
T

Improving K Nearest Neighbor into String
Vector Version for Text Categorization

Taeho Jo
School of Game, Hongik University, 2639 Sejongro Sejong South Korea 30016

tjo018@hongik.ac.kr

Abstract— This research is concerned with the string vector
based version of the KNN which is the approach to the text
categorization. Traditionally, texts have been encoded into
numerical vectors for using the traditional version of KNN, and
encoding so leads to the three main problems: huge
dimensionality, sparse distribution, and poor transparency. In
order to solve the problems, this research propose that texts
should be encoded into string vectors the similarity measure
between string vectors is defined, and the KNN is modified into
the version where string vector is given its input. The proposed
KNN version is validated empirically by comparing it with the

research, we try to find the solution to the problems by
encoding texts into alternatives to both numerical vectors and
tables.

What we propose in this research is to encode texts into
string vectors and to modify the KNN as solutions to the
above problems. Texts are encoded into string vectors as their
structured forms, instead of numerical vectors. The semantic
similarity measure between two string vectors is defined as
the operation which corresponds to the cosine similarity
between two numerical vectors. Using the similarity measure,

traditional KNN version on the three collections: NewsPage.com , we modify the KNN (K Nearest Neighbor) into the version
Opiniopsis, and 20NewsGroups. The goal of this research is to
improve the text categorization performance by solving them.

Keyword— String Vector, K Nearest Neighbor, Text
Categorization

I. INTRODUCTION
HE text categorization is defined as the process of
classifying a text into its categoryor categories among the

predefined ones. Its preliminary task is to predefine a list of
categories and allocate sample texts each of them. As the
learning process, using the sample labeled texts, the
classification capacity which is given as equations,
parameters, or symbolic rules is constructed. As the
generalization process, subsequent texts which are given
separately from sample labeled ones are classified by the
constructed classification capacity. In this research, we
assume that the supervised learning algorithms will be used as
the approaches, even if other kinds of approaches are

available.
Let us consider the facts which provide the motivations for

doing this research. Encoding texts into numerical vectors
cause problems such as the huge dimensionality and the
sparse distribution [1][2][3][5][11]. Previously, we proposed
the table based classification algorithm which was called the
table matching algorithm, its performance was unstable by
impact of noisy examples [2][3]. The computation of the
similarity between two tables as the essential task in the
approach was very expensive [2][3]. Therefore, in this

———————————————————————
Manuscript received December 27, 2017. This work is sponsored by

2017 Hongik University Research Fund, and a follow-up of the invited
journal to the accepted & presented paper of the 19th International
Conference on Advanced Communication Technology (ICACT2017).

Taeho Jo is with School of Game, Hongik University, Sejong, Republic of
Korea (phone: +82-44-860-2125; e-mail: tjo018@hongik.ac.kr).

where a string vector is given as an input vector. The modified
version is applied as the approach to the task of classifying
news articles and opinions automatically.

In this research, we will validate empirically the proposed
approach to the text summarization as the better version than
the traditional KNN version. We extract paragraphs from the
collections of news articles: NewsPage.com, Opinopsis, and
20NewsGroups. The traditional KNN version and the
proposed version are compared with each other. We observe
the better results of the proposed KNN version in classifying
news articles into their own topics. It potentially possible to
require less dimension in encoding texts into string vectors, in
addition.

This article is organized into the four sections. In Section II,
we survey the relevant previous works. In Section III, we
describe in detail what we propose in this research. In Section
IV, we validate empirically what is proposed in this research.
In Section V, we mention the remaining tasks for doing the
further research.

II. PREVIOUSWORKS

Let us survey the previous cases of encoding texts into
structured forms for using the machine learning algorithms to
text mining tasks. The three main problems, huge
dimensionality, sparse distribution, and poor transparency,
have existed inherently in encoding them into numerical
vectors. In previous works, various schemes of preprocessing
texts have been proposed, in order to solve the problems. In
this survey, we focus on the process of encoding texts into
alternative structured forms to numerical vectors. In other
words, this section is intended to explore previous works on
solutions to the problems.

