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Abstract—This paper focuses on a special type of enterprise
social networks, which is called ‘workflow-supported activity-
performer affiliation network,’ and particularly formulates a
metric of closeness centrality to numerically analyze the degree
of clerical familiarities among performers who are involved
in a workflow-supported activity-performer affiliation network.
A workflow model specifies enactment sequences of the as-
sociated activities and their affiliated relationships with roles,
performers, invoked-applications, and relevant data. These af-
filiated relationships can be revived into valuable organizational
knowledge supporting business intelligence as well as managerial
decision-making activities. In this paper, we particularly focus
on formulating the affiliated relationships between activities and
performers in a workflow model to numerically measure the
closeness centralities of performers as well as the closeness
centralities of activities. We also devise a series of algorithms for
implementing the formulated closeness centrality equations, and
describe the ultimate implications of these closeness centrality
formulations in workflow-supported organizations.

Keywords-workflow-supported affiliation network, ICN-based
workflow model, organizational closeness centrality, business
process intelligence

I. INTRODUCTION

In recent, the workflow literature starts being interested in
re-positioning the traditional workflow systems into the tools
of business and organizational knowledge and intelligence.
It begins from the strong belief that social relationships and
collaborative behaviors among workflow-performers obviously
affect the overall performance and being crowned with great
successes in the real businesses and the working produc-
tivity as well. The typical pioneering outcomes of those
re-positioning works ought to be [1][2][3], in which the
authors formalize mechanisms and their related algorithms
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Fig. 1. Four Types of the Performer-Centered Affiliation Relationships in
an Information Control Net of Workflow Model

to discover workflow-supported social networking knowledge
from workflow models and their enactment event logs. In
general, the workflow model is formally defined by using
the information control net (ICN)[4] methodology. In defining
a workflow model, we have to specify four types of the
performer-centered affiliation relationships[5] by associating
each individual performer with all the essential entity-types
such as activity, role, application, and relevant data. The Fig.
1 illustrates these performer-centered affiliation relationships
in a specific ICN-based workflow model. We are particularly
interested in the performer-activity affiliation relationships
in a workflow model, where the performers (or actors) are
linked in activities through joint participations; reversely, the
activities are connected to performers through joint involve-
ments; the authors’ research group has modeled a collection of
these participations and involvements as “workflow-supported

performer-activity affiliation network model[6][7].”

In this paper, we focus on quantitatively measuring the
degree of performers’ familiarity by adopting the concept of
closeness centralities into the workflow-supported performer-

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 5, Issue 6, November 2016 960

Copyright ⓒ 2016 GiRI (Global IT Research Institute)



2

activity affiliation network model. We assume that a workflow-
supported performer-activity affiliation network is formed by
two key groups of the entity types such as a set of performers
and a collection of activities in a corresponding information
control net of workflow model. That is, we are basically con-
cerned about numerically formalizing the closeness centralities
among the performers involved in fulfilling the ICN-based
workflow model. Basically, the affilation network is coming
from the formal properties[8]—two-mode and non-dyadic
networks—of affiliation relationships. Since the workflow-
supported performer-acitivity affiliation network is a two-mode
network, the complete measurements should be done by giving
centrality indices for both performers and activities. Generally,
there are four centrality analysis techniques, such as degree,
closeness, betweenness, and eigenvector centralities, and we
particularly measure the closeness centralities of performers
and the closeness centralities of activities in this paper.

By analyzing the closeness centralities on a workflow-
supported performer-activity affiliation network formed from
a set of activity-performer affiliated relationships in an ICN-
based workflow model, it is eventually possible to visualize
and numerically express how much the performers and the
activities are interrelated and collaboratively closed in enact-
ing the corresponding workflow model. As a consequence,
the main purpose of this paper is to theoretically develop
formulations and their algorithms for calculating the close-
ness centralities for activities and performers in a ‘workflow-
supported performer-activity affiliation network. In the next
section, we simply describe the basic concept of the workflow-
supported performer-activity affiliation network through the
formal definition and the graphical representation as well. And,
in the consecutive section we try to formulate the closeness
centrality equations and their implementation algorithms with
an operational example. Finally, we finalize the paper with
describing a couple of related works in the last section.

