
 

Abstract —The investigation of chromatic dispersion effect on 

pulse propagation is of interest in high-speed optical 

transmission systems. But the chromatic dispersion effect hasn't 

an acceptable analytical description in the time domain. The 

analytical model of the dispersion effect in the time domain 

using a quadratic function approximation of nonlinear part of 

the propagation constant and the Fresnel integrals is proposed 

in this paper. It is shown that the obtained model is universal 

and it has a tunable accuracy. A simple method of estimating the 

memory of an optical channel is proposed. The analytical model 

of signal propagation in an optical channel by means of 

sequential generation of pairs of echo-signals is described in the 

article. 
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I. INTRODUCTION 

T the present time, high-speed optical transmission 

systems are in an active development and the 

investigation of the chromatic dispersion effect is one of most 

interest of issues. The propagation of pulses through an 

optical fiber, which is a dispersive medium, is well explored 

in [1]–[7].  
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where  ,A z t  is the slowly varying pulse envelope and 

βm  are a parameters described in [1] . 

The differential equation (1) should be solved if a pulse 

form in the time domain is required to find. And, this equation 

should be solved individually for of all kinds of pulses. 
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Besides, a direct solution may be difficult, whereas an 

analytical equation is impossible to get using the fast Fourier 

transform. But the analytical equation may be of use in some 

cases, e.g. signal processing in the time domain. 

In this paper, a simple and universal analytical dispersion 

model in the time domain will be found. 

II. DISPERSION THEORY 

In the Dispersion Theory [1], pulse propagation can be 

written in the form 
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where  ,A z f  is a signal spectrum at a distance z, and 

 β f  is the propagation constant which has a frequency 

dependence 
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Here, c is the velocity of light in vacuum and n is a 

refractive index which defined by the Sellmeier equation [8]. 

 All nonlinear effects and the attenuation have been 

excluded in equation (2).  

The solution of the equation is 
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It completely described the effect of the chromatic 

dispersion on a signal.    

Therefore, the transfer function of the dispersive medium is 
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III. DISPERSION IN THE TIME DOMAIN 

 As seen from Figure 1, the propagation constant has a 

substantial linear part. Therefore, we can represent it as 
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     β β βln nlf f f   (6) 

 

where βln
 is a linear part and βnl

 is a nonlinear part of the 

propagation constant.  

Since the entire optical spectrum is not of interest an 

operating band of signal will be considered further, i.e. 

 ;l hf f f  where, 
hf  is the higher frequency, and 

lf  is 

the lower frequency. 

A. Linear Part of the Propagation Constant 

The influence of βln
 causes signal delay in the time 

domain. βln
 can be represented in form 

 

 βln f kf p   (7) 

 

And parameters k and p are 
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If the nonlinear part is omitted, a pulse envelope in the time 

domain will be obtained in the form 
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B. Nonlinear Part of the Propagation Constant 

The nonlinear part can be obtained as 

 

     β β βnl lnf f f   (10) 

 

As seen from Fig. 2, it is look like quadratic function. 

Therefore, it can be represented as 

 

  2βnl f af bf c     (11) 

 

where a, b and c are 
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Here, cf  is a central frequency of the band. 

Actually, βnl
 is not a quadratic function. This function has 

some cubic part. Accordingly, there is a deviation, as shown 

in Fig. 3. But βnl
 can not be approximated with a cubic 

function because it will obstruct further calculations. 

 

 
Fig. 1.  Frequency dependence of the propagation constant. 

 

 
Fig. 2.  A nonlinear part of the propagation constant in the 100 GHz 

operating band. 

 

 
Fig. 3.  An absolute error of the quadratic function approximation of 

nonlinear part of the propagation constant. 
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To minimize the deviation, the entire operating band can be 

divided into two. And then, the deviation function can be 

approximated with a quadratic function in each of sub-bands 
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and 

 

     β β βnl nl nlf f f    (14) 

 

Parameters 
1m , 

1n , 
1k , 

2m , and 
2k  can be found with 

(12), where 
hf , 

lf  and 
cf  is a higher, lower and the central 

frequency of the each of the ranges, respectively. 

A new approximation is 
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Deviations in each of the ranges will be similar to the 

deviation of the first approximation. Therefore, a deviation in 

the entire band can be represented by four quadratic functions 

in four intervals.  

It was found that improving of the approximation can be 

continued in a similar way until the error value becomes 

sufficient. 

C. Representation of Chromatic Dispersion in the Time 

Domain 

 The transfer function of the dispersive medium can be 

represented as a product of two parts 
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First part is a linear part which described in the time 

domain by (9). Second part is a nonlinear part which causes a 

pulse distortion. Let us expand it into a Fourier series to 

describe it in the time domain 
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where 
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and L is a half of the entire band. 

Because  βnl f  is a quadratic function nc  can be 

expressed in terms of the Fresnel integrals [9] 

 

 
2

2

π

4

2

π π
      

2 2

π π
     

2 2

bzL n
j cz

azL

n

h l

h l

e
c

L az

bzL n bzL n
C az f C az f

azL azL

bzL n bzL n
jS az f jS az f

azL azL

 
  
 
 




     
        

    

    
        

    

 (19) 

 

Here, C(x) and S(x) are the Fresnel integrals. 

