
 

 

 

Abstract—Big data and cloud computing became the centre of 

interest for the past decade. With the increase of data size and 

different cloud application, the idea of big data analytics become 

very popular both in industry and academia. The research 

communities in industry and academia never stopped trying to 

come up with the fast, robust, and fault tolerant analytic 

engines. MapReduce becomes one of the popular big data 

analytic engine over the past few years. Hadoop is a standard 

implementation of MapReduce framework for running 

data-intensive applications on the clusters of commodity servers. 

By thoroughly studying the framework we find out that the 

shuffle phase, all-to-all input data fetching phase in reduce task 

significantly affect the application performance. There is a 

problem of variance in both the intermediate key’s frequencies 

and their distribution among data nodes throughout the cluster 

in Hadoop’s MapReduce system. This variance in system causes 

network overhead which leads to unfairness on the reduce input 

among different data nodes in the cluster. Because of the above 

problems, applications experience performance degradation due 

to shuffle phase of MapReduce applications. We develop a new 

novel algorithm; unlike previous systems our algorithm 

considers each node’s capabilities as heuristics to decide a better 

available trade-off for the locality and fairness in the system. By 

comparing with the default Hadoop’s partitioning algorithm 

and Leen partitioning algorithm: a). In case of 2 million 

key-value pairs to process, on the average our approach achieve 

better resource utilization by about 19%, and 9%, in that order; 

b). In case of 3 million key-value pairs to process, our approach 

achieve near optimal resource utilization by about 15%, and 

7%, respectively. 

 
Keyword—Cloud and Distributed Computing, Context-aware 

Partitioning, Hadoop MapReduce, Heterogeneous Systems 

 

I. INTRODUCTION 

IG DATA [1] is getting bigger day by day with the 

information coming from instrumented, steady supply 

 
——————————————————————— 

Manuscript received April 26, 2017. This research work is follow-up of 

the invited journal to an accepted eminent conference paper of the 18th 

International Conference on Advance Communication Technology 

(ICACT2016). This work is supported by the Basic Science Research 

Program through the National Research Foundation of Korea (NRF) funded 

by the Ministry of Science, ICT & Future Planning (No. 

2017R1A2B4010395).  

Muhammad Hanif is with the Department of Computer and Software 

Engineering, Hanyang University, Wangsimni-ro 222, Seoul, Republic of 

Korea.  (E-mail: honeykhan@ hanyang.ac.kr).  

Choonhwa Lee is with the Division of Computer Science and 

Engineering, Hanyang University, Wangsimni-ro 222, Seoul, Republic of 

Korea.  (Corresponding author, Phone: +82-2-2220-1268; fax: 

82-2-2220-1723; e-mail: lee@ hanyang.ac.kr). 

chains transmitting real-time data about the variabilities in 

everything from e-trading to weather. Furthermore, cautious 

information has in full swing through amorphous digital 

channels like social media, smart phones applications and 

different IoT devices. This big amount of data has challenges 

involve with it: data is big, it is fast, unstructured, has 

enormous amount of sources, and contains graphics. Cloud 

computing [2] becomes the interest point for both industry 

and academia due to its scalable, distributed and fault tolerant 

storage services and applications which have the aptitude to 

handle the challenges associated with big data. The data 

processing of big data in cloud and distributed computing 

environment is one of the core delinquents and under the spot 

light in research community for a while. MapReduce has 

proven to be the most popular implementation of 

computational processing framework which has the capability 

of supporting distributed storage holding large scale data over 

the distributed infrastructure like cloud computing.  

Google’s MapReduce [3] programming model is an emerging 

data intensive programming model for large scale data 

parallel applications including data mining, web indexing, 

multilinear subspace learning, business intelligence, and 

scientific simulations. MapReduce facilitates users with an 

easy parallel programming interface in distributed computing 

paradigm. It is used for distributed fault tolerance for 

supervision of multiple processing nodes in the clusters. One 

of the most significant feature of MapReduce is its high 

scalability that permits users to process massive amount of 

data in short time. There are numerous fields that benefit from 

MapReduce including bioinformatics [4], scientific analysis 

[5], web data analytics, security [6], and machine learning [7].  

Hadoop [8] [9]is a standard open-source implementation of 

Google’s MapReduce programming model for processing 

large amount of data in parallel. Hadoop was developed 

predominantly by Yahoo; where it processes petabyte scale 

data on tens of thousands of nodes [10] [11], and has been 

successfully adopted by several companies including 

Amazon, AOL, Facebook, and New York Times. For 

example, AOL uses it for running behavioural pattern 

analytics application which analyses the behavioural pattern 

of their users so as to targeted services on the basis of their 

location, interest and so on.  

