Bulbs Control in Virtual Reality by Using Leap Motion Somatosensory Controlled Switches

*Department of Electronic Engineering, Tunghai University, 152, Sec. 3, BeiSheng Road, ShengKeng Dist. New Taipei City, 22202, Taiwan, ROC

**Department of Electronic Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608 Taiwan, R.O.C

franklinlu888@outlook.com, cylin@mail.tnu.edu.tw, skchang@mail.tnu.edu.tw, siopl2006@gmail.com, chunhuang59@gmail.com, johnson.lee5893@msa.hinet.net, yplin@mail.tnu.edu.tw

Abstract—This study presented a Leap Motion somatosensory controlled switches. The switches were implemented by the relays. The “open” or “short” of the switching circuit were controlled by the sensing of the Leap Motion somatosensory module. The virtual switches on the screen have designed to be 5 circle buttons. When the sensing hand touched the circle buttons virtually, the programming language “Processing” sent the instruction codes to the Arduino MEGA module which gave the “high” and “low” signal to the transistor switches. Therefore, a four-channel Leap Motion somatosensory controlled switching module has been implemented. For testing the module, the bulbs have been connected with the switching module. Consequently, the “light” or “dark” of LED modules can be controlled by touching the virtual buttons on the screen.

Keywords—Leap motion, somatosensory, bulb, switch, Arduino, virtual reality

I. INTRODUCTION

The Leap motion control is based on the idea of magic [1]. The musicians employed their hands around a big glass bulb and performed their skill of change something that the audience watched at the big glass bulb. In the popular movie “Iron Man”, Tony controls the computer by his hands and voice. Consequently, it is very attractive that a man can control things without any touch of switches in the modern life.

Games are the main applications of the virtual reality (VR). The players can enter the environment which the computer screen displays to perform the skill of the game aims to train. Therefore, some somatosensory sensors are designed for inputting into the VR show. Following the concept [2], a system was implemented, i.e., a Leap motion somatosensory controlled switches to aid some persons whose hands have been damaged can not perform the switches well.

II. METHODS

Leap Motion somatosensory sensor (Fig. 1) is composed by 2 cameras to detect the distance and posture of the human fingers of hands. The detecting range of the Leap Motion Leap Motion somatosensory sensor is between 25 and 600 mm. The coordinate system is the traditional X-Y-Z system. The unit of sensing position is millimetre.

Figure 1. Leap Motion somatosensory sensor

The signal of Leap Motion somatosensory sensor was acquisitioned by the programming of professional computer language “PROCESSING” which has promoted software literacy within the visual arts and visual literacy within technology. Therefore, Fig. 2 presented the flow chart of the PROCESSING programming to detect whether the user’s hand has touched the colourful circles in the VR or not? There are many parts in the computer program. They are included: 1)
The Mega 2560 (Fig. 3) is employed to be the main controller of this system. The Mega 2560 is a microcontroller board, and the controller chip is the on-board ATmega 2560. The input/output part of the MEGA module includes 54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports). The crystal oscillator is of the frequency of 6 MHz. The other components are a USB connection, a power jack, an ICSP header, and a reset button. The Mega 2560 board is compatible with other Arduino boards such as the Uno and the DueMilanove or Diecimila.

The coding processes of the MEGA module was all the Integrated Development Environment (IDE) of Arduino. The IDE is composed by C/C++ computer language, therefore, the program uploaded to the Mega 2560 is similar to the instructions of C/C++.

The conceptual circuit schematic was presented in Fig. 4. The control of the bulbs were depended on the “Open” or “Short” of the relays. The “Open” or “Short” of the relays were controlled by the current flow (ON or OFF) of the input and output of the photo-isolated IC. Briefly, the “High” or “Low” levels of output pins of the Arduino MEGA module decided the “light on” or “light off” of the bulbs. In this study, the relay module was employed the commercial board which has 2 channel relay switches which can be controlled by the inputs of standard logic level of the relay module.

Constants and variables settings

- Variable settings
- Constant settings

Include libraries

- import processing.dxf(*);
- import ddf.minim.*;
- import de.voidplus.leapmotion.*;
- import processing.serial.*;

USB port and font settings

- String arduinoPort = Serial.list()[0];
- port = new Serial(this, arduinoPort, 9600)
- font=loadFont("AgencyFB-Reg-48.vlw");
- textFont(font);

Set music

- inA=minim.loadFile("EE.mp3");

Plot

- Plot 5 colorful circles

Detection

- Detecting the position of the hands
- Does the hand touch the circle?
- Y: sending the instruction to theArduino MEGA 2560
- N: keep detecting

III. Results

The implementation of the bulbs control in virtual reality by using leap motion somatosensory controlled switches in Fig. 5. A light bulb and an electrical fan were controlled by the leap motion somatosensory controlled switches. The relay module was served as electrical controlled switches which received the signal from Arduino Mega 2560 that received the instructions were controlled by using leap motion somatosensory.

The electrical fan was employed to prove that this system can control other AC electrical devices, if the users need to increase the operations of the AC electrical devices.

Figure 2. The flow chart of the PROCESSING computer language in the PC/NB

Figure 3. The Arduino Mega 2560 microcontroller board (Photo source: Official Arduino Website https://www.arduino.cc/en/Main/ArduinoBoardMega2560)

Figure 4. The conceptual circuit schematic

Figure 5. Bulbs control in virtual reality by using leap motion somatosensory controlled switches
IV. DISCUSSIONS

The system supports the possibility of that the games can be extended to the real world. The light beams, water beams, and acoustic signals can be emitted by the control of this system in VR. Therefore, the games will be more interesting than the operations of the game devices only in the VR.