II. WORKFLOW-SUPPORTED PERFORMER-ACTIVITY

AFFILIATION NETWORK MODEL

In order to represent the workflow-supported performer-
activity affiliation knowledge, [6] has recently defined a graph-
ical (Bipartite Graph) and formal representation model, which
is dubbed workflow-supported performer-activity affiliation
network model, which is abbreviated to APANM, and it
has two types of nodes—a set of performers and a set of
activities—and a set of relationships between those nodal
types. Thus a workflow-supported performer-activity affiliation
network model is a two-mode network model with aiming to
accomplish the following dual objectives:

• to uncover the relational structures of workflow-
performers through their joint involvement in activities,
and

• to reveal the relational structures of workflow-activities
through their joint participation of common performers.

Additionally, those relational structures can be weighed to
measure the extent of their strengths by assigning a value to
each of relations between nodal types. Therefore, there are
two types of performer-activity affiliation networks—binary

performer-activity affiliation network and valued performer-
activity affiliation network. In the binary performer-activity
affiliation network, its value (0 or 1) implies a binary
relationship of involvement (or participation), while values
in the valued performer-activity affiliation network may
represent various implications according to their application
domains; typical examples of values might be stochastic
(or probabilistic) values, strengths, and frequencies. The
formal knowledge representation of workflow-supported
performer-activity affiliation network model is defined in the
following [Definition 1][6].

[Definition 1] Workflow-Supported Performer-Activity

Affiliation Network Model. A workflow-supported
performer-activity affiliation network model is formally
defined as Λ = (σ,ψ, S), over a set C of performers (actors),
a set A of activities, a set V of weight-values, a set
Ep ⊆ (C × A) of edges (pairs of performers and activities),
and a set Ea ⊆ (A × C) of edges (pairs of activities and
performers), where, ℘(A) represents a power set of the
activity set, A:

• S is a finite set of work-sharing actors or groups of some
external performer-activity affiliation network models;

• σ = σp ∪ σv /* Involvement Knowledge */
where, σp : C −→ ℘(A) is a single-valued mapping func-
tion from a performer to its set of involved activities;
σv : Ep −→ V is a single-valued mapping function from
an edge (∈ Ep) to its weight-value;

• ψ = ψa ∪ ψv /* Participation Knowledge */
where, ψa : A −→ ℘(C) is a single-valued mapping
function from an activity to a set of participated
performers; and ψv : Ea −→ V is a single-valued
function from an edge (∈ Ea) to its weight-value;

Furthermore, the affiliation knowledge representation can be
graphically depicted by an affiliation graph. So, a workflow-
supported performer-activity affiliation network’s graphical
model consists of two types of graphical nodes—a set of per-
formers (shaped in hexagon) and a set of workflow activities
(shaped in circle)—and a set of non-directed edges between
two nodal types, which means that a workflow affiliation net-
work is a non-directed graph. That is, in a workflow-supported
performer-activity affiliation graph, non-directed lines connect
performers aligned on one side of the diagram to the workflow
activities aligned on the other side. Importantly, a performer-
activity affiliation graph does not permit lines among the
performers nor among the workflow activities. Therefore, a
performer-activity affiliation graph with g performers and h
workflow activities can be transformed into a matrix with 2-
dimension of g × h.

III. CLOSENESS CENTRALITY MEASUREMENT

FORMULATIONS

In general, an affiliation networking graph[9] is a bipartite
graph, as described in the previous section, in which non-
directed lines connect performers aligned on one side of the
diagram to the workflow activities aligned on the other side.
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Based upon the performer-activity affiliation networking graph
and its affiliation matrix, it is possible to analyze a variety of
knowledge analytics issues[9], such as mean rates analysis[8],
density measurements[8], and centrality measurements[9],
raised from the social networking literature. In this paper, our
focus concentrates upon the centrality measurements of the
workflow-supported affiliation network model. More precisely
speaking, we try to propose an algorithmic formalism for
analyzing organizational centrality measurements, particularly
closeness centrality measurements, of a workflow-supported
performer-activity affiliation network.

