
A Deep Auto-Encoder based Approach
for Intrusion Detection System

Fahimeh Farahnakian, Jukka Heikkonen
Department of Future Technologies, University of Turku, Turku, Finland

fahime.farhnakian@utu.fi, jukka.heikkonen@utu.fi

Abstract—One of the most challenging problems facing net-
work operators today is network attacks identification due to
extensive number of vulnerabilities in computer systems and
creativity of attackers. To address this problem, we present a deep
learning approach for intrusion detection systems. Our approach
uses Deep Auto-Encoder (DAE) as one of the most well-known
deep learning models. The proposed DAE model is trained in a
greedy layer-wise fashion in order to avoid overfitting and local
optima. The experimental results on the KDD-CUP’99 dataset
show that our approach provides substantial improvement over
other deep learning-based approaches in terms of accuracy,
detection rate and false alarm rate.

Index Terms—Intrusion detection systems, deep neural net-
works, stacked autoencoders, unsupervised learning, anomaly
detection

I. INTRODUCTION

In recent years, significant research has been focused on
developing Intrusion Detection Systems (IDSs) to improve
software and system security. Generally, IDSs can be divided
into two main categories: misuse-based IDSs and anomaly-
based IDSs. Misuse-based IDSs detect known attacks based
on the predetermined signature. Therefore, dynamic signa-
ture updating is so important and new attack definitions are
frequently released by IDS vendors. However, the misuse-
based IDS cannot incorporate the rapidly growing number of
vulnerabilities and exploits. Anomaly-based IDSs are designed
to capture any deviation from profiles of normal behavior.
Therefore, they are more suitable than misuse-based detection
systems for detecting unknown or novel attacks without any
prior knowledge [1].

In this paper, we present an anomaly-based IDS in order
to identify intrusions using deep learning. Deep learning
algorithms have gained interest recently as they can efficiently
learn a model in order to classify unknown samples. The
most popular techniques include deep belief networks with
restricted boltzmann machine [2], convolutional neural net-
work [3], long short term memory recurrent neural network [4]
and stacked auto-encoders [5].

Inspired by the success of auto-encoder based approaches
in number of challenging classification problems [6], our IDS
employs a stacked (deep) auto-encoders model for intrusion
detection. Dimensionality reduction is another reason that we
motivated to use autoencoder. The other advantage of using
autoencoder is the capability of the minority and the majority
classes to address the imbalanced classification problems.

Deep Auto-Encoders (DAEs) [3] are created by daisy chain-
ing auto-encoders together. Our Deep Auto-Encoder based
Intrusion Detection System (DAE-IDS) consists of four auto-
encoders where the output of each auto-encoder in the current
layer is used as the input of the auto-encoder in the next layer.
In addition, training an auto-encoder is started when training
the pervious one is completed. In the last hidden layer, a
softmax classifier classifies the attack classes from the input
dataset. Therefore, DAE-IDS performs unsupervised feature
learning, supervised fine-tuning, and thus intrusion detection.
Since the performance of a deep model depends on hyper-
parameters that are used for model initiation, we conduct a
series of preliminary experiments to find the optimal hyper-
parameters. Moreover, we investigate the effect of both number
of hidden layers size and hidden neurons on the DAE-IDS
performance.

We had performed various experiments on KDD-CUP’99
dataset [7] which is the mostly widely used standard dataset
for the evaluation of IDSs. Experimental results show that
DAE-IDS can produce low false negative rate (0.42%), high
accuracy (94.71%) and high detection rate (94.53%). We also
compared DAE-IDS with other existing deep learning based
methods for intrusion detection. The results show that the
performance of DAE-IDS is better than the previous methods.

The remainder of the paper is organized as follows. Section
II discusses some of the most important related works. We
briefly review auto-encoder model in Section III. Section
IV presents the DAE-based approach for anomaly detection.
Section V shows the implementation issue of our approach and
describes pre-processing tasks on the dataset. Finally, we give
the experimental results and compare our approach with other
existing deep-learning based methods in Section VI. Finally,
we present our conclusions in Section VII.

