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Abstract—Cognitive radio emerged as a new trend to mitigate 

the severe spectrum scarcity problem. As an essential problem in 
cognitive radio, spectrum sensing has been discussed widely 
recently. Blind detection techniques that sense the presence of a 
primary user's signal without prior knowledge of the signal 
characteristics, channel and noise power attract more attention 
than non-blind detection. The sensing algorithms based on 
random matrix theory which are shown to outperform energy 
detection especially in case of noise uncertainty. In this paper, a 
sensing algorithm using leading eigenvector matching (LEM) is 
introduced into cooperative spectrum sensing process. LEM 
detector uses the feature blindly learned from feature learning 
algorithm (FLA) as prior knowledge. The LEM algorithm 
involves the correlation coefficient between feature learned and 
leading eigenvector of sample covariance matrix as the test 
statistic. In this paper, we also derive the closed-form expression 
of the threshold in order to achieve constant false alarm rate 
detection. Numerical simulations show that the proposed 
detection algorithm performs better than the MME detector and 
it does not suffer from a noise power uncertainty problem while 
also proving to be more robust against the correlation decrease 
between sensing nodes. 
 

Keyword—Cognitive Radio, spectrum sensing, sample 
covariance matrix, leading eigenvector matching, feature 
learning.  
 

I. INTRODUCTION 

OGNITIVE radio (CR) differs from conventional radio 
systems and is considered as an effective method to 

mitigate the spectrum scarcity problem. In CR, cognitive user 
(CU) is aware of the electromagnetic environment around it 
and accesses the spectrum underutilized by primary user’s 
(PU) accordingly [1]. Spectrum sensing is an essential 
problem in CR which can detect the PU’s signal presence and 
it has been widely discussed in recent decade [2]. It is simple 
to detect signal when the signal to noise (SNR) is high, but in 
practice sensing the presence of PU’s signal becomes 
demanding because of the low SNR and shadow fading. 
Spectrum sensing algorithms existed can be divided into 
non-blind detector and blind detector according to whether it 
requires prior knowledge about the signal and the channel 
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characteristics. Non-blind techniques (such as matched filter 
detection and cyclostationary feature detection [3]) that rely 
on prior knowledge give a better performance, but it is 
difficult to acquire prior knowledge in practice. On the other 
hand, blind sensing (e.g. energy detection) that do not require 
prior knowledge is flexible in their application.  

Aforementioned detection algorithms are single-node 
sensing methods whose performances fall down quickly 
because of the multipath fading and hidden terminal problems, 
so cooperative spectrum sensing algorithms attract more 
attention. The cooperative spectrum sensing algorithms based 
on random matrix theory (RMT) were shown to outperform 
classical methods as a blind detector, especially in case of 
noise uncertainty which is the main disadvantage of energy 
detection. Most of the algorithms based on RMT utilize the 
differences between the distributions of eigenvalues of 
sample covariance matrix under 0H and 1H , including 

maximum and minimum eigenvalue (MME) [4], energy with 
minimum eigenvalue (EME) [5], maximum eigenvalue 
detection (MED) [6]. However, the algorithms based on RMT 
suffer from the correlation problem, i.e., its perceived 
performance decreases quickly when the correlation between 
sensing nodes decreases. 

Besides eigenvalues, eigenvector is another characteristic 
of the covariance matrix. Feature template matching (FTM) 
[7] has been proposed as a single-node spectrum sensing 
technique which is based on the leading eigenvector and 
shown that it performs better than MME and the covariance 
absolute value (CAV) algorithms. Multiple feature matching 
(MFM) [8] algorithm applied the FTM algorithm in MIMO 
system. But the methods above did not derive the closed-form 
expression of the threshold and were limited in single-node 
spectrum sensing. 

In this paper, a cooperative spectrum sensing algorithm 
using leading eigenvector matching (LEM) is introduced. 
LEM detector uses the feature blindly learned from feature 
learning algorithm (FLA) as prior knowledge. The correlation 
coefficient between feature learned and the leading 
eigenvector of sample covariance matrix serves as the test 
statistic for signal detection. The closed-form expression of 
the threshold is also derived in this paper. Simulation results 
show that the algorithm proposed is reasonable and LEM 
detector outperforms MME detector. It also do not suffer 
from a noise power uncertainty problem. Compared with 
MME detector, LEM detector is more robust against the 
decrease of correlation among the sensing nodes. 