A. Definition of Affiliation Matrix

Eventually, it is necessary for the performer-activity affili-
ation network model to be analyzed in a mathematical repre-
sentation. A workflow-supported performer-activity affiliation
network model is graphically represented by a bipartite graph,
and at the same time it is mathematically represented by an
affiliation matrix. The affiliation matrix can be realized by
either an involvement matrix or a participation matrix. That
is, a performer-activity affiliation network model is math-
ematically transformed into an activity-performer affiliation
matrix that records the presence and absence of g performers
at h workflow activities; thus its dimensions are g rows and
h columns, respectively. If a certain performer φi attends a
workflow activity αj , then the entry in the ith and jth cell in
the matrix equals to 1; otherwise the entry is 0. Denoting a
binary activity-performer affiliation matrix as Z, its xi,j values
meet these conditions:

xi,j =

{

1 if performer,φi, is affiliated with activity,αj

0 otherwise
(1)

• The row total, also called row marginals, (Dr), of a
performer-activity affiliation matrix Z sum to the number
of workflow activities that each performer will attend,
which implies the involvement relations between activi-
ties and performers in a specific workflow model.

Dr =

⎡

⎣

h
∑

j=1

xi,j

⎤

⎦

g

i=1

(2)

• The column marginals, (Dc), indicate the number of per-
formers who will attend each workflow activity’s enact-
ment, which implies the participation relations between
performers and activities in a corresponding workflow
model.

Dc =

[

g
∑

i=1

xi,j

]h

j=1

(3)

Also, assuming an affiliation networking graph has g per-
formers and h activities, then its bipartite affiliation matrix
has dimensions (g + h) × (g + h). Consequently, using
the involvement affiliation matrix (Zp) and the participation
affiliation matrix (Za) forms an affiliation bipartite matrix,
XP,A, which can be schematically represented as the following
equations, (4) and (5).

X
P,A =

[

0 Zp

Za 0

]

(4)

X
P = Zp · Za X

A = Za · Zp; (5)

B. Closeness Centrality Formulations

[8] gives a series of well-described equations that can be
applied to calculating the closeness centralities based upon
the bipartite matrix of a workflow-supported performer-activity
affiliation network model. Before we develop an algorithm of
the closeness centrality measurements in the next subsection,
we need to restate those closeness centrality equations, and
consider the relationship between the closeness centrality of
a performer and the closeness centrality of the activities to
which the performer belongs, and the relationship between the
closeness centrality of an activity and the closeness centrality
of its performers.

Basically, the meaning of closeness centrality index in a
social network[1][3] implies the average geodesic distance that
a node is from all other nodes in the graph. In other words,
it is to calculate the ‘farness’ of a node from other nodes in
the graph. As described in the previous section, the performer-
activity affiliation network is a special type of social network,
and it is represented by a bipartite graph with relationships
(or connections) between performers and activities. Thus,
calculating the geodesic distances in a bipartite graph begins
with a function of the distances from the activities to the
performers which each of them belongs. The distance from
a node i representing a performer to any node j (either
performer or activity) is d(i, j) = 1 + min{d(k, j)}k, for
every activity node k adjacent to i. Given this properties, the
closeness centrality of a performer in the bipartite graph can be
expressed with a function of the distances from the performer’s
activities, k:

g+h
∑

j=1

d(i, j) =
g+h
∑

j=1

[1 + min{d(k, j)}k] , i ̸= j (6)

1) Closeness Centrality of Performers: Based on the dis-
tance function of (6), the following expressions are the index
and the standardized index of the closeness centrality of a
performer with a function of the minimum geodesic distances
from its activities to other actors and to other activities, respec-
tively. Note that every activity na is adjacent to performer ni.