The Hadoop system runs on top of the Hadoop Distributed 

File System [12], within which data is loaded, partitioned into 

splits, and each split replicated across multiple nodes. Data 

processing is co-located with data storage: when a file needs 

to be processed, the Resource Manager consults a storage 

Capacity-aware Key Partitioning Scheme for 

Heterogeneous Big Data Analytic Engines 

Muhammad Hanif, Choonhwa Lee 

Division of Computer Science and Engineering, Hanyang University, Seoul, Republic of Korea  

honeykhan@hanyang.ac.kr , lee@hanyang.ac.kr 

B 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 999

mailto:honeykhan@hanyang.ac.kr
mailto:lee@hanyang.ac.kr


 

 

metadata service to get the host node for each split, and then 

system schedules a task on that node, so that data locality is 

exploited efficiently. The map task processes a data split into 

key/value pairs, on which hash partitioning function is 

performed, on the appearance of each intermediate key 

produced by any running map within the MapReduce system: 

hash (Hash code (Intermediate-key) Modulo Reduce-ID) 

These hashing results are stored in memory buffers. In the 

reduce stage, a reducer takes a partition as input and performs 

the user defined reduce function on the partition. The storage 

distribution of the hash partition among the nodes affects the 

network traffic and the balance of the hash partition size play 

a significant role in the load-balancing among the reducer 

nodes. 

This work scrutinizes the problem of variance in both the 

intermediate key’s frequencies and their distribution among 

data nodes throughout the cluster in Hadoop’s MapReduce 

system. This variance in system causes network overhead 

which leads to unfairness on the reduce input among different 

nodes in the cluster. Because of the above problems, 

applications experience performance degradation due to 

network overhead in the shuffle phase of MapReduce kind 

applications. The current Hadoop’s default hash partitioning 

and Leen [13] partitioning work well in case of the uniform 

distribution of the data throughout the cluster in homogeneous 

systems. But in case of heterogeneous machines cluster, the 

system performance degrades due to the lack of consideration 

of heterogeneity of nodes and also the random-ness 

(non-uniform) in data distribution of data set throughout the 

cluster. 

To alleviate the problems of partitioning and computation 

skew, we develop an algorithm which considers the node 

heterogeneity (i.e. the capacity of each node in the cluster) as 

heuristics to manage the data locality and fairness trade-off in 

the system by load-balancing according to the capabilities of 

nodes in the cluster. Our algorithm saves the network 

bandwidth overindulgence during the copying phase of 

intermediate data of MapReduce job along with balancing the 

reducers input. It improves the data locality in the individual 

nodes by decoupling mappers and reducer tasks, in this 

manner having more control on keys dissemination in each 

data node of the cluster. 

Contribution of this work includes, 

 Extension of node/locality/fairness-aware execution 

model for the partitioning scheme for Hadoop. 

 A node-aware or capacity-aware algorithm to 

ascertain data locality and fair key distribution to 

achieve load-balancing in cluster according to the 

capabilities of nodes. 

 Automatize the suboptimal trade-off between locality, 

load balancing, and fairness. 

 Mitigate the partitioning and computation skew and 

achieve reduction in network overhead in the cluster 

in comparison to default state of the art partitioning 

schemes in heterogeneous environment. 

The rest of the paper is organized as follows. Section 2 

discusses the motivational background. Section 3 illuminates 

the system architecture, while the proposed scheme is 

discussed in section 4. The performance is evaluated in 

section 5. Section 6 discusses the related work and the paper 

is concluded in section 7.   

 

II. MOTIVATIONAL BACKGROUND 

There are different aspects of the Hadoop scheduler which 

should be manipulated for the improvement of existing 

schedulers and mitigating the problem with those existing 

schedulers. Our main motivations of this work are some 

assumptions made by existing schedulers and situations where 

Hadoop’s existing schedulers perform worse. In this section, 

we will justify our motivation of the work by going through 

the limitations of the previous state of the art approaches and 

demonstrating through motivational example by carrying out 

a series of experiments to validate the aforementioned 

problems in the current Hadoop implementation. 

Hadoop's Limitations 

Default Hadoop's system makes several implicit 

assumptions: 

i. All nodes in the cluster can perform work at roughly 

the same rate i.e. the cluster is consist of 

Homogeneous machines. 

ii. Tasks progress at a constant rate throughout time. 

iii. A task's progress score is evocative of fraction of its 

total work that it has done. Specifically, in a 

reduce task, the copy, sort and reduce phases each 

take about 1/3 of the total time. Which is not the 

case in real life examples, i.e. jobs and tasks can 

be of different types such as CPU intensive, IO 

intensive, or Memory intensive. 

iv. Tasks incline to finish in waves, so a task with a low 

progress score is likely a straggler. 

v. Tasks in the same category (map or reduce) require 

roughly the same amount of work [3]. 

As we shall see, assumptions 1 and 2 break down in a 

virtualized data centre due to heterogeneity of the resources. 

Assumptions 3 and 4 can break down in a homogeneous data 

centre as well, and may cause Hadoop to perform poorly there 

too. In fact, Yahoo disables speculative execution on some 

jobs because it degrades performance, and monitors faulty 

machines through other means. Facebook disables 

speculation for reduce tasks in order to achieve better 

performance [14] [15]. Assumption 5 is intrinsic in the 

MapReduce paradigm, so we do not address it in this paper. 

Leen's Limitations 

Leen works well under some conditions and scenarios, 

while there are certain situations where Leen cannot work 

properly. 

i. Leen assumption of uniform distribution of the keys 

throughout the cluster’s nodes does not hold in most 

of the real world situations, as the real world input 

data set are usually distributed and non-uniform. 

ii. It does not consider any heterogeneity, which is not the 

case in real world system. Almost all the data centres 

in the industry consists of heterogeneous machines 

such as Amazon EC2 [16], Microsoft Azure [17] 

iii. It does not consider the numbers of keys throughout the 

cluster in calculation of the FLK, it just consider the 

locality on the basis of average numbers of keys i.e. 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1000



 

 

mathematical mean value of it. 

a. This hurt the load-balancing in the system 

especially when best locality node is slower 

one. 