Let us mention the popularity of encoding texts into
numerical vectors, and the proposal and the application of
string kernels as the solution to the above problems. In 2002,
Sebastiani presented the numerical vectors are the standard

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1091

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

mailto:tjo018@hongik.ac.kr

representations of texts in applying the machine learning
algorithms to the text classifications [6]. In 2002, Lodhi et al.
proposed the string kernel as a kernel function of raw texts in
using the SVM (Support Vector Machine) to the text
classification [7]. In 2004, Lesile et al. used the version of
SVM which proposed by Lodhi et al. to the protein
classification [8]. In 2004, Kate and Mooney used also the
SVM version for classifying sentences by their meanings [9].

It was proposed that texts are encoded into tables instead of
numerical vectors, as the solutions to the above problems. In
2008, Jo and Cho proposed the table matching algorithm as
the approach to text classification [2]. In 2008, Jo applied also
his proposed approach to the text clustering, as well as the text
categorization [13]. In 2011, Jo described as the technique of
automatic text classification in his patent document [11]. In
2015, Jo improved the table matching algorithm into its more
stable version [12].

Previously, it was proposed that texts should be encoded
into string vectors as other structured forms. In 2008, Jo
modified the k means algorithm into the version which
processes string vectors as the approach to the text clustering
[13]. In 2010, Jo modified the two supervised learning
algorithms, the KNN and the SVM, into the version as the
improved approaches to the text classification [14]. In 2010,
Jo proposed the unsupervised neural networks, called Neural
Text Self Organizer, which receives the string vector as its
input data [15]. In 2010, Jo applied the supervised neural
networks, called Neural Text Categorizer, which gets a string
vector as its input, as the approach to the text classification
[16].

The above previous works proposed the string kernel as the
kernel function of raw texts in the SVM, and tables and string
vectors as representations of texts, in order to solve the
problems. Because the string kernel takes very much
computation time for computing their values, it was used for
processing short strings or sentences rather than texts. In the
previous works on encoding texts into tables, only table
matching algorithm was proposed; there is no attempt to
modify the machine algorithms into their table based version.
In the previous works on encoding texts into string vectors,
only frequency was considered for defining features of string
vectors. In this research, based on [14], we consider the
grammatical and posting relations between words and texts as
well as the frequencies for defining the features of string
vectors, and encode texts into string vectors in this research.

III. PROPOSED APPROACH

This section is concerned with encoding words into string
vectors, modifying the KNN (K Nearest Neighbor) into the
string vector based version and applying it to the text
categorization, and consists of the three sections. In Section
III-A, we deal with the process of encoding texts into string
vectors. In Section III-B, we describe formally the similarity
matrix and the semantic operation on string vectors. In
Section III-C, we do the string vector based KNN version as
the approach to the text categorization. Therefore, this section
is intended to describe the proposed KNN version as the text
categorization tool.

A. Text Encoding

This section is concerned with the process of encoding
texts into string vectors. As shown in Figure 1, the three steps
are involved in encoding texts. A single is given as the input
and a string vector which consists of words is generated as the
output. The features in each string vector are posting, statistic,
and grammatical relationships between a text and a word.
Therefore, this section is intended to describe in detail each
step involved in encoding texts.

Fig. 1. The Process of Text Encoding.

The first step of encoding texts into string vectors is to

index the corpus into a list of words. The texts in the corpus
are concatenated into a single long string and it is tokenized
into a list of tokens. Each token is transformed into its root
form, using stemming rules. Among them, the stop words
which are grammatical words such as propositions,
conjunctions, and pronouns, irrelevant to text contents are
removed for more efficiency. From the step, verbs, nouns, and
adjectives are usually generated as the output.

We need to define the relationships between a word and a
text as the features of string vectors, and mention the three
types of them. The first type is statistical properties of words
in a text such as the highest frequent word and the highest
TF-IDF (Term Frequency-Inverse Term Frequency) weighted
one. The grammatical properties of a word such as subjective
noun, objective noun, and verb may be considered as another
feature type. Posting properties of a word which indicates its
position in the given text, such as the first word in the text, the
last of in the text, and the first word in the last paragraph, may
be regarded as a feature type. In this research, we define the
ten features of string vectors as follows:
 Highest Frequent Word in the given Text
 Second Highest Frequent Word in the given Text
 Third Highest Frequent Word in the given Text
 Highest TF-IDF Weighted Word
 Second Highest TF-IDF Weighted Word
 Third Highest TF-IDF Weighted Word
 The Last Word in the Text
 The First Word in the last Paragraph
 The Last Word in the First Paragraph
Let us explain the process of encoding a text into a string,

once the above features are defined. A text is indexed into a
list of words, their frequencies, and their TF-IDF weights, and
it is partitioned into a list of paragraphs. Corresponding to the
above features, words are extracted as elements of the string
vector. As the given text representation, the ten dimensional
string vector which consists of the above feature values is

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1092

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

constructed. The similarity matrix is required for performing
the operation on string vectors, and is described in Section
III-B1.