II. RELATED WORK

IDSs have been broadly researched as defensive techniques
to identify unknown or zero-day attacks. Anomaly-based IDSs
model the normal behavior of network and then identify
attacks as deviations from the normal behavior. The main chal-
lenge in designing of anomaly-based IDS is the potential for
high false alarm rates as previously unseen system behaviors
may be categorized as anomalies [8]. Therefore, an efficient
IDS is able to handel a large amount of data with changing
patterns in real time situations [9].

178

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

Recently, deep learning methods have drawn a lot of indus-
trial and academic interest [3]. Deep learning is a branch of
machine learning that uses Artificial Neural Network (ANN)
as an architecture. Traditional ANNs typically contain one
to three of hidden layers, whereas a Deep Neural Network
(DNN) can have tens or even hundreds of hidden layers
to support higher generalization capability in comparison to
ANN. DNN models have used in the development of IDS as
they capable to exploit the unknown structure in the input dis-
tribution in order to discover good representations. Yuancheng
et al. [10] presented a hybrid deep learning technique for
intrusion detection. They first used an autoencoder in order
to reduce the dimensionality of data and extract the main
features of data. Then, a Deep Belief Network (DBN) is
used to train their intrusion detection systems using the KDD-
CUP’99 dataset. DBN is composed of multi-layer Restricted
Boltzmann Machines (RBM) which each RBM consists of the
visible units and hidden units. Fiore et al [11] also employed
a RBM to detect anomalies by training a model with real
workload traces from 42 hours work station traffic and they test
the accuracy of RBM with KDD-CUP’99 dataset. Their model
achives about 85% accuracy on the total 10% KDDCUP99
dataset. In a similar work, Gao et al. [12] proposed a DBN
model for intrusion detection systems. This model used an
unsupervised greedy learning algorithm to learn a similarity
representation over the nonlinear and high-dimensional data.
It is evaluated on the KDD-CUP’99 dataset and the results
show that four-hidden-layer RBM can produce the higher
accuracy in comparison with SVM and ANN. Jihyun et al. [4]
proposed a Long Short Term Memory (LSTM) architecture to
a Recurrent Neural Network (RNN) and train the IDS model
using KDD Cup 1999 dataset. They found more accuracy
and detection rate in comparison with other classified such as
KNN and SVM. Potluri et al. [13] introduced an accelerated
DNN architecture to identify the abnormalities in the network
data. They evaluated the performance of the DNN training
related to different processor types and numbers of cores.
The acceleration of the training process using the multicore
CPUs was faster than the serial training mechanism. In this
paper, we proposed a deep auto-encoder based approach for
improving intrusion detection system performance. Our main
contributions are as follows:

1) We employed a DAE model to discover important feature
representations from the imbalanced training data and generate
a model to detect normal and abnormal behaviors.

2) Our model is pre-trained using an unsupervised learning
algorithm to avoid overfitting and local optima. A softmax
classifier is added on the top of the model to represent the
desired outputs (normal or type of attack).

3) The performance of the proposed DAE is evaluated by
KDD-CUP’99 dataset. KDD-CUP’99 dataset is a common
benchmark for network intrusion detection consisting of real
network data. Moreover, a series of preliminary experiments
is conducted to explore the performance of DAE based on
different number of hidden layers and units.

III. BACKGROUND

An auto-encoder includes two parts: encoder and decoder.
Encoder aims to compress input data into a low-dimensional
representation, and decoder reconstruct input data based on
the low-dimension representation generated by the encoder.
On the other hand, auto-encoder can encode a representation
of an input layer into a hidden layer and then decode it into
an output layer [3].

For a given training dataset X = {x1, x2, ..., xm} with
m samples, where xi is a d-dimensional feature vector, the
encoder maps the input vector xi to a hidden representation
vector hi through a deterministic mapping fθ as given in (1)

hi = fθ(xi) = s(Wxi + b), (1)

where W is a d́× d, d́ is the number of hidden units, b is a
bias vector, θ is the mapping parameter set θ = {W, b}. s is
sigmoid activation function denoted as

s(t) =
1

1 + exp−t
, (2)

where parameter t affects for the shape of the function.
The decoder maps back the resulting hidden representation

hi to a reconstructed d-dimensional vector yi in input space
as

yi = gθ́(xi) = s(Ẃhi + b́), (3)

where Ẃ is a d× d́, b́ is a bias vector and θ́ = {Ẃ , b́}.
The goal of training the autoencoder is to minimize the

difference between input and output. Therefore, a loss function
is calculated by the following equation