The 2nd point of consideration of only homogeneous 

machines degrades the performance in both virtualized and 

non-virtualized situations. In a non-virtualized data centre, 

there may be multiple generations of hardware at the same 

data centre as in case of upgrading some system to the new 

generation whereas other remain intact. In a virtualized data 

centre where multiple virtual machines run on each physical 

host, such as Amazon EC2, co-location of VMs may cause 

heterogeneity. In EC2, co-located VMs use a host’s full 

bandwidth when there is no contention and share bandwidth 

fairly when there is contention [16]. 

Motivational Example 

As shown in Fig. 1, there are three nodes: Node1, Node2, 

and Node3, with nine intermediate keys, ordered by their 

influx during the map tasks execution. For the reference, we 

use a similar example of nine keys like Leen [13] algorithm 

and use it as a comparative example among the different 

partitioning schemes. The sum of the entire nine keys 

frequencies is 225 keys, distributed randomly in the cluster of 

three data nodes, which is usually the case in distributed 

infrastructure. Also the keys occurrences are wide-ranging 

along with the dispersal among the data nodes.  

Fig. 1 shows that the key partitioning results using the 

default Hadoop Hash partitioning, which is assigning K1, K4, 

and K7 to Node1; K2, K5, and K8 to Node2; whereas K3, K6, 

and K9 to Node3. So despite the fact that Node3 has the 

highest processing capability, Node1 needs to process 81 out 

of 225, Node2 needs to process 103 out of 225, and finally 

Node3 needs to process 41 out of 225 key-value pairs leading 

to non-optimal utilization of the resources. This clarify that it 

is scant in case of the partitioning skew in terms of data size 

which needs to be shuffled through the system network and 

balance distribution of reducer’s input. We discern that the 

data size needs to be transmitted through the network in the 

shuffle phase is enormous, and the hash partitioning is 

inadequate in the presence of partitioning skew. In this 

example, the percentages of keys locally partitioned on each 

of the three nodes are 23%, 37% and 33%, respectively.  And 

the Total Network Traffic is 156 keys out of 225 keys. 

According to the processing power of the Nodes in the given 

example shown in the Table.1, Node1 process 81 keys-value 

pairs in 36 units of time, Node2 process its 103 key-value 

pairs in 23 units of time, and Node3 process its 41 assigned 

key-value pairs in 6 units of time, which prove the hypothesis 

of non-optimal utilization resources that Node3 stay idle for 

about 30 units of time (36 units for Node1 – 6 units for 

Node3). This kind of situation creates different problems like 

poor resource utilization and performance degradation 

especially in heterogeneous environment. 

Leen [13], which is an improvement to the default hash 

partitioning of the Hadoop system, performs well in some 

situations, specifically, in case of homogeneous cluster. It 

performs worse in some situation because it does not consider 

the non-uniform distribution of data throughout the data 

nodes in the cluster, as well as does not take into account the 

heterogeneity of the nodes which is the case in most of the real 

world scenarios. Continuing the example above, Leen assigns 

K5, K6, and K7 to Node1; K1, K4, K8, and K9 to Node2; 

whereas K2, and K3 to Node3. Leading to the fact that Node1 

needs to process 45 out of 225, Node2 needs to process 94 out 

of 225, and finally Node3 needs to process 86 out of 225 

key-value pairs leading to a sub-optimal solution which is an 

enhanced assignment of key-value pairs than the one by 

default hash partitioning scheme. The percentage of keys 

locality in the three nodes are 36%, 59%, and 45%, 

respectively. The total network traffic is to transfer 150 keys 

out of 225 keys, which decreases the numbers of keys transfer 

over the network and leads to around 2% improvement over 

the hash partitioning as shown in Fig. 2. Bestowing to the 

previous calculations, Node1 process 45 keys-value pairs in 

20 units of time, Node2 process its 94 key-value pairs in 21 

units of time, and Node3 process its 86 assigned key-value 

 
Fig. 1.  Illustrate the current hash partitioning. The keys are ordered by appearance while each value represent the frequency of key in the data node.  

 
Fig. 2.  Using Leen partitioning scheme, it increases locality as compared to the default Hadoop’s hash partitioning. 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1001



 

 

pairs in 13 units of time, in which case Node3 stay idle only 

for about 8 units of time instead of 30 units as in the case of 

default hash partitioning (i.e. 21 units for Node2 – 13 units for 

Node3). This example shows that the Leen partitioning 

algorithm help the system to improve the utilization of the 

whole cluster eventually. 

By the above reasoning, we have to conclude that the 

previous work lack of contemplation of the capacity 

awareness of the nodes superintends any opportunities of the 

reduction of the network traffic during the shuffle phase of the 

MapReduce application execution, in case of heterogeneity in 

the cluster. Also the load misbalancing data distribution of 

reducer nodes occurs, i.e. 1). Nodes with higher capacity get 

less amount of data leading to non-optimal utilization of 

resources and under loading, 2). Lower capacity nodes getting 

more data to process leading to performance degradation, 

overloading, and straggler effect. 