Let us consider the differences between the word encoding
and the text encoding. Elements of each string vector which
represents a word are text identifiers, whereas those of one
which represents a text are word. The process of encoding
texts involves the link of each text to a list of words, where as
that of doing words does the link of each word to a list of texts.
For performing semantic similarity between string vectors, in
text processing, the word similarity matrix is used as the basis,
while in word processing, the text similarity matrix is used.
The relations between words and texts are defined as features
of strings in encoding texts and words.

B. String Vector

This section is concerned with the operation on string
vectors and the basis for carrying out it. It consists of two
subsections and assumes that a corpus is required for
performing the operation. In Section III-B1, we describe the
process of constructing the similarity matrix from a corpus. In
Section III-B2, we define the string vector formally and
characterize the operation mathematically. Therefore, this
section is intended to describe the similarity matrix and the
operation on string vectors.

Similarity Matrix
This subsection is concerned with the similarity matrix as

the basis for performing the semantic operation on string
vectors. Each row and column of the similarity matrix
corresponds to a word in the corpus. The similarities of all
possible pairs of words are given as normalized values
between zero and one. The similarity matrix which we
construct from the corpus is the N X N square matrix with
symmetry elements and 1’s diagonal elements. In this
subsection, we will describe formally the definition and
characterization of the similarity matrix.

Each entry of the similarity matrix indicates a similarity

between two corresponding words. The two words, it , and

jt are viewed into two sets of texts which include them, iT ,

and jT . The similarity between the two words is computed by

equation (1),

 
ji

ji

ji
TT

TT
ttsim




2
, (1)

where iT is the cardinality of the set, iT . The similarity is

always given as a normalized value between zero and one; if
two words are exactly same to each other, the similarity
becomes 1.0 as equation (2):

  0.1
2

, 



ji

ii
ii

TT

TT
ttsim


 (2)

and if two words have no shared texts, ji TT  , the

similarity becomes 0.0 as equation (3):

  0.0
022

, 







jiji

ii
ii

TTTT

TT
ttsim


 (3)

The more advanced schemes of computing the similarity will
be considered in next research.

From the text collection, we build N X N square matrix as
follows:



















NNNN

N

N

sss

sss

sss

...

............

...

...

21

22221

11211

N individual words which are contained in the collection
correspond to the rows and columns of the matrix. The entry,

ijs is computed by equation (1) as equation (4):

 jiij ttsims , (4)

The overestimation or underestimation by text lengths are
prevented by the denominator in equation (1). To the number

of words, N, it costs quadratic complexity,  2NO , to build

the above matrix
Let us characterize the above similarity matrix,

mathematically. Because each column and row corresponds
to its same text in the diagonal positions of the matrix, the
diagonal elements are always given 1.0 by equation (2). In the
off-diagonal positions of the matrix, the values are always
given as normalized ones between zero and one, because of

jiii TTTT  20 from equation (1). It is proved

that the similarity matrix is symmetry, as equation (5):

 

  jiij

ij

ij

ji

ji

jiij

sttsim

TT

TT

TT

TT
ttsims









,

22
,


 (5)

Therefore, the matrix is characterized as the symmetry matrix
which consists of the normalized values between zero and
one.

The similarity matrix may be constructed automatically
from a corpus. The N texts which are contained in the corpus
are given as the input and each of them is indexed into a list of
words. All possible pairs of words are generated and the
similarities among them are computed by equation (1). By
computing them, we construct the square matrix which
consists of the similarities. Once making the similarity matrix,
it will be used continually as the basis for performing the
operation on string vectors.

String Vector and Semantic Similarity
This section is concerned with the string vectors and the

operation on them. A string vector consists of strings as its
elements, instead of numerical values. The operation on string
vectors which we define in this subsection corresponds to the
cosine similarity between numerical vectors. Afterward, we
characterize the operation mathematically. Therefore, in this
section, we define formally the semantic similarity as the
semantic operation on string vectors.