L(x, y) =
1

m

m∑
i=1

‖xi − yi‖2 , (4)

where m is the total number of training dataset.
The main objective is to find the optimal parameters (θ and

θ́) which can be effectively minimize the difference between
input and reconstructed output over the whole training set as

θ = {W, b} = argθminL(x, y). (5)

IV. DEEP AUTO-ENCODER BASED INTRUSION DETECTION
SYSTEM (DAE-IDS)

In this section, we describe how the intrusion detection
problem is addressed through our deep learning based ap-
proach. The intrusion detection problem statement can be
stated as follows: given a dataset D with m samples defined
below, assign a label (i.e., normal or attack) to each unlabeled
sample based on its feature vector.

The dataset D is denoted to be of the form 〈Fi, Ci〉, where Fi
is the feature vectors of sample xi (i = {1, 2, ...,m}) and Ci
is the class label of sample i (where Ci ∈ {normal, attack}).

In order to solve the intrusion detection problem, Deep
Auto-Encoder based Intrusion Detection System (DAE-IDS)
runs in two phases: training and testing. In the training phase,
the system uses a training dataset and creates a model based
on the proposed Deep Auto-Encoder (DAE) model. Then,

179

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

the system employs the model for identifying the label of
unseen data (test dataset) in the testing phase to estimate the
performance of the system if is used on-line.

The proposed deep auto-encoder architecture for creating
the model in the training phase is shown in Fig. 1. DAE
consists of three type of layers: input, hidden and output layers.
The input layer takes the input from the training dataset. The
input layer of our DAE model represents all the 117 features of
the KDD-CUP’99 dataset. The proposed DAE model is built
by daisy chaining auto-encoder together. The hidden layer 1
is presented the first auto-encoder which selects 32 features
of 117 features from the input data. The output of hidden
layer h is used as a input of hidden layer h + 1. Based on
the layer-wise algorithm [14], an auto-encoder at layer h+ 1
is trained after the completion of training an auto-encoder at
layer h. The last hidden layer is a supervised layer which
classifies attack classes by using the softmax classifier. Finally,
the output layer is used as an output of the entire DAE model
and it represents five available classes of the KDD-CUP’99
dataset. There are lot of choices to select activation functions
in the hidden layers such as linear, softmax, sigmoid, tanh and
rectified linear functions. The DAE model can extract more
useful features when it utilizes a non-linear activation function.
Therefore, we choose the sigmoid function for hidden layers
in this paper based on a series of preliminary experiments.

To train the proposed DAE model, we employed a greedy
layer-wise unsupervised learning algorithm that is developed
by Hinton et al. [15]. This algorithm can improve the poor
performance of a gradient-based training algorithm for training
a deep model. The greedy layer-wise unsupervised learning
algorithm trains a deep network layer by layer in a bottom-
up manner (pre-training) and then uses back propagation in a
top-down manner to fine-tune parameters of all layers in DAE.
Therefore, it produces a greedy layer-wise training fashion in
order to avoid many of training problems of the deep model
in a supervised manner. The pseudocode of the training DAE-
IDS is given as Algorithm 1. Generally, the training procedure
consists of three main steps:

(1) Pre-training: each hidden layer is trained as an auto-
encoder to minimize the reconstruction error. At first, the first
auto-encoder uses the training dataset without labels as inputs
(unsupervised) and creates a compressed representation of the
inputs. Then, the second auto-encoder is trained by using the
first auto-encoder s’ output as inputs. This task sequence is
iterated for all auto-encoders in DAE-IDS. Finally, a set of
robust feature is built at the end of this step.

(2) Fine-tuning: after pre-training step, a supervised
layer/model takes the output of the last auto-encoder as
inputs and then is trained using labels of the training dataset
(supervised).

(3) Full fine-tuning: after fine-tuning step, all layers are
further fine-tuned through backpropagation in a supervised
way.