 

III. SYSTEM ARCHITECTURE 

In this section, we will introduce the system architecture 

and how the proposed system work in the specified 

environment. As mentioned earlier, we decouple the mappers 

and reducers in order to achieve more parallelism and keep 

track of all the intermediate data keys frequencies and 

distribution in the form of capacity-keys frequency table. In 

order to meritoriously partition certain input data set of K 

keys distributed over N nodes in a cluster, the system need to 

find the best available solution in a space of possible 

combinations. The system achieve it through the proposed 

approach which will be explained in the forthcoming section.  

The system architecture is consists of a master node and a 

number of worker nodes as shown in the Fig. 3, and it works 

as subsequent way. The system first run some test tasks on the 

worker nodes over the cluster which send the results back to 

the master node. The master node uses the gather information 

of each worker node in the cluster and keep track of the 

execution time of each node in the cluster for the jobs run by 

the specified node. The master node then estimates the 

processing power ratio using the sample task run results. Then 

master node constructs node-capacity table which is further 

used in the edifice of capacity-keys frequency table. As the 

master node already knows the input keys data distribution 

over the cluster, the formation of capacity-keys frequency 

table take place using the perceptibly known information 

required. Then this table is being forwarded to the task 

scheduler. The task scheduler schedule different keys to 

different node while taking all the available information into 

account, in order to get the sub-optimal trade-off between 

fairness, locality and load-balancing. And as a result of this 

procedure, every node in the cluster get the numbers of tasks 

and partitions of the input data suitable to their processing 

power.  

 

IV. PROPOSED APPROACH 

In this section, we will thoroughly explain the proposed 

approach in three different subsections. First, we will explain 

the details about how to measure the heterogeneity of 

different nodes exists within the cluster. Then will move to 

demonstrating the effectiveness of the proposed approach 

with the help of continuing the same example from section 2. 

Finally, the details of the mathematical model used in the 

system will be elucidated in the last subsection of this section. 

We introduce a new metric NA-FLK, which consider the 

node heterogeneity in the cluster. There is always a trade-off 

between the locality and fairness in heterogeneous systems, so 

we use a weightage model where users can choose the ratio 

between the locality and fairness. By default the 

locality-fairness ratio will be 60% to 40% i.e. 60% weightage 

to locality while 40% weightage to fairness. For this we will 

use two new properties, <mapred.fairness.weightage> and 

<mapred.locality.weightage>. With these properties, we 

gives the administrator the power to decide which of the 

metric is more valuable to their organization according to 

their SLA with users. 

A. Measuring Heterogeneity 

Afore implementing our partitioning algorithm, we need to 

measure the heterogeneity of Hadoop cluster in terms of data 

processing speed. Such processing speed highly depends on 

data-intensive applications. Thus, heterogeneity 

measurements in the cluster may change while executing 

different MapReduce data processing applications. We 

introduce a metric “processing power ratio”, to measure each 

node’s processing speed in a heterogeneous cluster upon 

execution of new application execution, insertion of new 

node, or failure of node in the cluster. Processing power ratios 

are determined by a sketching procedure conceded out 

through following steps. 

 The data processing operations of a given MapReduce 

application are separately carrying out in each node. 

To fairly compare processing speed, we guarantee 

that all the nodes process the same amount of input 

data. For example, experiment with the same size 

input file of 1GB to process by the specified node. 

TABLE I 

EXAMPLE OF MEASURING HETEROGENEITY 

Node Execution 

Time 

PP-Ratio Optimal Keys Assignment 

Node A 10 1 40% 

Node B 20 2 30% 

Node C 30 3 20% 

Node D 40 4 10% 

*Execution units used are seconds here. 

 

 

 
Fig. 3.  Proposed scheme system architecture. 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1002



 

 

 The response time of each node performing the data 

processing operations will be recorded in an 

Array-List data structure. 

 Shortest response time is used as a reference to 

normalize the response time measurements. 

 The normalized processing powers ratios are 

employed by the partitioning algorithm of the system 

while taking decision of the trade-off between the 

fairness, load-balancing, and locality. 

Measuring Heterogeneity Example:  Suppose that there 

are four heterogeneous nodes: Node A, B, C and D, in a 

Hadoop MapReduce cluster as shown in table 1. After 

running a Hadoop application on each node, one collects the 

response time of the application on node A, B, C and D is 10, 

20, 30 and 40 seconds, respectively. The response time of the 

application on node A is the shortest. Therefore, the 

processing power ratio of node A with respect to this 

application is set to 1, which becomes a reference used to 

determine processing power ratios of node B, C and D. Thus, 

the processing power ratios of node B, C and D are 2, 3 and 4, 

respectively. Recall that the processing power capacity of 

each node is quite stable with respect to any specified Hadoop 

analytic application. Hence, the processing power ratios are 

free of input file sizes. Table I shows the response times, 

processing power ratios, and optimal keys assignment 

percentage for each node in the cluster. As we can grasp, the 

optimal keys assignment percentage with the value of 40% for 

Node A is the highest, 30% for Node B, 20% for Node C, and 

10% for Node D, so the scheduler with the suboptimal 

solution will get the nearest possible values for each node in 

the cluster leading to a load-balanced cluster. 