The string vector is defined as a finite ordered set of strings
as equation (6):

 dstrstrstr ,...,, 21str (6)

An element in the vector, istr indicates a word which

corresponds to its attribute. The number of elements of the
string vector, str , is called its dimension. In order to perform

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1093

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

the operation on string vectors, we need to define the
similarity matrix which was described in section 2.1, in
advance. Therefore, a string vector consists of strings, while a
numerical vector does of numerical values.

We need to define the semantic operation which is called
‘semantic similarity’ in this research, on string vectors; it
corresponds to the cosine similarity on numerical vectors. We
note the two string vectors as equation:

 dttt 112111 ,...,,str and  dttt 222212 ,...,,str

where each element, it1 or 12t , indicates a word. The

operation is defined as equation (7) as follows:

   



d

i
ii ttsim

d
sim

1
2121 ,

1
,strstr (7)

The similarity matrix was constructed by the scheme which is

described in section 2.1, and the  ii ttsim 21 , is computed by

looking up it in the similarity matrix. Instead of building the
similarity matrix, we may compute the similarity,
interactively.

The semantic similarity measure between string vectors
may be characterized mathematically. The commutative law
applies as equation (8):

   

   12
1

12

1
2121

,,
1

,
1

,

strstr

strstr

simttsim
d

ttsim
d

sim

d

i
ii

d

i
ii












 (8)

If the two string vectors are exactly same, its similarity
becomes 1.0 as follows:

If 21 strstr  with   0.1,, 21  iii ttsim ,

    0.1,
1

,
1

1121  
 d

d
ttsim

d
sim

d

i
iistrstr

However, note that the transitive rule does not apply as
follows:

If   0.0, 21 strstrsim and   0.0, 32 strstrsim , not

always   0.0, 31 strstrsim

We need to define the more advanced semantic operations
on string vectors for modifying other machine learning
algorithms. We define the update rules of weights vectors
which are given as string vectors for modifying the neural
networks into their string vector based versions. We develop
the operations which correspond to computing mean vectors
over numerical vectors, for modifying the k means algorithms.
We consider the scheme of selecting representative vector
among string vectors for modifying the k medoid algorithms
so. We will cover the modification of other machine learning
algorithms in subsequent researches.

C. The Proposed Version of KNN

This section is concerned with the proposed KNN version
as the approach to the text categorization. Raw texts are
encoded into string vectors by the process which was
described in Section III-A. In this section, we attempt to the
traditional KNN into the version where a string vector is given
as the input data. The version is intended to improve the
classification performance by avoiding problems from
encoding texts into numerical vectors. Therefore, in this

section, we describe the proposed KNN version in detail,
together with the traditional version.

The traditional KNN version is illustrated in Figure 2. The
sample words which are labeled with the positive class or the
negative class are encoded into numerical vectors. The
similarities of the numerical vector which represents a novice
word with those representing sample words are computed
using the Euclidean distance or the cosine similarity. The k
most similar sample words are selected as the k nearest
neighbors and the label of the novice entity is decided by
voting their labels. However, note that the traditional KNN
version is very fragile in computing the similarity between
very sparse numerical vectors.

Fig. 2. The Traditional Version of KNN.

Separately from the traditional one, we illustrate the
classification process by the proposed version in Figure 3.
The sample texts labeled with the positive or negative class
are encoded into string vectors by the process described in
Section III-A. The similarity between two string vectors is
computed by the scheme which was described in Section
III-B2. Identically to the traditional version, in the proposed
version, the k most similarity samples are selected, and the
label of the novice one is decided by voting ones of sample
entities. Because the sparse distribution in each string vector
is never available inherently, the poor discriminations by
sparse distribution are certainly overcome in this research.

Fig. 3. The Proposed Version of KNN.

We may derive some variants from the proposed KNN
version. We may assign different weights to selected
neighbors instead of identical ones: the highest weights to the
first nearest neighbor and the lowest weight to the last one.
Instead of a fixed number of nearest neighbors, we select any
number of training examples within a hyper-sphere whose
center is the given novice example as neighbors. The
categorical scores are computed proportionally to similarities
with training examples, instead of selecting nearest neighbors.
We may also consider the variants where more than two
variants are combined with each other.

Because string vectors are characterized more symbolically

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1094

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

than numerical vectors, it is easy to trace results from
classifying items in the proposed version. It is assumed that a
novice item is classified by voting the labels of its nearest
neighbors. The similarity between string vectors is computed
by the scheme which is described in Section III-B2. We may
extract the similarities of individual elements of the novice
string vector with those of nearest neighbors labeled with the
classified category. Therefore, the semantic similarities play
role of the evidence for presenting the reasons of classifying
the novice one so.