The pseudocode in Algorithm 1 expects as input a training
dataset X = {x1, x2, ..., xm} with m samples and the DAE
architecture with L hidden layers (line 1). In the pre-training

step (line 2–12), each hidden layer of DAE is trained in a
supervised fashion. Finally, this step generate a set of param-
eters of all layers θ = {θ1, θ2, ..., θL} where θl = {Wl, bl},
l ∈ {1, 2, ..., L}. For each layer l (line 2), the parameters are
initialized to zero. The algorithm iterates when its stopping
criteria is not reached (line 6). In each iteration, the hidden
representation vector of layer l, hl, is computed based on the
previous layer l−1 (line 7). Then, the algorithm computes l-th
hidden layer output yl (line 8). After that, the loss function
is computed by using (4) (line 9). Finally, the parameters (θ
and θ́) are updated based on the loss function (line 10). After
the pre-training step, a softmax classifier is employed at the
supervised layer to determine the class of sample (line 13–14).
In the last step (fine-tuning), DAE-IDS is further fine-tuned
by performing back propagation in a supervised mechanism
to tune the parameter set of all layers (line 15).

Algorithm 1 Training algorithm
1: Input: Dataset X = {x1, x2, ...xm} with m samples,

number of hidden layers L
2: for l ∈ [1, L] do
3: initialize Wl = 0, Ẃl = 0, bl = 0, b́l = 0
4: define the l-th hidden layer representation vector hl =

s(Wlhl−1 + bl)
5: define the l-th hidden layer output yl = s(Ẃlhl + b́l)
6: while not stopping criterion do
7: compute hl from hl−1

8: compute yl
9: compute the loss function

10: update layer parameters θl = (Wl, bl) and θ́l =
{Ẃl, b́l}.

11: end while
12: end for
13: initialize (Wl+1, bl+1) at the supervised layer
14: calculate the labels for each sample xi of the training

dataset X
15: perform BP in a supervised way to tune parameter of all

layers;

V. PERFORMANCE EVALUATION

A. Dataset

We evaluated our proposed approach on the KDD-CUP’99
dataset [7] which is mostly widely used for the evaluation
the intrusion detection system. This dataset is built based on
the data captured in DARPA98 IDS evaluation program [16]
and provides four gigabytes of compressed raw tcpdump
data of seven weeks of network traffic. We used 10% of
the original KDD-CUP’99 dataset contains 494,021 samples
for training the model in the training phase. It is common
practice to use 10% of the original data as a training dataset
since this dataset can represent the original KDD-CUP’99
data and allow for reduced computation [10]. In the testing
phase, the trained model is tested by using a test dataset
contains 311029 samples with corrected labels. Each sample of

180

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

x1

x117

Input
 Layer

...

Output
 Layer

Inputs

h(1)
1

h(1)
32

...

Hidden
 Layer 1

h(1)
2x2

h(2)
1

h(2)
32

...

h(2)
2

Hidden
 Layer 2

...

h(3)
1

h(3)
32

...

h(3)
2

Hidden
 Layer 3

......

h(4)
1

h(4)
32

...

h(4)
2

Hidden
 Layer 4

...

Auto-Encoder Auto-Encoder Auto-Encoder Auto-Encoder

Outputs

y5

y2

...

Supervised
 Layer

h(5)
1

h(5)
2

h(5)
5

y1

Fig. 1. The proposed deep auto-encoder architecture

TABLE II
OVERVIEW ON TRAINING AND TEST DATASETS

Dataset Normal DoS U2R R2L Probe Total
Training 97,278 391,458 52 1,126 4,107 494,021

Test 60,593 229,854 70 16,347 4,166 311,029

the training and test datasets has 41 features. Those features
consist of 38 continuous or discrete numerical features and
3 categorical features. Moreover, each sample is labeled as
normal or a particular kind of attack. Our experimental results
are collected based on two scenarios. In the first scenario,
a sample is categorized into two main classes: normal and
attack. Therefore, the intrusion detection problem is assumed
as a binary classification problem since the sample belongs
to normal class or attack class. In the second scenario, we
define a multi-classification problem to classify a sample into
a normal or one of the four attack classes. Four attack classes
fall in one of the following categories:

Denial of Service (DoS): is an attack in which an attacker
attempts to prevent legitimate users access to a machine or
make memory or some computing resources too full/busy for
handling legitimate requests.