• The Index of Closeness Centrality of Performers

OCC(ni) =

⎡

⎣

g+h
∑

j=1

d(i, j)

⎤

⎦

−1

(i ̸= j) (7)

OCC(ni) =

⎡

⎣1 +
g+h
∑

j=1

min{d(na, nj)}a

⎤

⎦

−1

(i ̸= j) (8)

• The Normalized Index of Closeness Centrality of Per-
formers

OCS
C(ni) = (g + h− 1) · [OCC(ni)] (9)
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OCS
C(ni) =

[

1 +

∑g+h
j=1 min{d(na, nj)}a

g + h− 1

]−1

(i ̸= j)

(10)

2) Closeness Centrality of Activities: By revising the dis-
tance function of (6), it is also necessary to make the expres-
sions for the index and the standardized index of the closeness
centrality of an activity with a function of the minimum
geodesic distances from its performers to other activities and
to other performers. Note that every performer mp is adjacent
to activity mj .

• The Index of Closeness Centrality of Activities

OCC(mi) =

⎡

⎣1 +
g+h
∑

j=1

min{d(mp,mj)}p

⎤

⎦

−1

(i ̸= j)

(11)
• The Normalized Index of Closeness Centrality of Activ-

ities

OCS
C(mi) =

[

1 +

∑g+h
j=1 min{d(mp,mj)}p

g + h− 1

]−1

(i ̸= j)

(12)

Summarily speaking, the equations (9) and (12) are for
normalizing the index of closeness centrality by multiplying
by (g+h−1). Suppose that a performer is close to all others,
which means that its adjacent activity has a direct tie to every
performer in the bipartite graph. Thus the computed index
values will be vary according to their graph sizes. In order to
control the size of the graph, it is necessary for the individual
index to be normalized so as to allow meaningful comparisons
of performers across different graphs. This explanation can be
identically applied to the normalized index for activities.

C. Algorithms of the Geodesic Distances

Based upon those closeness centrality equations, we develop
a series of algorithms for calculating the closeness centralities
of all the performers as well as all the activities associated with
a workflows-supported performer-activity affiliation network.
The following subsections concisely describe the details of
the algorithms and their explanations. Note that we won’t put
all the algorithms that are needed to calculate the closeness
centralities.

1) Algorithm of the geodesic distances for performers: By
extensively applying the equations of (8) and (10), we can cal-
culate the closeness centralities of performers for a workflow-
supported performer-activity affiliation network. The essential
part of those equations must be the functions of calculating
the geodesic distance from a performer node, ni, to another
performer node, nj , and the geodesic distance, which implies
the shorted path, from a performer node, ni, to an activity
node, mj , respectively. In this subsection, we devise an algo-
rithm with recursive functions, to algorithmically implement
the essential equations. Assume that the algorithm operates on
a given performer-activity affiliation adjacency matrix, XP,A,
representing the corresponding workflow-supported performer-
activity affiliation network, and its functional procedure name
is ‘PcGeodesicDistance()’ using two recursive functions,

‘gDistance()’ and ‘hDistance()’, which are calculating the
geodesic distances from a specified performer (ni) to all the
performers and to all the activities, respectively. The output
of the algorithm is the geodesic distance of a performer, ni,
to either a performer or an activity, nj , and it is saved on
the performer-centered geodesic distance matrix, GP,A, as a
value of the cell, GP,A[ni, nj ]. The time complexity of the
algorithm is O(N), where N = g+h−1, and g is the number of
performers and h is the number of activities in a corresponding
workflow-supported performer-activity affiliation network.

The Geodesic Distances Algorithm for Performers:

01: Given Global A Binary Affiliation Bipartite Matrix, XP,A[g +
h, g + h];

02: Given Global A Set of Performers, P;
03: Given Global A Set of Activities, A;

04: Procedure Name: PcGeodesicDistance
05: Input A Performer (From), ni;
06: Either a Performer or an Activity (To), nj ;
07: Output A Performer-Centered Geodesic Distance Measure,

GP,A[ni, nj ];

08: Local An Activity Distance Vector, Gk[1..h], initialized by maxi-
mum;

09: Local A Performer Distance Vector, Hk[1..g], initialized by max-
imum;

10: Begin Procedure
11: If ( nj ∈ P ∧ ni ̸= nj )
12: For ( ∀mk ∈ Ak adjacent to ni )
13: Gk[mk]← gDistance(ni,mk, nj);
14: roF

