is with School of Computing, Edinburgh Napier University, 10

Colinton Road, Edinburgh EH10 5DT, UK (E-mail: x.liu@napier.ac.uk).

N. Linge is with the School of Computing, Science and Engineering,

University of Salford, Salford, M5 4WT, UK (E-mail:

n.linge@salford.ac.uk).

I. INTRODUCTION

HE time that data grow bigger and bigger is coming. The

fast development of Cloud Computing makes that big

data can be faster and more easily processed [1]. Nimbus

provides a high quality of extensible architecture, which

supports Xen and KVM virtual machine, and can be used as a

PBS resource scheduler. OpenStack is an open source cloud

computing platform designed by Rackspace and National

Aeronautics and Space Administration (NASA) for public

and private cloud. It is compatible with Amazon's EC2 and S3,

and can provide the same service as the Amazon [2]. Sector

and Spheres [3] is another open source platform designed

implemented by Gu, which is used to process geographically

dispersed large data sets in parallel. Hadoop cloud computing

is one of the most popular open source cloud platforms, it is

mainly supported by Yahoo, and applied to the Facebook and

Amazon, Twitter, Baidu and other companies like IBM and

the New York times. At present, in the latest Release version

is 2.7.1. In 2010, Facebook announced that it has the largest

Hadoop cluster. In 2011, its data storage space has reached 30

PB.

MapReduce, proposed by Google, which is one of the most

important parts in Hadoop, has been the most popular

distribute programming model in a cloud environment. With

map and reduce procedures used in the cloud infrastructure

transparently, those datasets can be processed easily and

efficiently.

Many enterprises and companies obtain a large amount of

business profits through analyzing and dealing with a lot of

new data in time [4]. Data analysis application may have

different complexity, resource requirement and data delivery

deadlines. As a result, this diversity creates new requirement

of job scheduling, workload management and program design.

Although different users have different goals, a similar goal is

to improve the performance of the framework. Several

projects have been launched to relieve the difficulty in writing

complex data analysis or data mining programs, e.g., Pig [5]

and Hive [6] built above the MapReduce engines in the

A Speculative Execution Strategy Based on

Node Classification and Hierarchy Index

Mechanism for Heterogeneous Hadoop Systems

Qi Liu*, Weidong Cai*, Jian Shen*, Zhangjie Fu**, Xiaodong Liu***, Nigel Linge****

*Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu, 210044, China

** Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and

Technology, Nanjing, Jiangsu, China

***School of Computing, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK

****The University of Salford, Salford, Greater Manchester, M5 4WT, UK

qi.liu@nuist.edu.cn, caiweidongsuzhou@163.com, s_shenjian@126.com, wwwfzj@126.com,

x.liu@napier.ac.uk,n.linge@salford.ac.uk

T

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 4, July 2016 889

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

mailto:qi.liu@nuist.edu.cn
mailto:wwwfzj@126.com
mailto:wwwfzj@126.com

Hadoop environment.

However, cloud systems suffer from poor load-scheduling

strategies, which can consume much more execution time and

temporary space than expected. While theoretically infinite

computing resources can be provided in a cloud,

unreasonable increment of mappers/reducers cannot achieve

process efficiency, and may waste more storage to complete.

Many optimization schemes have been proposed [7-13].

II. RELATED WORK

General solutions on performance evaluation and load

efficiency in a cloud system have been examined and

presented. PQR2, an approach to accurate performance

evaluation of distributed application in a cloud was presented

[8]. Jing et al. presented a model that can predict resource

consumption of MapReduce processes based on a

classification and regression tree [9].

 Mars were developed to run on NVIDIA GPUs, AMD

GPUs as well as multicore CPUs and implemented in Hadoop.

Mars hides the programming complexity of GPUs behind the

simple and familiar MapReduce interface, and automatically

manages task partitioning, data distribution, and

parallelization on the processors. Six representative

applications also have been implemented on Mars The

experimental results show that integrating Mars into Hadoop

enabled GPU acceleration for a network of PCs [10].

However, the implementation is much more complex while in

a cluster, the performance of GPUs and CPUs.

PrIter, a distributed computing framework was developed.