User to Root (U2R): is an attack in which an attacker
access to the system by a normal user account and then
exploits some vulnerability to gain root access to the system.

Remote to Local (R2L): is an attack in which an at-
tacker sends packets to a machine on the network without
any accounts on that machine and is able to exploits some
vulnerability to gain local access as a user of that machine.

Probing (Probe): is an attack in which an attacker collects
information about a network of computers for the apparent
purpose of circumventing its security controls.

There are 40 different attacks in training and test dataset
that are totaly categorized into four attack classes in multi-
classification problem. Table I shows which attack types
belong to each class. In addition, the number of samples
in normal and four attack classes for both training and test
datasets are shown in Table II.

B. Data Pre-processing

We performed the following pre-processing procedures on
the KDD-CUP’99 training and test datasets:

(1) Feature Numeralization: the symbolic features (proto-
col type, services and flag) are mapped to numerical features
by binary coding. For example tcp, udp and icmp protocols are
mapped to (1,0,0), (0,1,0) and (0,0,1), respectively. Similarity,
the ’flag’ feature with 11 values and ’services’ feature with
65 values can be mapped to numerical features. Therefore, 41
original features are finally numeralized to 117 features.

(2) Class Numeralization: the non-numerical attack types
are converted into the numeric categorizes. In the binary classi-
fication, 1 and 0 are assigned to the normal and attack class by
using binary coding, respectively. In the multi-classification,
we used one hot encoding to convert five categorical classes
into five binary classes, with only one active.

(3) Feature Normalization: the numeric features must be
normalized for removing the effect of original feature value
scales. Each feature is normalized as

zi =
xi −min(x)

max(x)−min(x)
, (6)

where the training dataset X = {x1, x2, ..., xm} with m
samples, where xi is a d-dimensional feature vector and zi is
the ith normalized data. Therefor all numeric features values
are ranged between 0 and 1.

(4) Redundancies reduction: one of the main problems of
the KDD-CUP’99 data is the large number of duplicate records
that leads to the bias towards more frequent records [17]. To
solve this problem, we removed all duplicate records in data,
and kept only one copy of each record. After redundancies
reduction, the training and test datasets consist of 145,586 and
77,291 instances, respectively.

C. Evaluation Metrics

The main aim of the evaluation to show the implications
of enriching the IDS with the deep auto-encoder model on: i)
maximize Detection Rate (DR); ii) maximize Accuracy (AC);
and iii) minimize False Alarm rate (FA). The performance

181

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

TABLE I
CATEGORY OF THE ATTACKS

Category Attacks
DoS back, land, neptune, pod, smurf, teardrop, Mailbomb, Processtable, Udpstorm, Apache2,

Worm
U2R buffer-overflow, loadmodule, perl,rootkit, Sqlattack, Xterm, Ps
R2L ftp-write, guess-passwd, imap, multihop, phf, spy, warezclient, warezmaster, Xlock,

Xsnoop, Snmpguess, Snmpgetattack, Httptunnel, Sendmail, Named
Probe ipsweep, nmap, portsweep, satan, Portsweep, Mscan, Saint

of DAE-IDS is assessed through the following metrics which
have been widely used in intrusion detection system [10], [12].

DR =
TP

(TP + FN)
, (7)

FA =
FP

(FP + TN)
, (8)

AC =
TP + TN

(TN + TP + FN + FP)
, (9)

where True Positive (TP) is the number of attacks classified
rightly as attack; True Negative (TN) is the number of normal
events rightly classified normal. False Positive (FP) is the
number of normal events misclassified as attacks and False
Negative (FN) is the number of attacks misclassified as
normal.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Model hyper-parameters

Designing an efficient deep model involves a challenging
problem called hyper-parameters optimization. Optimization
of our deep model was performed over key hyper-parameters
and their values are given in Table III. In order to tune the
hyperparameters for all models in this paper, we used 131,586
instances for training and the remaining 14,000 instances
for validation. After the best value of hyperparameters are
selected, the final model is trained with all 145,586 instances.
Moreover, the model achieves the best result of accuracy
when batch size and epochs of pre-training are 100 and 150,
respectively. Moreover, the model got highest accuracy with
100 batch size and 100 epochs of fine-tuning.