For second approximation of nonlinear part of the 

propagation constant from (15) and for next approximations, 

(19) should be calculated in each of sub-bands (with constant 

L), and the results should be summarized then. 

A signal spectrum at a distance z is 
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or, with (17) and (7) is 
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To describe a signal in the time domain the inverse Fourier 

transformation [11] should be used. 

Finally, in the time domain 
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where A  is a pulse envelope at a distance z and at a time 

moment t. L  is a half of a signal bandwidth. nc  are given by 

(19), and p and k are given by (8). 

Equation (22) describes any signal at a distance z which is 

distorted by the chromatic dispersion. 

 

IV. PROPAGATION PROCESS IN TERMS OF THE 

ECHO-SIGNALS MODEL 

Model of Chromatic Dispersion Effect (22) allows 

representing a signal propagation process in terms of 

echo-signals.  

The echo-signals model [11] describes a signal at a 

distance z as the sum of initial signal and N pairs of lagged and 

anticipatory echo-signals. 
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Here,  0,A t  is initial signal,  0, τA t n  are 

anticipatory echo-signals,  0, τA t n  are lagged 
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echo-signals and  are some coefficients. 

Expression (22) can be represented in the same form 
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Here, 
jpz

nc e
 corresponds to na , 

1

2L
 corresponds to τ  

and 
2π

kz
t   corresponds to t  in (23). 

A. Memory of Optical Channel 

The memory of channel allows estimating the number of 

pulses, which influence one another. 

Interval between centers of two echo-signals is 
1

τ
2L

 . 

Also, τ  is interval between centers of two pulses. Therefore, 

the number of echo-signals equals the number of pulses, 

which influence one another. The number of echo-signals is 

defined by coefficients nc , which can be called the impulse 

response of an optical channel if nonlinear effects are 

negligible. Therefore, the memory of an optical channel can 

be found by estimating values of  nc . 

Example of the impulse response of an optical channel is 

shown in Fig. 4. The coefficients   until certain n do not have a 

decreasing character and then begin decreasing rapidly. 

Plotting of similar graphs allows simple finding the 

memory of an optical channel. 

B. Propagation Process 

Let us consider signal at distance dz at which there are two 

echo-signals only 
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The entire line with length z can be divided to N sections 

with lengths dz as shown in Fig. 5.  

Each section transforms the signal the same way as in (25): 

the input is   1 ,A n dz t , the output is 
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One section can be represented as FIR filter as shown in 

Fig. 6. Each section generates a new pair of echo-signals: 
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Considering that 
1a =

1a
 , signal at the distance z can be 

described by expression 
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Here, N is number of the sections, 
2

N n
K

 
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 is the 

number of summand at nth echo-signal and nkc  are 

coefficients at the summands which calculated as follows 
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As can be seen from the above, the propagation process in 

an optical channel can be represented as sequential generation 

of pairs of echo-signals after each section with length dz. It 

could be useful for investigation of nonlinear propagation in 

an optical channel because the model (28) is not requires 

performing the Fourier transform in distinction from the 

split-step Fourier method [1]. All of operations are performed 

in time domain. 

 

 
Fig. 4.  The impulse response of an optical channel with 100 GHz operating 

band at the distance 100 km. 
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Fig. 5.  The line with length z which is divided to N sections with lengths dz. 

 

 
Fig. 6.  Section dz as FIR filter. 

 

V. EXPERIMENTAL RESULTS 

An accuracy of the obtained analytical model is defined by 

the number of the Fourier series coefficients N and by the 

number of the approximations as in (15). The first parameter 

is substantial in any conditions. The second is substantial only 

at considerable distances ≥ 1000 km and at signal bandwidths 

≥ 100 GHz.  Dependencies of the parameter N are     
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Some types of pulses calculated with the model are shown 

in Fig. 7, 8 and 9. 

  

 
Fig. 7.  Gaussian pulse with width 30 ps at the distance 155 km. The constant 

delay, which equaled 0.76 ms, has been compensated. 

 

 
Fig. 8.  Sinc pulse with width 30 ps at the distance 155 km. The constant 

delay, which equaled 0.76 ms, has been compensated. 

 

 
Fig. 9.  Square pulse with width 30 ps at the distance 50 km. The constant 

delay, which equaled 0.24 ms, has been compensated. 

 

VI. CONCLUSION 

In this paper, an analytical model of dispersion effect in the 

time domain has been described. This model allows describe 

the chromatic dispersion effect on any signal, which 

propagates through optical fiber. The model has a tunable 

accuracy, so it is applicable in different areas such as signal 

propagation modeling, algorithms of dispersion 

compensation, etc. 

It has been shown that the propagation process in an optical 

channel can be represented as sequential generation of pairs 

of echo-signals. The model is an analytical and described in 

time domain. The applications of this model are an optical 

signal propagation modeling which includes the nonlinear 

propagation and algorithms of dispersion compensation. 

Furthermore, the method of estimating the memory of an 

optical channel is proposed in this article. It requires only the 

estimation of values of coefficients at each echo-signal.   

 A problem of the proposed models is a high computational 

complexity in the case of wide signal bandwidths and 

considerable distances. However, the main task of this model 

is the using it in an analytical equations. In this case, the 

computational complexity is not substantial. 
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