B. Partitioning Example  

Continuing with section 2-C motivational examples, where 

the total network traffic was high and the locality was lower 

than expected. Our proposed Capacity-aware scheme is very 

much appropriate for the practical scenarios because it cover 

most of the drawbacks of previously developed schemes. This 

scheme can work in case of diverse non-uniformly distributed 

data over the nodes, and also in case of heterogonous 

machines in the system. Continuing with the motivational 

example, as shown in Fig. 4, the proposed scheme NoLFA 

assigns K7 to Node1; K1, K4, K8, and K9 to Node2; whereas 

K2, K3, K5, and K6 to Node3. Prominently leading towards 

the datum that Node1 needs to process 5 out of 225, Node2 

needs to process 94 out of 225, and Node3 needs to process 

126 out of 225 key-value pairs, which give us a near-optimal 

solution of assignment of key-value pairs. The percentage of 

keys locality in the three nodes are 2%, 59%, and 60%, 

respectively. The total network traffic is to transfer 138 keys 

out of 225 keys, which decreases the numbers of keys transfer 

over the network and leads to around 8% improvement over 

the hash partitioning scheme. According to the processing 

power of the Nodes in the given example, Node1 process 5 

keys-value pairs in 2 units of time, Node2 process its 94 

key-value pairs in 21 units of time, and Node3 process its 126 

assigned key-value pairs in 18 units of time. Thus, NoLFA 

achieves better load-balancing according to the capabilities of 

the nodes in the system. 

C. Mathematical Model  

Our proposed algorithm introduces heterogeneity 

awareness into the default Hadoop scheduling system by 

altering the hash key partitioning scheme while taking locality 

of data and fairness into account. For the effective partitioning 

of data set of K keys distributed over N nodes in cluster, there 

will be best possible solution in K^N solutions. To find 

suitable solution of all these possible ways, we use processing 

power or capabilities of nodes as heuristic in the proposed 

scheme. We keep in mind that for the best solution, we need to 

find a good trade-off between the locality of keys-value pairs, 

load-balancing, and fairness to the reduce nodes throughout 

the cluster. After estimating the processing power of the 

nodes, we need to find the optimal load for the reducers 

depending on the numbers of reducers according to the SLA 

based configuration of the cluster. 

To calculate the suboptimal load for each reducer in the 

cluster, we need to use the optimal load percentage table with 

total data set, 

 
For the locality of keys in a specified node, we use the 

frequencies of keys partitioned to that node divided by the 

optimal load for the specified node (instead of just the 

athematic mean of all, which is wrong in most practical world 

applications). 

 
As we can see in the above equation, the locality of each node 

j is the ration of partitioned keys to the Optimal Load from the 

already calculated table. The best locality node is usually the 

node which contains maximum frequencies of a key, and that 

key is partitioned to that node. The fairness in the system 

could be calculated as follows, 

 

 
Fig. 4.  Motivational Example: Using our Capacity-Aware partitioning scheme outperform both Hadoop’s hash partitioning and Leen partitioning. 

 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1003



 

 

where  points to the frequency of key  in the data node 

, and represents the optimal load on 

reducer according to their computing power. The best locality 

indicates partitioning to the data node which has the 

maximum frequencies for the key. The total network traffic in 

the cluster can be calculated as, 

 
With this formula, we can get an educated guess of the 

network overhead in the cluster with the combined effect of 

both the total intermediate data and each node assessed 

locality. 

 

V. PERFORMANCE EVALUATION 

To evaluate the performance of the proposed algorithm, we 

have designed and execute certain set of experiments with 

different variations of keys and frequencies distribution. The 

experimental results shows that the our proposed approach 

NoLFA algorithm over-run Leen and Hash partitioning by 

decreasing the total network traffic in the cluster as shown in 

the Fig. 5. Hash partitioning is the default partitioning scheme 

of the Hadoop data processing framework, which on the 

average generates around 70% of the cluster’s network traffic, 

whereas Leen improve it and crafts around 67% of network 

traffic in the cluster on the average. And our algorithm 

NoLFA outperforms both of the above partitioning scheme by 

achieving on average better results, and creates around 61% 

of the total network traffic. This is because of the fact that 

NoLFA considers the capacity of each machine/node in the 

cluster while taking the decision about the partitioning of 

different keys to different nodes in the cluster. 

The second set of experiments focus on the load-balancing 

problem in the Hadoop scheduling systems. As Fig. 6 shows 

that the processing power of three different nodes, the desired 

optimal load-balancing for all three nodes, and the load 

balancing achieved by each partitioning scheme including 

hash partitioning, Leen, and NoLFA. From the domino effect, 

it is clear that there is a trade-off between load balancing and 

locality of key-values pairs throughout the Hadoop’s cluster. 

So the outcome shows that the NoLFA perform better in 

selecting the trade-off between load balancing and locality 

because it considers the heterogeneity of nodes in cluster 

whereas others does not consider any such heuristics and 

assign on the basis of static decided values. 