TABLE III
THE TESTED VALUES OF HYPER-PARAMETERS

Hyper-parameter
name Values Best Values

Pre-training batch size 10, 20, 40, 60, 80, 100 100
Pre-tuning epochs 10, 50, 100,150 150
Fine-tuning batch size 10, 20, 40, 60, 80, 100 100
Fine-tuning epochs 10, 50, 100 100

B. Different numbers of hidden layers and hidden units

In the other experiments, we investigate an impact the
number of hidden layers and hidden units on the performance
of DAE-IDS. Table IV shows test classification accuracy of
DAE-IDS with different numbers of hidden layer and units.

The DAE-IDS with four hidden layers and 32 hidden units
at each layer is superior to other deep networks in testing
accuracy for intrusion detection.

TABLE IV
THE PERFORMANCE OF THE DAE-IDS WITH DIFFERENT NUMBER OF

HIDDEN LAYERS AND HIDDEN UNITS

Number of
hidden layers Neurons Testing

AC(%)

1
(32) 93.79
(64) 93.05

(100) 93.25

2
(32,32) 93.79
(64,64) 93.25

(100, 100) 93.34

3
(32,32,32) 93.25
(64,64,64) 93.71

(100,100,100) 93.70

4
(32,32,32,32) 94.71
(64,64,64,64) 93.50

(100,100,100,100) 93.81

5
(32,32,32,32,32) 93.27
(64,64,64,64,64) 93.11

(100,100,100,100,100) 93.93

C. Binary and multi classification

The results are collected based on two defined scenarios
in the pervious section. Table V shows the detection rate,
false alarm rate and accuracy for binary-classification and
multi-classification. The results show that DAE-IDS obtain
96.53% and 94.71% accuracy in binary-classification and
multi-classification, respectively. Moreover, DAE-IDS pro-
duces a low false alarm (FA) of 0.35% in binary-classification.

D. Comparison benchmarks

In order to investigate the effectiveness of our DAE model
on intrusion detection performance, we compared our ap-
proach to the previous deep neural network methods in [10]
and [12]. Table VI shows that the performance of DAE-IDS is
better than other benchmark algorithms in terms of accuracy

TABLE V
THE DETECTION RATE, FALSE ALARM AND ACCURACY BY DAE-IDS FOR

TWO PROPOSED SCENARIOS

Scenario DR(%) FA(%) AC(%)
Binary-classification 95.65 0.35 96.53
Multi-classification 94.53 0.42 94.71

182

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

and TP. This is because, DAE can learn a set of features with
better classification capability of the minority and majority
classes to address the imbalanced data. Another reason for
achieving the better accuracy by DAE is unsupervised pre-
training task. Unsupervised pre-training gives substantially
higher test classification accuracy than no pre-training

TABLE VI
THE TP AND ACCURACY BY DAE-IDS AND BENCHMARK APPROACHES

Method TP(%) AC(%)
DAE-IDS 94.42 94.71

DBN4 [12] 92.33 93.49
AutoEncoder+DBN10−10 [10] 92.20 92.10

VII. CONCLUSION AND FUTURE WORK

Designing efficient Intrusion Detection Systems (IDSs) have
gained a lot of attractions due to huge increase different kinds
of attacks and network traffic. In this paper, we presented
a deep auto-encoder approach for improving the intrusion
detection system. The auto-encoder is one of the most inter-
esting models to extract features from the high-dimensional
data in the context of deep learning. Our proposed Deep
Auto-Encoder based Intrusion Detection System (DAE-IDS)
consists of four auto-encoders which the output of the auto-
encoder at the current layer is used as the input of the auto-
encoder in the next layer. In addition, an auto-encoder at the
current layer is trained before the auto-encoder at the next
layer. To train DAE-IDS, we utilized a greedy unsupervised
layer-wise training mechanism that helps to improve the deep
model performance. After training four auto-encoders, we used
a softmax layer to classify the inputs into the normal and
attack. We used the KDD-CUP’99 dataset to evaluate the
performance of DAE-IDS as this dataset has been utilized ex-
tensively for evaluating IDSs. The proposed approach achieved
detection accuracy 94.71% on the total 10% KDDCUP99 test
dataset.