15: GP,A[ni, nj ]← 1 + minimum

(

Gk[i]

)h

i=1

;

16: Else If ( nj ∈ A )
17: For ( ∀mk ∈ Ak adjacent to ni )
11: If ( mk = nj )
11: Gk[mk]← 0; break;
20: Else If ( mk ̸= nj )
21: Ps ← all performers who are adjacent to mk;
22: Ps ← Ps − ni ;
23: For ( ∀ns ∈ Ps )
24: Hk[ns]← hDistance(mk, ns, nj);
25: roF

26: Gk[mk]← 1 + minimum

(

Hk[i]

)g

i=1

;

27: Initialize Hk[1..g] by maximum;
28: roF

29: GP,A[ni, nj ]← 1 + minimum

(

Gk[i]

)h

i=1

;

30: Return GP,A[ni, nj ];

31: End Procedure

2) Algorithm of the Geodesic Distance for Activities: We
develop an algorithm for implementing the above equations
of (11) and (12) by revising the algorithm developed in the
previous subsection. By using the algorithm we are able to
calculate the closeness centralities from a activities’ point of
view. Likewise, the essential part of those equations must be
the functions of calculating the geodesic distance from an ac-
tivity node, mi, to another activity node, mj , and the geodesic
distance from an activity node, mi, to a performer node, nj ,
respectively. Assume that the algorithm also operates on a
given performer-activity affiliation adjacency matrix, XP,A,
representing the corresponding workflow-supported performer-
activity affiliation network, and its functional procedure name
is ‘AcGeodesicDistance()’ using two recursive functions,
’gDistance()’ and ‘hDistance()’, too. The output of the
algorithm is the geodesic distance measure of an activity, mi,
to either a performer or an activity, mj , and it is saved on the
activity-centered geodesic distance matrix, GP,A, as a value of
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the cell, GA,P [mi,mj]. The time complexity of the algorithm
is O(N), where N = g + h − 1, and g is the number of
performers and h is the number of activities in a corresponding
workflow-supported performer-activity affiliation network.

The Geodesic Distances Algorithm for Activities:

01: Given Global A Binary Affiliation Bipartite Matrix, XP,A[g +
h, g + h];

02: Given Global A Set of Performers, P;
03: Given Global A Set of Activities, A;

04: Procedure Name: AcGeodesicDistance
05: Input An Activity (From), mi;
06: Either an Activity or a Performer (To), mj ;
07: Output An Activity-Centered Geodesic Distance Measure,

GA,P [mi,mj ];

08: Local A Performer Distance Vector, Hk[1..g], initialized by max-
imum;

09: Local An Activity Distance Vector, Gk[1..h], initialized by maxi-
mum;

10: Begin Procedure

11: If ( mj ∈ A ∧mi ̸= mj )
12: For ( ∀nk ∈ Pk adjacent to mi )
13: Hk[nk]← hDistance(mi, nk,mj);
14: roF

15: GA,P [mi,mj ]← 1 + minimum

(

Hk[i]

)g

i=1

;

16: Else If ( mj ∈ P )
17: For ( ∀nk ∈ Pk adjacent to mi )
18: If ( nk = mj )
19: Hk[nk]← 0; break;
20: Else If ( nk ̸= mj )
21: As ← all activities that are adjacent to nk;
22: As ← As −mi;
23: For ( ∀ms ∈ As adjacent to nk )
24: Gk[ms]← gDistance(nk,ms,mj);
25: roF

26: Hk[nk]← 1 + minimum

(

Gk[i]

)h

i=1

;

27: Initialize Gk[1..h] by maximum;
28: roF

29: GA,P [mi,mj ]← 1 + minimum

(

Hk[i]

)g

i=1

;

30: Return GA,P [mi,mj ];

31: End Procedure

D. Implications of the Closeness Centralities

In this paper, we are particularly interested in adopting
the concept of closeness centrality to measure the degree

of familiarity among performers in a workflow-supported
orgranization. The semantic significance of closeness distance
in terms of the familiarity metric refers to how quickly a
performer can interact with others via intermediary activities
where the performers are jointly participating to. In conse-
quence of those consecutive calculations of all the performers,
we can draw the answers to the following question from
measuring the closeness centralities on a workflow-supported
performer-activity affiliation network:

• The degree of familiarity: How quickly can a performer
interact with others via very few intermediary activities
in enacting workflow procedures?