The system can aid the elders or disables control the lights, television, warmer, and other electrical devices well. That will improve the quality of their living conveniences.

The non-touch VR switches avoid to the possibility of infections which cause from the hands’ touches of the switches in some places such as hospitals, surgery operating room, and centers of elders’ health care.

The cost of this system will be reduced by mass production. The trend of using the somatosensory sensors have been predicted to be popular in the future. Therefore, the prototyping system is a basic trial of the future developments.

The educational purpose of the setup of the system will be a very practical training of software design, firmware design, and circuit design. Therefore, the system can be divide into parts for the training of the setup the system. The non-touch VR switches avoid to the possibility of infections which cause from the hands’ touches of the switches in some places such as hospitals, surgery operating room, and centers of elders’ health care.

V. CONCLUSIONS

Leap motion somatosensory controlled switches was implemented to aid some persons whose hands have been damaged can not perform the switches well. The implementation of the bulbs control in virtual reality by using leap motion somatosensory controlled switches in Fig. 5. A light bulb and an electrical fan were controlled by the leap motion somatosensory controlled switches. The relay module was served as electrical controlled switches which received the signal from Arduino Mega 2560 that received the instructions were controlled by using leap motion somatosensory.

The system supports the possibility of that the games can be extended to the real world. The light beams, water beams, and acoustic signals can be emitted by the control of this system in VR. Therefore, the games will be more interesting than the operations of the game devices only in the VR.

ACKNOWLEDGMENT

The authors for the supports from the project numbers of MOST 103-2221-E-236-001, and MOST 103-2627-E-002-005, Ministry of Science and Technology, Taiwan, Republic of China.

REFERENCES

Bing-Yuh Lu received his BS in electrical engineering from National Central University in 1988, MS in electrical engineering from National Taiwan University in 1993, and PhD in electrical engineering from National Taiwan University in 2000. He is an associate professor with Department of Electronic Engineering, Tunghnan University, New Taipei City, Taiwan, ROC and an adjunct associate professor with the Department of Business Administration, National Taipei University of Business, Taipei, Taiwan, ROC and was the director of Department of Information Management, Catholic St. Mary’s Medicine, Nursing, and Management College, Yilan County, Taiwan, ROC during the intervening years of 2011 to 2013. He is a member of IEEE. His academic interests focus on acoustics, educational applications of engineering, medical engineering and pulmonary signal processing. He received awards for academic research from Tunghnan University in 2014 and for outstanding papers at the 15th and 17th IEEE international conferences on advanced communication technology in South Korea (in 2013 and 2015). He has been one of the editors of Transactions on Advanced Communication Technology of the Global IT Research Institute (2015), as well as one of the editors of Innovative Research Publication (IRP), and a reviewer of journals such as IEEE transactions on Instrumentation and Measurement, Computer and Electrical Engineering, and so on.

Chin-Yuan Lin is an instructor with the Department of Electronic Engineering, Tunghnan University, New Taipei City, Taiwan, Republic of China. He received his MS degree in electrical engineering from National Taiwan University Taipe, Taiwan, Republic of China. He is interested in biomedical engineering, and electronic engineering.

Shu-Kuang Chang with the Department of Electronic Engineering, Tunghnan University, New Taipei City, Taiwan, Republic of China. He received his Ph. D. degree from the Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan, Republic of China. He is interested in fuzzy logic, statistics, and control system theory.

Yi-Ying Lin is an undergraduate student with the Department of Electronic Engineering, Tunghnan University, New Taipei City, Taiwan, Republic of China. He got ‘the official B class License of Industrial Electronics, Department of Labor, Taiwan, Republic of China. He is interested in digital circuit design, and implementation, and digital system design.

Chun-Hsiang Huang is an undergraduate student with the Department of Electronic Engineering, Tunghnan University, New Taipei City, Taiwan, Republic of China. He has spent 6 years to complete his high school education in the United States. He is the class representative and gets the top 5 score of his classmates now. He got the technician certificates which include Computer Maintenance (class C), and TOEIC (score: 710).
Hai-Wu Lee graduated from the Department of Electronic Engineering, Kun Shan University in 2000 and received his master degree from the Institute of Computer, Communication, and Control, National Taipei University of Technology in 2003. He got his PhD degree from the Department of Electrical Engineering, National Taiwan University of Science and Technology in 2014, Taipei Taiwan. He is currently a Postdoctoral in the Department of Electronic Engineering, National Taipei University of Technology and he is a reviewer of journals such as IEEE transactions on Education and so on. His research interests are the design and application of optimal control system of biped walking robots of image processing and RFID.

Ying-Pyng Lin was born in New Taipei City, Taiwan, R.O.C., in 1958. He received the M.S. degree in computer science and engineering from Tatung University (TTU), Taipei, Taiwan, in 1989, and Ph.D. degree in Electro-Optical Engineering at National Taipei University of Technology, Taipei, Taiwan in 2014. Currently, he is the department head and an associate professor in the Department of Electronic Engineering, Tungnan University, New Taipei City, Taiwan, Republic of China. His research interests include optical communications, computer engineering, and embedded systems.