IV. EXPERIMENTAL RESULTS

This section is concerned with the empirical experiments
for validating the proposed version of KNN, and consists of
the four sections. In Section I, we present the results from
applying the proposed version of KNN to the text
categorization on the collection, NewsPage.com. In Section II,
we show the results from applying it for categorizing texts
from the collection, Opinosis. In Section III, we mention the
results from comparing the two versions of KNN with each
other in categorizing texts from 20NewsGroups. In Section
IV, we make the general discussions which is concerned with
results from validating the proposed version of KNN, finally.

A. NewsPage.com
This section is concerned with the experiments for

validating the better performance of the proposed version on
the collection: NewsPage.com. The four categories are
predefined in this collection, and texts are gathered from the
collection category by category as labeled ones. Each text is
classified exclusively into one of the four categories. In this
set of experiments, we apply the traditional and proposed
version of KNN to the classification task, without
decomposing it into the binary classifications, and use the
accuracy as the evaluation measure. Therefore, in this section,
we observe the performance of the both versions of KNN by
changing the input size.

In Table I, we specify the text collection, NewsPage.com,
which is used in this set of experiments. This text collection
was used for evaluating approaches to text categorization in
previous works [1][3][13]. In the collection, the four
categories are predefined: Business, Health, Internet, and
Sports, and 375 texts are selected at random in each category.
In each category, the set of 375 texts is partitioned into the
300 texts as training ones and the 75 texts as test ones. The
text collection was built by copying and pasting individual
news articles from the web site, newspage.com, in 2005, as
plain text files whose extension is ‘txt’.

TABLE I
The Number of Texts in NewsPage.com

Let us mention the experimental process for validating
empirically the proposed approach to the task of text
categorization. In this collection, the texts are labeled with
one of the four categories which are presented in Table I, and
they are encoded into numerical and string vectors. For each

test example, the KNN computes its similarities with the 1200
training examples and selects the three most similarity
training examples as its nearest neighbors. Each of the 300
test examples is classified into one of the four categories:
Business, Sports, Internet, and Health, by voting the labels of
its nearest neighbors. We compute the classification accuracy
by dividing the number of correctly classified test examples
by the number of test examples, for evaluating the both
versions of KNN algorithm.

In Figure 4, we illustrate the experimental results from
categorizing texts, using the both versions of KNN algorithm.
The y-axis indicates the accuracy which is the rate of the
correctly classified examples in the test set. In the x-axis, each
group indicates the input size which is the dimension of
numerical vectors which represent texts. In each group, the
gray bar and the black bar indicate the achievements of the
traditional version and the proposed version of KNN
algorithm, respectively. In the x-axis, the most right group
indicates the average over the accuracies of the left groups.

Fig. 4. Results from Classifying Texts in Text Collection: NewsPage.com

Let us make the discussions on the results from doing the

text categorization using the both versions of KNN algorithm,
as shown in Figure 4. The accuracy which is the performance
measure of the classification task is in the range between 0.35
and 0.52. The proposed version of KNN algorithm works
strongly better in the all input sizes. The performance
difference between the two versions is outstanding in the two
input sizes, 50 and 100. From this set of experiments, we
conclude that the proposed version works strongly better than
the traditional one, in averaging over the four cases.

B. OPINOPSIS
This section is concerned with the set of experiments for

validating the better performance of the proposed version on
the collection, Opinopsis. The three categories are predefined
in the collection, and labeled texts are prepared from it. Each
text is classified exclusively into one of the three categories.
We do not decompose the given classification into binary
classifications and use the accuracy as the evaluation measure.
Therefore, in this section, we observe the performances of the
both versions of KNN algorithm with the different input sizes.
In Table II, we specify the text collection, Opinosis, which

is used in this set of experiments. The collection was used in
previous works for evaluating approaches to text
categorization. The three categories, ‘Car’, ‘Electronics’, and
 ‘Hotel’, are predefined, and all texts are used for evaluating
the approaches to text categorization, in this set of
experiments. We use six texts in each category among all texts
as the test set as shown in Table II. We obtained the collection

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1095

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

by downloading it from the web site,
http://archive.ics.uci.edu/ml/machine-learningdatabases/
opinion/.