Conclusively, the answer to the question is able to convey
a very valuable and meaningful insight to the corresponding
workflow-supported organization. We assure that the primary
rationale of the closeness centrality ought to be on the ques-
tion and the answer. We strongly believe that a series of
theoretical formulations on the closeness centralities and their
implementable algorithms devised in this paper can be used

in developing a workflow-supported organizational intelligent
system supporting to measure the individual levels as well as
the group levels of the closeness centralities in a workflow-
supported organization.

IV. RELATED WORKS

Recently, technology-supported social networks and organi-
zational behavioral analytics issues have been raised in the IT
literature. Naturally, the workflow literature has just started
transitioning into and focusing on social and collaborative
work analyses in workflow-supported organizations, because
workflow management systems are “human systems,” where
workflow procedures must be designed, deployed, and un-
derstood within their social and organizational contexts. It is
quite natural for the concept of enterprise social networks
(workflow-supported affiliation networks) to be raised and
issued from these human-centered organizational contexts. It
is important to remind that the human-centered affiliation
relationships reveal how each of the individuals is associated
with the essential entity-types of the organizational resources
like activity, role, application, and relevant data. Particularly,
in this paper we focus on the Performer-Activity affiliation
networking knowledge[7] and fomulate their equations for
calculating the closeness centralities among the performers.

K. P. Kim [7] firstly issued the workflow-supported
performer-activity affiliation network as a special type of orga-
nizational social network knowledge acquired from deploying
workflow technologies. In the paper, the author theoretically
derived a series of concepts and algorithms not only for
representing and discovering those knowledge but also for
analyzing the discovered knowledge. Battsetseg, et al. [10]
proposed a theoretical formalism to analyze a workflow-
supported performer-activity affiliation network by measur-
ing the organizational closeness centralities of performers as
well as the organizational closeness centralities of activities.
Note that we try to extend the proposed theoretical for-
malisms through this paper. H. Kim, et al. [11] formalized
the workflow-supported performer-role affiliation network. In
the paper, the authors formally defined the workflow-supported
performer-role affiliation networking knowledge through a se-
ries of theoretical formalisms and practical implementation for
modeling, discovering, and visualizing workflow performer-
role affiliation networking knowledge. H. A. Reijers, et al. [12]
pioneered the human-centered resource management issue in
a workflow-suppoted organization, which can be interpreted
by a conceptual species of the workflow-supported affilia-
tion networks. Through this research, they showed that the
high degree of geographical closenesses among workflow-
performers be leaded to the posivitve effect on workflow-
supported organizational performance by conducting a case
study of distributed teamworks on a workflow process model.

Conclusively, we would say that these pioneering works,
until now, concerning about the human-centered affiliation
knowledge are the outputs in the stage of initiative research
works, which is the discovery phase. The next stage ought to
be the analysis phase. The paper of [10] was just a halffinished
step forward to the analysis phase shifting from the discovery
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phase. In particulay, P. Busch and his colleague in [13][14]
raised the logical necessity of the conceptual triangulation of
workflow management, social network analysis, and knowl-
edge management, which ought to be one of the circumstantial
evidences of the theoretical importance of this paper.

V. CONCLUSION

In this paper, we have formulated a series of closeness cen-
trality measurement equations and proposed their related al-
gorithms and descriptions for analyzing a workflow-supported
performer-activity affiliation network representing involve-
ment and participation behaviors between workflow-based
people and workflow-based activities. We have introduced the
basic concept of workflow-supported performer-activity affili-
ation network and its implications as a meaningful mechanism
of organizational knowledge and intelligence. Particularly, we
restate the mathematical equations for the closeness centrality
measurements, and develop an functional algorithm for imple-
menting those closeness centrality equations. As a future work,
we have a plan to implement those concept and algorithms for
measuring the closeness centralities as a fundamental function
of the organizational knowledge and intelligent management
system.
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