The rest of the paper is organized as follows: Sec. II 
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reviews the sensing model and basic theory of the proposed 
algorithm. Sec. III deals with the description of LEM detector 
and the threshold derivation problem. Simulation results are 
presented and discussed in Sec. IV. Sec. V contains the 
conclusions.  
 

II. SYSTEM MODEL AND BASIC THEORY 

A. System Model 

In the CR network, there is one PU and K CUs. Denote 

with ( )ix n the thn sample received by the thi PU. There are two 

hypotheses and 0H indicates that the PU’s signal does not 

exist and 1H denotes the signal exists. The received signal 

samples under two hypotheses show as follows: 

 0

1

( ) 1,2,...,
( )

( ) ( ) 1,2,...,
i

i
i i

w n H i K
x n

s n w n H i K


   

 (1) 

where ( )is n is the PU’s signal received and ( )iw n is the white 

Gaussian noise (WGN) with zero mean and variance 2 . 
Let ( ) [ ( ) ( 1) ... ( -1)]i i i iX n x n x n x n N   be a 1 N vector 

containing N consecutive samples collected by the thi CU. 

The thj sensing segment constructed by the samples received 

is written as: 
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The sample covariance matrix is
1 T

j j jR X X
N

 and its 

leading eigenvector is j . 

 

B. Basic Theory 

sx indicates a 2 1 amplitude modulation (AM) signal 

vector and nx indicates a 2 1 WGN vector. Denote 

with s nx  a 2 1  AM signal with WGN vector, which 

means s n s nx x x   . The elements of the vector are 1x  and 

2x respectively. Fig. 1 shows that the distribution of WGN is 

random, while sx has the same characteristic angle with s nx  , 

which means that their leading eigenvector is similar. The 
algorithm proposed uses the characteristic to distinguish 
signal from noise. The similar situation in three-dimension is 
shown in Fig. 2. 
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Fig. 1.  The distribution under two-dimension 
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Fig. 2.  The distribution under three-dimension 

 

Mathematical theorem about the sensitivity of eigenvectors 
also explain the characteristic above, that is, the sensitivity of 
the eigenvector depends on the separation between the 
corresponding eigenvalue and other eigenvalues. 

Under 0H , the sample covariance matrix approximates the 

diagonal matrix
2E . The leading eigenvector is sensitive and 

random because the maximum eigenvalue equals to other 

eigenvalues, which means the similarity between two leading 

eigenvector of two sample covariance matrices is low. Instead, 

the leading eigenvector remains stable under 1H because the 

maximum eigenvalue is much larger than other eigenvalues 

and the similarity is high. 
According to the definition of the eigenvalues and 

eigenvectors, the relation among sample covariance 
matrix R , its maximum eigenvalue  and leading 
eigenvector I can be written as the equation: 
 RI I  (3) 

While noise exists, it can be expressed as: 

 
2 2( + ) ( )R E I I     (4) 

It is shown that the leading eigenvector I of matrix R is 

also the leading eigenvector of 2+R E .Therefore, I remains 
stable regardless of the change of noise variance, which is 
more robust against noise. 
 

III. DETECTION ALGORITHM 

A. Leading Eigenvector Matching Algorithm 

Leading eigenvector is also called signal feature in pattern 
recognition and it has the greatest mutual information with 
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original signal. Compared with the randomness of leading 
eigenvector of WGN, the leading eigenvector of WGN is 
more stable. If PU’s signal exists, highly correlated leading 
eigenvector can be detected in consecutive sensing 
segments jX and +1jX . Due to the robustness of signal feature, 

it can be learned by blind FLA. 
The feature s can be learned blindly from J sensing 

segments by following steps: 

1) Extract feature j and 1j  from jX and +1jX ; 

2) Compute correlation coefficient via cosine similarity 
formula: 

 
1

, 1 1

1

,j j T
j j j j

j j

 
  

 


 


   (5) 

3) -1J correlation coefficients can be calculated 

from J sensing segments. If , 1 , 1
1 2 ..., 1
max { }m m j j

j J
   


，，

, 

signal feature s is learned as 1m  . 

With the prior knowledge s , we have LEM detector: 

1) Compute the received signal sample covariance 
matrix currentX and corresponding leading 

eigenvector current ; 

2) Compute correlation coefficient ,s current  between s  

and current ; 

3) 1H  is true if ,s current  , where  is the threshold 

determined by desired fP . 

Compared with MME detector, both of the algorithms need 
to solve eigenvector and eigenvalue problem and their time 
complexity is almost same. But the LEM detector need to 

learn the feature s by FLA which requires extra computation 

and time. In practical applications, the feature can be learned 
ahead and stored in local fusion center memory. 
 