The prioritized execution of iterative computations is

supported in it. PrIter either stores intermediate data in

memory for fast convergence or stores intermediate data in

files for scaling to larger data sets. PrIter achieves up to 50 ×

speedup over Hadoop for a series of iterative algorithms. In

addition, PrIter is shown better performance for iterative

computations than other state-of-the-art distributed

frameworks such as Spark and Piccolo [11]. But, the biggest

pitfall is that it only adapts to iterative algorithms and cannot

be applied to all algorithms.

Besides the above methods, some researchers are studying

optimizing the speculative execution strategy in MapReduce.

Zaharia et al. [12] proposed a modified version of speculative

execution called Longest Approximate Time to End (LATE)

algorithm that uses a different metric to schedule tasks for

speculative execution. Instead of considering the progress

made by a task so far, they compute the estimated time

remaining, which gives a more clear assessment of a

straggling tasks’ impact on the overall job response time. But

the time every stage occupies is not stable and the std

representing standard deviation used in LATE cannot

represent all cases. To solve the disadvantages in LATE,

MCP [13] was proposed by QI CHEN et al. MCP uses

average progress rate to identify slow tasks while in reality the

progress rate can be unstable and misleading. Straggles can be

appropriately judged when there is data skew among the tasks.

However, there are still a lot of pitfalls in MCP. Moreover, it

can only be used in MR, not including MRV2.

All research works above have devoted themselves to

particular and/or comprehensive load and usage efficiency in

a distributed environment. However, in a Heterogeneous

environment, reasonable scheduling is still a hard problem. In

LATE, MCP or the newest speculative execution strategy in

Hadoop-2.6, the biggest pitfall is that situation of

heterogeneous environment is not well concerned.

III. OUR STRATEGY

A. Remaining Time Estimation of Current Task

Remaining time of the current task can be calculated by

adding the remaining time of current phase and following

phases. Detailed method is shown in (1) (2) and (3). dfactor

represents the volume of current input data and average value

of historical tasks. where remT represents the remaining time

of current task, which consists of the remaining time of

current phase and following phases, marked as cpT and

fpT .
pAvg includes the average consumption of shuffle

phase, sort phase and reduce phase on some node. While the

type of current task is map task, the remaining time only

includes map phase.

rem cp fpT T T  (1)

 _
*

cp

rem p p

p in fpcp

rem data
T Avg factor

bandwidth
   (2)

 input

d

avg

data
factor

data
 (3)

While there is no historical information on the node, global

historical data is used to calculate the average finishing time

of current phase

B. Time Prediction of a Backup Task

When a task finishes, our strategy automatically stores task

running time on some node. If current task is a map task,

stored data would be hostname and average duration.

Otherwise, while it is a reduce task, duration of per-phase

would be written down and the duration of whole phase would

be recorded at the same time. We have established a storage

mechanism to help us store information while having a low

space occupation. The detailed storage method is shown in

Fig.1.

Data Sets Node 1

Node 2

Node 3

Node n

...

Map

Reduce

Map

Reduce

shuffle

sort

reduce

 Fig.1 Hierarchy Index Mechanism

As show in Fig.1, a data set is found according to hostname

at the beginning of storage procedure. In a same data set, data

are collected from the task running on the same host. Every

storage area is further divided in two sub storage areas called

Map and Reduce. If the task finished just now is map type, the

running time is directly recorded in Map. Moreover, while it

is a reduce task, detailed running information, containing

shuffle time, sort time and reduce time, is respectively written

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 4, July 2016 890

Copyright ⓒ 2016 GiRI (Global IT Research Institute)

in 3 sub blocks. Finally, summary information of last level

(shuffle sort or reduce) is stored in its up level: Reduce. We

need to search some data, a binary search is started based on

index mechanism.

While detailed average running time of a task on some

node needs to be known (such as shuffleAvg , sortAvg or

reduceAvg), hostname is first gotten. If a data set hostname

mapping to is empty, overall running time of different hosts

would replace the detailed one. Otherwise, average time of

some phase is directly obtained. Detailed algorithm is shown

in Algorithm 1.