TABLE II

We perform this set of experiments by the process which is

described in Section I. We use all of 51 texts which are
labeled with one of the three categories and encode them into
numerical vectors and string vectors with the input sizes: 10,
50, 100, and 200. For each test example, the both versions of
KNN computes its similarities with the 33 training examples
and select the three most similar training examples as its
nearest neighbors. Each of the 18 test examples is classified
into one of the three categories, by voting the labels of its
nearest neighbors. The classification accuracy is computed by
the number of correctly classified test examples by the
number of the test examples for evaluating the both versions
of KNN algorithm.

In Figure 5, we illustrate the experimental results from
categorizing texts using the both versions of KNN algorithm.
Like Figure 4, the y-axis indicates the value of accuracy, and
the x-axis indicates the group of both versions by an input size.
In each group, the gray bar and the black bar indicate the
achievements of the traditional version and the proposed
version of KNN algorithm, respectively. In Figure 5, the most
right group indicates the averages over results over the left
four groups. Therefore, Figure 5 presents the results from
classifying each text into one of the three categories by the
both versions, on the text collection, Opinosis.

We discuss the results from doing the text categorization
using the both versions of KNN algorithm, on Opinosis,
shown in Figure 5. The accuracy values of the bother versions
range between 0.55 and 1.0. The proposed version works
better than the traditional one in the all input sizes. It shows
the perfect results in the input size: 200. From this set of
experiments, we conclude that the proposed version works
outstandingly better than the traditional one, in averaging the
four cases.

four specific categories are predefined in this collection. Each
text is exclusively classified into one of the four categories,
like the previous sets of experiments. We apply the two
versions of KNN algorithm, directly to the classification task,
without decomposing it into binary classifications, and use the
accuracy as the evaluation metric. Therefore, in this section,
we observe the performances of the both versions of KNN
algorithm with the different input sizes.

In Table III, we specify the specific version of
20NewsGroups which is used as the test collection, in this set
of experiments. Within the general category, sci, we predefine
the four categories: ‘electro’, ‘medicine’, ‘script’, and ‘space’.
In each category, we select 375 texts among approximately
1000 texts, at random. In each category, the set of 375 texts is
partitioned into the training set of 300 texts and the test set of
75 texts, like the case in the previous set of experiments.

TABLE III

The Number of Texts in Opiniopsis

The process of doing this set of experiments is same to that

in the previous sets of experiments. We select the balanced
number of texts from the collection over categories, and
encode them into the representations with the input sizes
which are identical to those in the previous set of experiments.
We use the two versions of KNN algorithm for their
comparisons. Using the two versions of KNN algorithm, we
classify each text in the test set into one of the four specific
categories within the general category, ‘ sci’: ‘electro’,
 ‘medicine’, ‘script’, and ‘space’. We use the accuracy as the
evaluation metric, like the previous set of experiments.

We present the experimental results from classifying the
texts using the both versions of KNN algorithm on the
specific version of 20NewsGroups. The frame of illustrating
the classification results is identical to the previous ones. In
each group, the gray bar and the black bar stand for the
achievements of the traditional version and the proposed
version, respectively. The y-axis in Figure 6, indicates the
classification accuracy which is used as the performance
metric. The texts are classified directly to one of the four
categories like the cases in the previous sets of experiments.

Fig. 5. Results from Classifying Texts in Text Collection: Opiniopsis

C.20NewsGroups
This section is concerned with one more set of experiments

where the better performance of the proposed version is
validated on 20NewsGroups. In this set of experiments, the

Fig. 6. Results from Classifying Texts in Text Collection: 20NewsGroups

Let us discuss on the results from classifying the texts on
the specific version of 20NewsGroups, as shown in Figure 6.

The Number of Texts in Opiniopsis

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1096

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

http://archive.ics.uci.edu/ml/machine-learningdatabases/

The accuracies of the both versions range between 0.4 and
0.91. The proposed version shows its better performance in
the smaller input sizes, but its turning point in the input size,
100. In the traditional version, its performance is proportional
to the input size, whereas in the proposed version, its
performance is independent of the factor. By the way, from
this set of experiments, it is concluded that the proposed
version have its outstandingly better performance, by
averaging over the accuracies of the four input sizes.