B. Threshold 

It is necessary to obtain the expression of the false-alarm 
probability. On the one hand, the false-alarm probability can 
be used to illustrate the performance of the detection 
algorithm. On the other hand, the threshold can be obtained by 
given target false-alarm probability. In the proposed 
algorithm, the probability of false alarm is defined as: 

 0( )T
f s currentP p H     (6) 

Under 0H , we have the following result: 

 21
, ~ ( , )s currentR R wishart S I

S
  (7) 

where ( )wishart  is Wishart distribution. Let s and current be 

the leading eigenvectors of sR and currentR , and the normalized 

covariance matrices are defined as: 

 
2 2

1 1
= , =

1
, ~ ( , )

s s current current

s current

C R C R

C C wishart S I
S

   (8) 

Let A and B be the matrices containing the 
normalized  eigenvectors of sC and currentC respectively. We 

have 1 2[ , ]KA a a a  , 1 2[ , ]KB b b b   where the 

eigenvectors are arranged in descending order. And the 
matrices TA and TB converge in distribution to Haar [9]. It is 
known that A , B and TB are unitary matrices and we have 
following result: 

 ( ) ( ( ) ) ( )T T T Tf A B f A B f A   (9) 

where ( )f  is the Probability Density Function. 

Because TA B and TA converge in the same distribution, the 
elements of the matrices also converge in the same 
distribution and we have following result: 

 1 1 11( ) ( )Tf a b f a  (10) 

where 11a is the element at the first row and the first column in 

matrix A . 
According to the property of unitary matrix, it can be 

known that 2
11a converges in distribution to Beta with 

parameters
1

=
2

 and
1

2

K 
 . The probability density 

function of 1 1= =T T
s currentT a b   can be written as: 
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And we have the expression of false-alarm probability as 
follows: 
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Hence, we derive the decision threshold as a function of the 
false-alarm probability: 

 1 1 1
= (1 , , )

2 2Beta f

K
F P  

  (13) 

where 1 ( )BetaF   is the inverse cumulative distribution function 

of Beta distribution. It is shown that the threshold is a function 
of the target fP and the dimension of the covariance matrix K . 

So the algorithm proposed in this paper is a blind sensing 
algorithm that do not require any prior knowledge about the 
signal and the channel characteristics. 
 

IV. SIMULATION 

In this section, we present the simulation results to evaluate 
the performance of the proposed algorithm. The PU’s signal 
is the AM signal whose carrier frequency is 702 KHz and the 
sample ratio is 4MHz. The numbers of the CUs and samples 
are 32 and 1000 respectively and the SNR is -20dB. The 
simulation results are obtained by 10,000 Monte Carlo trials. 
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A. Distribution of the test statistic 

Fig. 3 shows the frequency distribution of the test statistic 
under two hypotheses, i.e., 0H and 1H . It is shown that most 

of the test statistic under 0H  is less than 0.4 while the majority 

of the test statistic under 1H is greater than 0.4. It is obvious 

that the test statistic under 0H and 1H can be separated well by 

a given threshold, e.g., 0.45, in this situation.  
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Fig. 3.  Frequency distribution of the test statistic under 0H and 1H  

 

Fig. 4 presents the estimated and empirical cumulative 
distribution function (CDF) of the test statistic 
under 0H respectively with different K . The accuracy of the 

estimated CDF determines the accuracy of the threshold to 
achieve target false-alarm probability. It is shown that the 
estimated CDF matches well with the empirical CDF with 
different K . 
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Fig. 4.  Estimated and empirical CDF of the test statistic under 0H  

 

B. Comparison of ROC for MME and LEM 

MME algorithm is a classical cooperative spectrum sensing 
method based on the random matrix theory. Denote max and 

min with maximum and minimum eigenvalues of sample 

covariance matrix respectively. The ratio between maximum 
and minimum eigenvalues max min  is used to be the test 

statistic. We will compare MME detector with LEM detector 
from several aspects. 