Algorithm 1 Get the estimated running time of a backup task

Input: TaskId Tid ,NodeId Nid ,TaskType ypeT

Output: Running time of a backup task
backT

1 Get hostname according to Tid

 of current task

2 Get the data set that hostname mapping to

3 If the data set is empty

4 If Type equals Map

5 Get the average running time of different hosts, Recorded as

mapAvg ,
back mapT Avg

6 Else if Type equals Reduce

7 Get the per phase average running time of different hosts,

Recorded as
shuffleAvg

sortAvg and
reduceAvg

8 back shuffle sort reduceT Avg Avg Avg  

9 End If

10 Else

11 If Type equals Map

 Get the average running time of the same host as
mapAvg and

back mapT Avg

13 Else

14 Get sum of per phase average running time of same host, Recorded

as
backT

15 End If

16 End If

17 Return
backT

C. Node Selection and Task selection

Node selection is import for that data-local would help

framework execute job faster. Besides, node to be selected

should have relatively good performance at that time. The

object of task selection is judging whether a task runs on a

poor performance node. Also, in our strategy, the condition of

start a back task is continuously changing according to (4).

That is to say, if current progress is 50% and remT equals 15

seconds, backT must smaller than 10, then the backup task

would start. Once a backup task starts, we kill the native task

immediately.

1rem

back

T
Condition TaskProgress

T
   (4)

IV. EXPERIMENT AND ANALYSIS

In order to test the performance and benefits of our load

balancing strategy, we simulate a real environment. Test-bed

is made up of a personal computers and a server. The server is

equipped with 288 GB of memory, a 10 TB SATA driver. The

personal computers is equipped with 12GB of memory, a

single 500GB disk and four Intel(R) Core(TM) 2.4GHz

two-core processors. On the server, we run eight virtual

machines and each virtual machine is given different amounts

of memory and different number of processors. The detailed

information is shown in Table I in Section IV.

Then, the virtual machines run as the data nodes and the

server run as the name node. To evaluate the performance of

load strategy, we use WordCount, Sort and Grep. They are

common applications used in MRV2 to evaluate strategy. The

Purdue Benchmarks Suite provides us with this application

workload and we use the free datasets [14] as the workloads

input. Detailed inputs of these applications are shown in

Table II.
TABLE I

THE DETAILED INFORMATION OF EACH VIRTUAL MACHINE

NodeId Memory(GB) Core processors

Node1 10 8

Node2 8 4

Node3 8 1

Node4 8 8

Node5 4 8

Node6 4 4

Node7 18 4

Node8 12 8

TABLE II

INPUT OF THESE APPLICATIONS

 WordCount Sort Grep

Input(GB) 50 30 30

Number of Mappers 200 200 200

Number of Reducers 16 15 15

The evaluation method is this paper can be expressed as the

Eq. (5), which represents the different between another

strategy and our Hadoop-NC divided by another strategy.

OtherStrategy NC

Improvement
OtherStrategy


 (5)

A. Evaluation of Node Classification

To prove Node of classification is reasonable, we first ran

WordCount for 5 times under the circumstance that

speculative execution is disable. Then we collected the

running information of map phase, and average consuming

time was calculated.

Fig.2 shows average consuming time of each node to finish

a task. Difference is obvious and tasks running on node3

consume much longer time than others. This proves that it is

unreasonable to use mean consuming time to calculate.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 4, July 2016 891

Copyright ⓒ 2016 GiRI (Global IT Research Institute)

Fig.2 Average Consuming Time of Each Node

Fig.3 shows detailed running time of tasks on node1 and

node8. This picture is depicted by 24 groups of sample s from

all samples. Although lots of peaks in the figure, if we replace

these data with mean value, these 2 lines would be relatively

smooth. Those points have been smoothed can be seen as

tasks generated by soft straggler, as shown in Fig.4.

Fig.3 Detailed Running Time of Tasks on node1 and node8

Fig.4 Data After Smoothing

Concluded from Fig.3 and Fig.4, peaks are in Fig.3 can

been seen as software straggles. And in figure.4, we assume

that this the straggles have been processed and these tasks

have been transferred in other nodes. Then, the tendency of

time that tasks running on the same node is relative stable. So,

we our method classify the time according to node is

reasonable. Based on these, further experiments were

operated, we used WordCount and Sort to evaluate our

performance, which can respectively represent 2 types of

application that one consumes CPU and the other is more

sensitive to Memory.

B. Evaluation of Hierarchy Index Mechanism

In this part, we will evaluate it from the prosperity of time

complexity.