Through better load balancing ability of NoLFA using 

node computing power as heuristics, it attains decrease in the 

execution time of the overall application. Fig. 7 shows the 

normalized execution time of each partitioning scheme 

designed for this set of experiments i.e. Hadoop’s default hash 

partitioning scheme, Leen, and NoLFA. For the normalization 

effect, we use NoLFA as base for the calculation. Leen is 

about 0.22X slower on average as compare to our algorithm 

whereas Hash partitioning takes approximately 0.6X times 

extra time as compare to our NoLFA partitioning algorithm’s 

execution time. With the elucidation of Fig. 8, we illustrate 

the average resource utilization of cluster resources by 

Hadoop, Leen, and NoLFA, respectively. X-Axis shows 

different schemes such as Hadoop, Leen, and NoLFA. Y-Axis 

shows the average percentage of cluster resource utilization 

by different schemes. Whereas Z-Axis shows the change in 

the data size in units of numbers of key-values pairs processed 

in each case study. As we can surmise from Fig. 8, the blue 

bars at the front represents the state of affairs when the 

numbers of key-values pairs are 2 million. The red bars in the 

back represents the results in case of 3 million key-value pairs 

been processed by each scheme. We can deduct from these 

case studies that Leen and NoLFA keep the trend of 

outperforming the default Hadoop partitioning scheme in 

both cases, as the numbers of key-values pairs increased in the 

experiment. The utilization increases with the number of 

key-value pair increases until the saturation of data to the 

nodes in the cluster.  

Finally, Fig. 9 signposts the network traffic overhead in all 

six instance of the experiments for the Hadoop with number of 

key-value pairs to process set to 2 million and three million; 

 
Fig. 5.  Percentage of total network traffic generated in the cluster. 

 

 
Fig. 6.  Trade-off between Load balancing and Fairness.  

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1004



 

 

for Leen with the number of key-value pairs set to 2 million 

and 3 million; and for NoLFA with the key-value pairs set to 2 

million and 3 million, accordingly. X-axis shows the average 

percent network traffic overhead caused in each instance of 

experiment. Y-axis shows different partitioning techniques 

used in the model experiments. The top bottom blue bar 

shows the case when the number of key-values pairs to be 

processed is 3 million, whereas the top red bar represent the 

case of 2 million key-value pairs to be processed, accordingly. 

The results shows that the network overhead increases as the 

amount of data need to be processed increases in each 

instance of experiment. 

With the above reasoning, we claim that it is clear that 

capacity awareness play an important role in selection of the 

partitioning different keys to different nodes in the cluster, 

and has a positive influence on the overall performance and 

near optimal utilization of the cluster. 

VI. RELATED WORK 

Previous work aiming to improve the performance of 

MapReduce system achieved the desired goal through 

various approaches including reduction of network cramming 

by inserting partial data awareness into the shuffle phase, 

skew mitigation, replica awareness, and network awareness. 

Authors in [18] proposed two schemes of pre-fetching and 

pre-shuffling for communal MapReduce environments. 

Pre-fetching use data locality and assign tasks to nearest node 

to the data block, whereas pre-shuffling reduce network 

overhead of slouching the key-value pairs. Our scheme 

NoLFA decouple the mapper and reducer tasks and scan over 

the keys frequency table generated upon execution of map 

phase and cross reference it with the capacity table created 

after executing the sample jobs on the nodes in the cluster to 

achieve the goal of partial balanced reduce tasks throughout 

the cluster. ShuffleWatcher [19] proposed a multi-tenant 

Hadoop scheduler that tries to curtail the network traffic in 

shuffle phase while maintaining the particular fairness 

constraints of the system. The working principle of the 

ShuffleWatcher is on the basis of the following three steps. 

First, it limit the intra-job map shuffle according to the 

network traffic load. Second, it auspiciously apportion the 

map tasks to localize the intermediate data. Finally, it exploit 

the confined intermediate data and delayed shuffle to reduce 

the network traffic in shuffle phase by favorably scheduling 

reduce tasks in nodes crofting the intermediate data. Unlike 

ShuffleWatcher, NoLFA take the capacity information of 

each node in the cluster whereas distributing the tasks which 

is very helpful in case of the heterogeneity in the cluster. 

EC-Cache [20] introduced a load-balanced, low latency 

cluster cache via erasure coding to overawed the inadequacy 

of selective replication. It employs erasure coding through 

two principles. First, by splitting and erasure coding 

individual objects during writes. Second, late binding. These 

led to improving load-balancing in the system.  Tang et al. 

proposed a sampling evaluation to solve the problems of 

partitioning skew and intermediate data locality for the 

reduce tasks called Minimum Transmission Cost Reduce 

Task Scheduler [21] (MTCRS). They used communication 

cost and waiting time of each reduce task as heuristic whereas 

deciding which task to assign to which node in the cluster. 

Their scheduling algorithm used Average Reservoir Sampling 

for the spawning of parameter sizes, and location of 

intermediate data partitions for their rummage-sale 

mathematical estimation model. On the other hand, NoLFA 

used Random Sampling.  

Transferring data over the network is costly and causes 

performance degradation more severely in federated clusters. 

Kondikoppa et al. [22] introduced a network-aware 

scheduling algorithm for Hadoop system which work in 

federated clusters, improving the map tasks scheduling and 

 
Fig. 7.  Normalized execution time with NoFLA as base for normalization. 