Receiver operating characteristic (ROC) curve is an 
essential graphical plot that illustrates the performance of a 
binary classifier system. Fig. 5 shows the ROC’s comparison 
between MME detector and LEM detector and the latter has a 
better performance obviously compared with the former. 
Generally speaking, the spectrum sensing algorithm need to 
achieve constant false alarm rate (CFAR) detection and 
according to 802.22 working group, the target false-alarm 
probability in the CR is required to be less than 10%. As 
shown in the figure, when the false-alarm probability is 1%, 
the detection probability for MME detector and LEM detector 
is 64% and 92% respectively. Because it is unnecessary to 
estimate the noise power to obtain the threshold, both the 
MME detector and LEM detector do not suffer from a noise 
uncertainty problem which is the main disadvantage of the 
energy detector. 
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Fig. 5.  ROC for MME and LEM 
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Fig. 6.  Empirical fP vs. theoretical fP for MME and LEM 

 

The abscissa coordinate of Fig. 6 is the theoretical 
false-alarm probability and the vertical coordinate is the 
empirical false-alarm probability. It shows that the curve of 
LEM algorithm is roughly diagonal, that is, the theoretical 
false-alarm probability is approximately equal to the 
theoretical false-alarm probability, which proves the 
correctness of the decision threshold derivation. As for MME 
algorithm, the empirical false-alarm probability deviates from 
the theoretical false-alarm probability significantly. MME 
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detector is based on the asymptotic random matrix theory that 
requires the dimension of the matrix is infinite and it is 
impossible in practice, which leads to the deviation of the 
threshold.  
 

C. Comparison of performance under different SNR 

Fig. 7 represents that the detection probability for MME 
detector decreases sharply with the decrease of SNR while the 
detection probability for LEM detector decreases slowly. 
When the SNR is -20dB, the detection probability for MME 
detector and LEM detector is 65% and 95% respectively.  
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Fig. 7.  dP vs. SNR at 5%fP  for MME and LEM 

 

In Fig. 8, we investigate the probability of false alarm 
versus SNR. The false-alarm probability for LEM detector 
reaches 5% and fluctuates slightly around it. The false-alarm 
probability for MME detector is slightly higher than that for 
LEM algorithm because the threshold derivation of LEM 
algorithm is more accurate. 

-22 -21.5 -21 -20.5 -20 -19.5 -19 -18.5 -18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
f

 

 

Pf of LEM

Pf of MME

 
Fig. 8.  fP vs. SNR at 5%fP  for MME and LEM 

 

D. The impact of the correlation between sensing nodes 

Reference [3] points out that MME detector requires the 
signal of sensing nodes are highly correlated, otherwise the 
detection probability falls down quickly. Due to its simplicity 
and flexibility, exponential model is widely adopted to 
describe correlation.  is the correlation coefficient between 

two sensing nodes that is related to the angular spread, 
wavelength and the distance between two nodes. Fig. 9 
represents the detection probability for MME detector and 
LEM detector under different correlation coefficient. It is 
shown that the detection probability of MME approximates to 
zero as 0.95  while the probability of detection for LEM 

decreases a little in the same situation, which means the LEM 
algorithm is more robust against the decrease of correlation 
among the sensing nodes.  

-22 -21.5 -21 -20.5 -20 -19.5 -19 -18.5 -18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
d

 

 

LEM =1

MME =1

LEM =0.95

MME =0.95

 
Fig. 9.  dP vs. SNR at 5%fP  with different correlation 

 

E. The impact of the parameter K and N 

The detection probability for LEM detector with various 
numbers of CUs K and samples N is shown in Fig. 7 and Fig. 8 
respectively. The simulation results show that the number of 
cooperative CUs K and the sample size N play the similar role 
in detection performance. It is obvious that the detection 
probability varies with the number of sensing 
nodes K proportionally. In addition, the probability of 
detection increases as the number of samples N grows. 
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Fig. 10.  dP vs. SNR at 5%fP  for LEM with different K  
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Fig. 11.  dP vs. SNR at 5%fP  for LEM with different N  

 

V. CONCLUSIONS 

In this paper, a cooperative spectrum sensing algorithm 
using leading eigenvector matching is introduced. While PU's 
signal does not exist, the leading eigenvector is random. But 
when the signal is present, the leading eigenvector is stable. 
Due to its robustness, the feature can be learned blindly by 
FLA and LEM detector uses the feature as prior knowledge. 
The correlation coefficient between feature learned and the 
leading eigenvector of sample covariance matrix serves as the 
test statistic for signal detection. The closed-form expression 
of the threshold is also derived in this paper. Simulation 
results show that the algorithm proposed is reasonable and 
LEM detector outperforms MME detector. It also do not 
suffer from a noise power uncertainty problem. Compared 
with MME detector, LEM detector is more robust against the 
decrease of correlation among the sensing nodes. However 
there are some inherent flaws in this approach. A feature can 
only be learned in the presence of the desired PU signal, it 
cannot be learned in the presence of noise or in the presence 
of any other signal. 
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