If we put all running information into a same list, then,

when we search the list for a piece of data, the time

complexity of search would be O(k) (k represents the number

of all pieces of data). However, in our storage mechanism, if

we successfully find data, average search time can be can

simplified as log2(n)+k/n (n is the number of nodes). So the

average time complexity can be simplified as O(log2(n)).

Obviously, our hierarchy index mechanism can get a better

performance, which has a smaller time complexity.

C. Overall Evaluation of Performance

Fig.5 shows for WordCount case, NC finishes jobs 12%

faster than Hadoop-Original and 20% faster than

Hadoop-None on average.

Fig.6 shows that on average, NC finishes jobs 3% faster

than Hadoop-Original and 19% faster than Hadoop-None. It

is very terrible that Original speculative execution strategy

has poor performance, but our Hadoop-NC still can reduce

the execution time.

Fig.7 shows for Grep case, NC finishes jobs 18% faster

than Hadoop-Original and 10% faster than Hadoop-None on

average.

Fig.5 Job Execution Time of WordCount

To analyze the reason why Original strategy has worse

performance, we calculated the running information of these

two applications under different strategies and drew a table.

As shown in Table III. For WordCount, the backup success

rate of Hadoop-NC is 20% and 16.7% higher than

Hadoop-Original for map and reduce tasks. For Sort, the

backup success rate of Hadoop-NC is 24.3% and 30.7%

higher than Hadoop-Original. For Grep, the backup success

rate of Hadoop-NC is 30% higher than Hadoop-Original.

Also, resource consumption in cloud environment is also

an important indicator to evaluate the performance of PaaS

platform. Traditional speculative strategies only evaluate the

performance from the prosperity of job execution time.

However, resource consumption is usually ignored. In this

paper, resource consumption is represented the number of

containers and the time of the container occupied. So an Eq. is

gotten as shown in (6).

*Consumption Containers Seconds (6)

 ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 4, July 2016 892

Copyright ⓒ 2016 GiRI (Global IT Research Institute)

TABLE III

DETAILED COMPARISON

Workloads Strategy
Sum of Backed-up

Map Tasks
Sum of Successful

Backed-up Map Tasks
Backup success rate (%)

WordCount
Hadoop-Original 85 40 47.1

Hadoop-NC 55 38 69.1

Sort
Hadoop-Original 84 24 28.6

Hadoop-NC 70 37 52.9

Grep
Hadoop-Original 68 32 47.1

Hadoop-NC 35 27 77.1

Fig.6 Job Execution Time of Sort

Fig.7 Job Execution Time of Grep

When it comes to resource consumption, shown in Fig.8,

our strategy has an obvious improvement for WordCount

samples, it save about 10% and 13% than Hadoop-None and

Hadoop-Original. However, for Sort samples, although our

strategy has an improvement over Hadoop-Original, more

resource than Hadoop-None is consumed. It is very normal

that if the speculative strategy cannot find straggle on time.

For Gerp, because it consumes little time and the saved

resource is not very obvious, but our strategy still has an

improvement compared with Hadoop-None and

Hadoop-Original.

Fig.8 Resource consumption

I. CONCLUSION

In this paper, a new strategy called Speculation-NC is

introduced and implemented in Hadoop-2.6. Experiment

results have shown that our method can relatively save time

and resource for WordCount sample. However, there is still

much work can be done to improve the performance of MRV2

for Sort sample further, both in execution and resource

consumption.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski

and M. Zaharia, " A view of cloud computing," Communications of the

ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] X. Wen, G. Gu, Q. Li, Y. Gao and X. Zhang, “Comparison of

open-source cloud management platforms: OpenStack and

OpenNebula,” In Proceedings of the 2012 9th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp.

2457-2461, 2012.

[3] Y. Gu and L. R. Grossman, “Sector and Sphere: the design and

implementation of a high-performance data cloud,” Philosophical

Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, vol. 367, no. 1897, pp. 2429-2445,

2009.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” Communications of the ACM, vol. 51, no.1, pp.

107-113, 2008.

[5] Apache pig. <http://pig.apache.org/> [accessed on 14.09.15].

[6] Apache hive. <https://hive.apache.org/> [accessed on 14.09.15].