 
Fig. 8.  Average performance gain of Hadoop, Leen, and NoLFA. Results are 

normalized according the number of key-value pairs processed by each 

scheme accordingly.  

 
Fig. 9.  Percent Network Traffic Overhead vs Numbers of Key-value pairs. 

The upper red bars shows the value for 2 million key-value pairs while the 

lower blue bar show it for 3 million key-value pairs to process.  

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1005



 

 

consequently tries to abate the network traffic overhead 

leading to improved performance gain. NoLFA has different 

approach of decoupling the map and reduce tasks and 

routinize the keys-capacity frequency table to achieve the 

specified goal. Locality Aware Reduce Scheduling (LARS) 

[23] abate data transfer in their proposed grid-enabled 

MapReduce framework. Due to heterogeneity awareness of 

nodes in the grid, the map data size varies leading to assigning 

map tasks associated with different data size to different 

worker nodes according to their computation power. The 

LARS algorithm will select the nodes with largest region size 

of the intermediate data to be the destination for the reduce 

tasks. NoLFA achieve the desired goal with the 

frequency-capacity table.  

Another concern is the partitioning skew that ascends due 

to an unstable distribution of map output across nodes, 

causing a massive size of data input for some reduce tasks 

while lesser for others. Centre-of-Gravity (CoG) [24] reduce 

scheduling add locality and skew cognizance to the scheduler. 

They allocates the reduce tasks to nodes nearer to nodes 

creating the intermediate data for that listed reduce tasks. 

SkewReduce [25] was proposed with the intention to dazed 

the computation skew in MapReduce systems where the 

partition run time depends on the data values as well as input 

size. It uses a user defined cost function based optimizer to 

regulate the partitioning parameterization of input data to 

curtail the computational skew. NoLFA only consider the 

case where the computational time of an input partition 

depends upon the input data size rather than both. LEEN [13] 

attenuates the partitioning skew and minimalize the transfer of 

data using network through load balancing of the data 

distribution among the nodes in the cluster. It also improve 

the data locality of MapReduce tasks in the process. Unlike 

LEEN, NoLFA work in heterogeneous environment as well 

through our capacity awareness algorithm. Chen el al. [26] 

proposed Dynamic Smart Speculative technique to alleviate 

the problems with default speculation implementation like 

skew, indecorous phase percentage configuration and 

asynchronous twitch of certain tasks with the cost of 

degradation of performance for batch jobs. Whereas 

FP-Hadoop [27] introduces a new phase called intermediate 

reduce (IR) to parallelize the reduce task to efficiently tackle 

the reduce data skew problem. IR process the blocks of 

intermediate data in parallel. NoLFA has a different approach 

of decoupling the mappers and reducers tasks as introduced in 

our previous work [28]. 

 

VII. CONCLUSION 

Hadoop affords simplified implementation of MapReduce 

framework, but its design stances challenges to attain best 

performance in application execution due to tightly coupled 

shuffle, obstinate scheduling and partitioning skew. In this 

paper, we developed an algorithm which takes node 

capabilities as heuristics to achieve better trade-off between 

locality and fairness in the Hadoop MapReduce system. It 

effectively improves the data locality and by comparing with 

the default Hadoop’s partitioning algorithm and Leen 

partitioning algorithm, on the average our approach achieves 

better performance gain and outperform both of the 

previously mentioned partitioning schemes. 

 

ACKNOWLEDGMENT 

This research was supported by Basic Science Research 

Program through the National Research Foundation of Korea 

(NRF) funded by the Ministry of Science, ICT & Future 

Planning (No. 2017R1A2B4010395). 

REFERENCES 

[1] M. James, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and 

A. H. Byers, “Big data: The next frontier for innovation, competition, 

and productivity,” McKinsey Glob. Inst., no. June, p. 156, 2011. 

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,” 

NIST Spec. Publ., vol. 145, p. 7, 2011. 

[3] J. Dean and S. Ghemawat, “MapReduce,” Commun. ACM, vol. 51, no. 

1, p. 107, 2008. 

[4] A. Matsunaga, M. Tsugawa, and J. Fortes, “CloudBLAST: Combining 

MapReduce and Virtualization on Distributed Resources for 

Bioinformatics Applications,” 2008 IEEE Fourth Int. Conf. eScience, 

pp. 222–229, 2008. 

[5] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and G. 

Fox, “Twister : A Runtime for Iterative MapReduce,” HPDC ’10 Proc. 

19th ACM Int. Symp. High Perform. Distrib. Comput., pp. 810–818, 

2010. 

[6] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, and J. Wang, 

“Introducing map-reduce to high end computing,” 2008 3rd Petascale 

Data Storage Work., pp. 1–6, 2008. 

[7] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. 

Olukotun, “Map-Reduce for Machine Learning on Multicore,” Adv. 

Neural Inf. Process. Syst. 19, pp. 281–288, 2007. 

[8] Apache!, “ApacheTM Hadoop!” [Online]. Available: 

http://hadoop.apache.org/. [Accessed: 19-Dec-2016]. 

[9] Amazon!, “Amazon Elastic Compute Cloud (EC2).” [Online]. 