V. CONCLUSION

Let us discuss the entire results from classifying texts using
the two versions of KNN algorithm. The both versions is
compared with each other in the task of text categorization, in
these sets of experiments. The proposed version show its
better results in all of the three collections. The accuracies of
the traditional version range between 0.35 and 0.81, while
those of the proposed version range between 0.49 and 1.0.
From the three sets of experiments, we conclude that the
proposed version improves the text categorization
performance, as the contribution of this research.

We need to consider the remaining tasks for doing the
further research. We will apply and validate the proposed
approach in classifying texts in the specific domains such as
medicine, engineering, and law, rather than the general
domains. In order to improve the performance, we may
consider various types of features of string vectors. As
another scheme of improving the performance, we define and
combine multiple similarity measures between two string
vectors with each other. By adopting the proposed approach,
we may implement the text categorization system as a module
or an independent system.

ACKNOWLEDGMENT

This work was supported by 2017 Hongik University
Research Fund.

REFERENCES

[1] T. Jo, The Implementation of Dynamic Document Organization using
Text Categorization and Text Clustering. PhD Dissertation of
University of Ottawa, 2006.

[2] T. Jo and D. Cho, “Index Based Approach for Text Categorization”,
International Journal of Mathematics and Computers in Simulation,
vol. 2, pp. 127-132, 2008.

[3] T. Jo, “Table based Matching Algorithm for Soft Categorization of
News Articles in Reuter 21578”, Journal of Korea Multimedia Society,
vol. 11, pp. 875-882, 2008.

[4] T. Jo, “`Topic Spotting to News Articles in 20NewsGroups with NTC”,
Lecture Notes in Information Technology, pp50-56, vol. 7, 2011.

[5] T. Jo, “Definition of String Vector based Operations for Training
NTSO using Inverted Index”, Lecture Notes in Information
Technology, pp50-56, vol. 7, 2011.

[6] F. Sebastiani, ̀ `Machine Learning in Automated Text Categorization",
ACM Computing Survey, vol. 34, pp. 1-47, 2002.

[7] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C.
Watkins, “Text Classification with String Kernels”, Journal of
Machine Learning Research, vol. 2, pp. 419-444, 2002.

[8] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble,
“Mismatch String Kernels for Discriminative Protein Classification”,
Bioinformatics, vol. 20, pp. 467-476, 2004.

[9] R. J. Kate and R. J. Mooney, “Using String Kernels for Learning
Semantic Parsers”, Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pp. 913-920, 2006.

[10] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for
digital communications channel equalization using radial basis
function networks,” IEEE Trans. Neural Networks, vol. 4, pp.
570–578, Jul. 1993.

[11] T. Jo, “Single Pass Algorithm for Text Clustering by Encoding
Documents into Tables”, Journal of Korea Multimedia Society, vol. 11,
pp. 1749-1757, 2008.

[12] T. Jo, “Device and Method for Categorizing Electronic Document
Automatically”, Patent Document, 10-2009-0041272, 10-1071495,
2011.

[13] T. Jo, “Normalized Table Matching Algorithm as Approach to Text
Categorization”, Soft Computing, vol. 19, pp. 839-849, 2015.

[14] T. Jo, “Inverted Index based Modified Version of K-Means Algorithm
for Text Clustering”, Journal of Information Processing Systems, Vol
4, pp. 67-76, 2008.

[15] T. Jo, “Representation of Texts into String Vectors for Text
Categorization”, Journal of Computing Science and Engineering, vol.
4, pp. 110-127, 2010.

[16] T. Jo, “NTSO (Neural Text Self Organizer): A New Neural Network for
Text Clustering”, Journal of Network Technology, vol. 1, pp. 31-43,
2010.

[17] T. Jo, “NTC (Neural Text Categorizer): Neural Network for Text
Categorization”, International Journal of Information Studies, vol. 2,
pp.83-96, 2010.

Taeho Jo works currently as a faculty
member in Hongik University, South
Korea. He received his Bachelor degree
from Korea University in 1994, his Master
degree from Pohang University of Science
and Technology in 1997, and his PhD
degree from University of Ottawa in 2006.
His research area spans mainly over text
mining, neural networks, machine
learning, and information retrieval. He
has the four year experience of working
for industrial organizations and ten year

experience of working for academic ones. Recently, he is awarded in the
world wide biography dictionary, Marquis Who’s Who in the World,
two times in 2016 and 2018.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1097

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

	III. PROPOSED APPROACH
	IV.EXPERIMENTALRESULTS
	V. CONCLUSION
	REFERENCES

