
Metric of Vulnerability at the Base

of the Life Cycle of Software Representations

Mikhail Buinevich*, Konstantin Izrailov*, Andrei Vladyko*

*The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, Saint Petersburg, Russia

bmv1958@yandex.ru, konstantin.izrailov@mail.ru, vladyko@sut.ru

Abstract— This article investigates the problem of the origin of

software vulnerabilities in terms of their life cycle. For this

purpose, the process of creating a software by a person is

examined in detail and partially formalized with in

philosophical categories – «Form vs Essence». There is proposed

main representations of life cycle and intermediate stages of the

transformation between it. As an example there's hypothetical

comparison of two software transformations with a graphical

interpretation of the security level of each of final

representations. This article is a author's works continuation on

the fundamental research of the security problems of the

software domain.

Keyword— information safety, machine code, software

representation, vulnerability, methodology, metric, life cycle

I. INTRODUCTION

Current problem of information security is existence of

vulnerabilities in the software (further – SW). It is necessary

for effective counteraction to vulnerabilities all-round studies

of properties of this object, thus not only static, but also

dynamic. Last define lifetime of vulnerabilities according to

a scale of process of creation of a SW. So, the analysis of

points of appearance of vulnerabilities will allow to evaluate

the current security level of a product and to make its forecast

for different variations of development process. The analysis

of points on a scale where vulnerabilities can be guaranteed

found, will allow to construct the systems of their

neutralization more effectively.

As process of creation SW is interactive and step-by-step,

and points of emergence of vulnerabilities have to correspond

to steps of interaction of the person with him – at the same

time vulnerabilities can possess various degree of

premeditation from the person. It will allow to create

typification of vulnerabilities on points of their emergence

and prerequisites to it.

———————————————————————

Manuscript received data is October 13, 2017. This work is a follow-up

of the invited journal to the accepted conference paper of the 18th

International Conference on Advanced Communication Technology.

M. V. Buinevich is with The Bonch-Bruevich Saint-Petersburg State

University of Telecommunications, Russian Federation, Saint-Petersburg,

22-1 Prospekt Bolshevikov (e-mail: bmv1958@yandex.ru).

K. E. Izrailov is with The Bonch-Bruevich Saint-Petersburg State

University of Telecommunications, Russian Federation, Saint-Petersburg,

22-1 Prospekt Bolshevikov (corresponding author to provide phone:

+7(921)555-2389; fax: none; e-mail: konstantin.izrailov@mail.ru).

A. G. Vladyko is with The Bonch-Bruevich Saint-Petersburg State

University of Telecommunications, Russian Federation, Saint-Petersburg,

22-1 Prospekt Bolshevikov (e-mail: vladyko@sut.ru).

Processing of a program code automatic means can be

considered an analog of interaction of the person with a code

as the rules put in them are also created by the person – for

disposal of monotonous work. The set of steps of interaction

in this case will be similar.

II. AREAS OF LIFE OF VULNERABILITIES IN

SUBMISSIONS OF THE SOFTWARE

The research of dynamic properties of vulnerabilities

begun in author's article [1] is under construction on states

SW in certain points of life cycle. Such states can be

described by means of the philosophical categories reflecting

interrelation of two parties of everyone representations of a

program code (further – Representation): his form (external

manifestation – the flowchart [2], a programming language,

etc.) and essence (inner meaning – logic of use of elements of

schemes, operators of language, etc.). In fact, the form is only

one of possible reflections of essence within the current

environment (in particular it is various for the person – the

text and images, and machine – a binary code). Justification

of the chosen division into states it is possible to find possible

use at construction SW appropriate design means: experts of

a certain profession and the standard automating programs

(further – Utilities). Each of means according to own mission

carries out transformation of Representation from previous to

the subsequent (and with application a reverse engineering

and in the opposite direction [3, 4, 5, 6], for example, for the

benefit of search of vulnerabilities). Offered in above to the

mentioned author's article of Representation, describing the

creations SW typical process for telecommunication devices,

and involved for this means, are given in Table 1.

TABLE 1.

REPRESENTATIONS SOFTWARE AND DESIGN MEANS FOR THEIR

TRANSFORMATIONS

Order
№

Initial
representations

Project tool for transformation
Name Type

 --- Creator Specialist

1 Main idea Concept developer Specialist
2 Concept model Design architect Specialist

3 Architecture Algorithmist Specialist

4 Code algorithms Coder Specialist
5 Source code Compiler Utility

6 Assembler code Assembler Utility

7 Machine code Linker Utility
8 Image file --- ---

Note. The first Representation arises only owing to activity

of the creator, and the last finishes process of creation SW.