Available: http://aws.amazon.com/ec2/. [Accessed: 19-Dec-2016]. 

[10] Yahoo!, “Yahoo Developer Network.” [Online]. Available: 

https://developer.yahoo.com/blogs/hadoop/yahoo-launches-world-larg

est-hadoop-production-application-398.html. [Accessed: 1-Jan-2017]. 

[11] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness 

and Discrimination for Resource Allocation in Shared Computer 

Systems,” DEC technical report TR301, vol. cs.NI/9809, no. 

DEC-TR-301. pp. 1–38, 1998. 

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop 

Distributed File System,” 2010 IEEE 26th Symp. Mass Storage Syst. 

Technol., pp. 1–10, 2010. 

[13] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “LEEN: 

Locality/fairness-aware key partitioning for MapReduce in the cloud,” 

Proc. - 2nd IEEE Int. Conf. Cloud Comput. Technol. Sci. CloudCom 

2010, no. 2, pp. 17–24, 2010. 

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and 

R. Sears, “MapReduce online,” Nsdi’10, pp. 21–21, 2010. 

[15] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica, 

“Improving MapReduce Performance in Heterogeneous 

Environments.” Osdi, pp. 29–42, 2008. 

[16] “Amazon EC2 Instance Types.” [Online]. Available: 

https://aws.amazon.com/ec2/instance-types/. [Accessed: 3-Jan-2017]. 

[17] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get 

Off of My Cloud: Exploring Information Leakage in Third-Party 

Compute Clouds,” Proc. 16th ACM Conf. Comput. Commun. Secur, 

pp. 199–212, 2009.  

[18] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng, “HPMR: 

Prefetching and pre-shuffling in shared MapReduce computation 

environment,” 2009 IEEE Int. Conf. Clust. Comput. Work, pp. 1–8, 

2009. 

[19] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, 

“ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant 

MapReduce Clusters,” 2014 USENIX Annu. Tech. Conf. (USENIX 

ATC 14), pp. 1–13, 2014.  

[20] K. V Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, K. Ramchandran, 

and I. Osdi, “EC-Cache : Load-Balanced , Low-Latency Cluster 

Caching with Online Erasure Coding This paper is included in the 

Proceedings of the R / W,” Osdi, 2016. 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1006



 

 

[21] X. Tang, L. Wang, and Z. Geng, “A Reduce Task Scheduler for 

MapReduce with Minimum Transmission Cost Based on Sampling 

Evaluation,” vol. 8, no. 1, pp. 1–10, 2015. 

[22] P. Kondikoppa, C.-H. Chiu, C. Cui, L. Xue, and S.-J. Park, 

“Network-aware Scheduling of Mapreduce Framework on Distributed 

Clusters over High Speed Networks,” pp. 39–44, 2012. 

[23] Y. L. Su, P. C. Chen, J. B. Chang, and C. K. Shieh, “Variable-sized 

map and locality-aware reduce on public-resource grids,” Futur. 

Gener. Comput. Syst., vol. 27, no. 6, pp. 843–849, 2011. 

[24] M. Hammoud, M. S. Rehman, and M. F. Sakr, “Center-of-gravity 

reduce task scheduling to lower MapReduce network traffic,” Proc. - 

2012 IEEE 5th Int. Conf. Cloud Comput. CLOUD 2012, pp. 49–58, 

2012. 

[25] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-Resistant 

Parallel Processing of Feature-Extracting Scientific User-Defined 

Functions,” 2010. 

[26] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance 

using smart speculative execution strategy,” IEEE Trans. Comput., 

vol. 63, no. 4, pp. 954–967, 2014. 

[27] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, and P. Valduriez, 

“FP-Hadoop: Efficient processing of skewed MapReduce jobs,” Inf. 

Syst., vol. 60, pp. 69–84, 2016. 

[28] M. Hanif and C. Lee, “An Efficient Key Partitioning Scheme for 

Heterogeneous MapReduce Clusters,” Proc. 18th IEEE Int. Conf. Adv. 

Commun. Technol., 2016. 

 

 

Muhammad Hanif was born in Pakistan. He received 

his B.S. degrees in computer and software engineering 

from University of Engineering and Technology 

(UET), Peshawar, Pakistan in 2012. He is currently 

pursuing his MS leading to PhD degree in Computer 

Software Engineering at Hanyang University, Seoul, 

South Korea. His current research interest includes 

Cloud & Distributed Computing, Big Data Analytic 

Engines, Stream Processing Frameworks, and 

Distributed Scheduling. 

 

 

Choonhwa Lee was born in South Korea. He has 

been with the Division of Computer Science and 

Engineering at Hanyang University, Seoul, South 

Korea since 2004, and currently as Professor. He 

received his B.S. and M.S. degrees in computer 

engineering from Seoul National University (SNU), 

South Korea, in 1990 and 1992, respectively, and his 

Ph.D. degree in computer engineering from the 

University of Florida, Gainesville, in 2003. He 

worked as senior research engineer at LGIC Ltd from 1992 to 1998. He is a 

member of IEEE since 2004. His research interests include cloud computing, 

peer-to-peer and mobile networking and computing, and services computing 

technology. 

 

Copyright © 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 3, May 2017 1007