[7] Z. Fu, X. Sun, Q. Liu, L. Zhou and J. Shu, “Achieving Efficient Cloud

Search Services: Multi-keyword Ranked Search over Encrypted Cloud

Data Supporting Parallel Computing,” IEICE Transactions on

Communications, vol. 98, no. 1, pp. 190-200, 2015.

[8] A. Matsunaga and J. Fortes, “On the use of machine learning to predict

the time and resources consumed by applications,” Proceedings of the

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, pp. 495-504, 2010.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 4, July 2016 893

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

[9] W. Fang, B. He, Q. Luo and N. K. Govindaraju, "Mars: accelerating

mapreduce with graphics processors," IEEE Transactions on Parallel

and Distributed Systems, vol. 22, no. 4, pp. 608-620, 2010.

[10] Y. Zhang, Q. Gao, L. Gao and C. Wang, “Priter: a distributed

framework for prioritizing iterative computations,” IEEE Transactions

on Parallel and Distributed Systems, vol. 24, no. 9, pp. 1884-1893,

2014.

[11] Piao, J. Tai and J. Yan, “Computing resource prediction for mapreduce

applications using decision tree,” In Web Technologies and

Applications, pp. 570-577, 2012.

[12] M. Zaharia, A. Konwinski, A. Joseph, R. Katz and I. Stoica,

“Improving Mapreduce Performance in Heterogeneous

Environments,” OSDI, vol. 8, no. 4, 2008.

[13] C. Qi, C. Liu and Z. Xiao, “Improving MapReduce performance using

smart speculative execution strategy,” IEEE Transactions

on Computers, vol. 63, no. 4, pp. 954-967, 2014.

[14] F. Ahmad, S. Chakradhar, A. Raghunathan and T. Vijaykumar,

“Tarazu: optimizing MapReduce on heterogeneous clusters,” ACM

SIGARCH Computer Architecture News, pp.61-74, 2012.

Qi Liu (M’11) received his BSc degree in Computer

Science and Technology from Zhuzhou Institute of

Technology, China in 2003, and his MSc and PhD in

Data Telecommunications and Networks from the

University of Salford, UK in 2006 and 2010. His

research interests include context awareness, data

communication in MANET and WSN, and smart grid.

His recent research work focuses on intelligent

agriculture and meteorological observation systems

based on WSN.

Weidong Cai received her bachelor's degree in

Software Engineering from Nanjing University of

Information Science and Technology in 2014, and he

is pursuing a master's degree in software engineering at

the Nanjing University of Information Science and

Technology. Hi research interests include Cloud

Computing, Distributed Computing and Data Mining.

Jian Shen received his bachelor's degree in Electronic

Science and Technology Specialty from Nanjing

University of Information, Science and Technology in

2007, and he received his masters and PhD in

Information and communication from CHOSUN

University, South Korean in 2009 and 2012. His

research interests includes Computer network security,

information security, mobile computing and network,

wireless ad hoc network.

Zhangjie Fu received his BS in education technology

from Xinyang Normal University, China, in 2006;

received his MS in education technology from the

College of Physics and Microelectronics Science, Hunan

University, China, in 2008; obtained his PhD in

computer science from the College of Computer, Hunan

University, China, in 2012. Currently, he works as an

assistant professor in College of Computer and Software,

Nanjing University of Information Science and Technology, China. His

research interests include cloud computing, digital forensics, network and

information security.

Xiaodong Liu received his PhD in Computer Science

from De Montfort University and joined Napier in 1999.

He is a Reader and is currently leading the Software

Systems research group in the IIDI, Edinburgh Napier

University. He was the director of Centre for Information

& Software Systems. He is an active researcher in

software engineering with internationally excellent

reputation and leading expertise in context-aware

adaptive services, service evolution, mobile clouds,

pervasive computing, software reuse, and green software engineering. He

has meanwhile a successful track record of teaching in a number of software

engineering courses which are widely informed by his research activities.

Nigel Linge received his BSc degree in Electronics from

the University of Salford, UK in 1983, and his PhD in

Computer Networks from the University of Salford, UK,

in 1987. He was promoted to Professor of

Telecommunications at the University of Salford, UK in

1997. His research interests include location based and

context aware information systems, protocols, mobile

systems and applications of networking technology in

areas such as energy and building monitoring.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 4, July 2016 894

 Copyright ⓒ 2016 GiRI (Global IT Research Institute)