We will further explore how sparsity constraints are imposed
on auto-encoder and how sparse deep auto-encoders can be
designed to further improve intrusion detection effectiveness.
Meanwhile, it would be interesting to investigate other deep
learning and classification methods for intrusion detection.

REFERENCES

[1] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” 2002.

[2] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using
deep belief networks,” in 2015 National Aerospace and Electronics
Conference (NAECON), June 2015, pp. 339–344.

[3] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1561/2200000006

[4] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory
recurrent neural network classifier for intrusion detection,” in 2016 In-
ternational Conference on Platform Technology and Service (PlatCon),
Feb 2016, pp. 1–5.

[5] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, pp. 3371–3408, Dec. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756006.1953039

[6] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML Workshop on Unsupervised and Transfer
Learning, ser. Proceedings of Machine Learning Research, I. Guyon,
G. Dror, V. Lemaire, G. Taylor, and D. Silver, Eds., vol. 27. Bellevue,
Washington, USA: PMLR, 02 Jul 2012, pp. 37–49.

[7] “Nsl-kdd data set for network-based intrusion detection systems,” March
2009. [Online]. Available: Available on: http://nsl.cs.unb.ca/NSL-KDD/

[8] F. Hosseinpour, P. Vahdani Amoli, F. Farahnakian, J. Plosila, and
T. Hmlinen, “Artificial immune system based intrusion detection: In-
nate immunity using an unsupervised learning approach,” International
Journal of Digital Content Technology and Its Applications, vol. 8, no. 5,
p. 112, 2014.

[9] E. Hodo, X. J. A. Bellekens, A. Hamilton, C. Tachtatzis, and R. C.
Atkinson, “Shallow and deep networks intrusion detection system: A
taxonomy and survey,” CoRR, vol. abs/1701.02145, 2017. [Online].
Available: http://arxiv.org/abs/1701.02145

[10] L. Yuancheng, M. Rong, and J. Ruhai, “a hybrid malicious code
detection method based on deep learning,” Journal of Security and Its
Applications, vol. 9, no. 5, pp. 205–216, 2015.

[11] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis,
“Network anomaly detection with the restricted boltzmann machine,”
Neurocomput., vol. 122, pp. 13–23, Dec. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2012.11.050

[12] N. Gao, L. Gao, Q. Gao, and H. Wang, “An intrusion detection
model based on deep belief networks,” in 2014 Second International
Conference on Advanced Cloud and Big Data, Nov 2014, pp. 247–252.

[13] S. Potluri and C. Diedrich, “Accelerated deep neural networks for
enhanced intrusion detection system,” in 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
Sept 2016, pp. 1–8.

[14] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer-wise training of deep networks,” in Proceedings of the 19th
International Conference on Neural Information Processing Systems,
ser. NIPS’06. Cambridge, MA, USA: MIT Press, 2006, pp. 153–160.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2976456.2976476

[15] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast
learning algorithm for deep belief nets,” Neural Comput.,
vol. 18, no. 7, pp. 1527–1554, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1162/neco.2006.18.7.1527

[16] J. McHugh, “Testing intrusion detection systems: A critique of
the 1998 and 1999 darpa intrusion detection system evaluations
as performed by lincoln laboratory,” ACM Trans. Inf. Syst. Secur.,
vol. 3, no. 4, pp. 262–294, Nov. 2000. [Online]. Available:
http://doi.acm.org/10.1145/382912.382923

[17] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Proceedings of the
Second IEEE International Conference on Computational Intelligence
for Security and Defense Applications, ser. CISDA’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 53–58. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1736481.1736489

Fahimeh Farahnakian received her PhD degree
from the University of Turku, Finland in 2016.
Currently she is working as a postdoctoral researcher
at the University of Turku, Finland. Her research
interests include machine learning, neural networks,
deep learning, big data, autonomous system and
cloud computing. She is a member of IEEE and is
a frequent reviewer for research journals.

Jukka Heikkonen has been a professor of com-
puter science of University of Turku since 2009.
His research is related to machine learning and
probabilistic and information theoretical modelling
applied in wide varying application domains. He has
worked at top level research laboratories and Center
of Excellences in Finland and international organi-
zations (EU, Japan) and has led many international
and national research projects.

183

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