It should be noted that a profession the algorithmist and the

coder extremely seldom meets in modern practice, though it

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1073

mailto:bmv1958@yandex.ru
mailto:konstantin.izrailov@mail.ru
mailto:vladyko@sut.ru

was demanded at initial stages of development of the region

of programming. In current state of IT area they are united by

a profession the programmer, leading to the fact that experts

of the last are forced to be engaged in transformation of two

Representations with various appointment at once (see No. 3

and No. 4 in Table 1). Authors consider that such situation is

caused by purely economic reasons and hypothetically is the

indirect source of vulnerabilities influencing quality (in sense

of safety) the final product.

Considered in [1] states point to significant jumps between

forms and essence SW, lowering details of transformations

between the next Representations. And as states in itself are

completely static – any changes without participation of

design means (from Table 1) are impossible – that cognitive

stages of transformations between Representations are of

special interest as in them new vulnerabilities ([7, 8]) can

appear.

III.REPRESENTATION TRANSFORMATION STAGES

According to the interpretations of form and essence

entered above, reflection of any Representation in the

objective (physical) world can be created by means of only

his form which is obviously consisting of the system of

others, smaller – elementary forms. In the subjective (mental)

world, Representation has an appearance of the complete

essence consisting also of the system of elementary essence.

And as the structure and properties of forms of various

Representations are, as a rule, essentially various and don't

give in to external regularity, it is possible to make

transformation only consciously and only through their

essence storing all communications lacking for this purpose.

A rare exception are transformations between extremely

similar Representations by means of trivial rules (for

example, the translation of a binary code from hexadecimal

Intel HEX in binary record). We will repeatedly note that in

case of use of Utilities the situation essentially doesn't change

as though the last and make a transfer automatically, however

generally these means will transform an entrance form to own

internal representation – i.e. work with essence, and then

generate the last according to an output form.

We will consider abstractly separate taken transformation

of Representation of i to the subsequent Representation of i+1

(further – Representation of j) which is carried out by a

certain project tool. The essence of work of any such tools

comes down to three fundamental phases: analysis of

Representation of i, its processing and synthesis of

Representation of j.

As an example we will use conversion of algorithms of a

program code (Representation of i) to the source code

(Representation of j) the coder (the expert – project means for

creation of the code implementing the given algorithm). So,

the coder studies the given algorithm (for example, it has

flowchart appearance), realizes its sense, selects a suitable

programming language (if it is not set in advance) and

implements on it a necessary functionality. Obviously, the

coder shall the be sign, both with the form of the flowchart of

an algorithm, and with a paradigm of a programming

language and its syntax; also his abilities and experience shall

allow to work with the corresponding essence of

Representations.

A. Phase 1. Analysis

The phase of the analysis of Representation by the person

consisting in his understanding is rather difficult and

debatable; nevertheless, the existing researches (in particular,

in the field of Text Comprehension [9]), allow to allocate the

following stages of this process.

Stage 1. Perception

At this stage of people makes initial recognition of a form

of Representation of i by means of sense organs (as a rule,

sight). As it isn't possible to person to capture all form of

Representation entirely (as though the flowchart consisted of

the only graphic element), his breakdown on elementary

forms is made. At the same time the elementary sense (or in

terms of the entered categorial couple – essence) compared to

each such elementary form remains not certain so far.

Representation of i from area of the physical world passes

into own world of the subject studying him. So, the coder,

studying the flowchart, obtains initial visual information on

her elements and their communications.

Stage 2. Understanding

At this stage of person compares the received elementary

forms to certain elementary essence according to own

thesaurus (the system of comparisons of terms and their

concepts). Representation of i acquires a certain semantic

essence, though rather separate. So, the coder begins to

perceive elements of flowcharts with a condition (a symbol –

the Decision) as conditional transitions to elements with data

processing (a symbol – Process).

Stage 3. Interpretation

At this stage person synthesizes the uniform essence of

Representation of i which is the coordinated whole in a brain,

using the elementary essence understood by him. At the same

time, as a rule, the total sense of Representation is much more

difficult, than summation of separate semantic elements from

the previous stage – classical synergetic effect. Judgment of

Representation by semantic interpretation of the understood

forms is in this way made. This way a coder understands the

general sense of work of an algorithm.

B. Phase 2. Processing

As Representations of i and j are based on own unique

elements of essence (corresponding to the missions), between

the last the corresponding converting is necessary. The phase

of processing of representation in working memory of the

person [10] consisting of the only stage is for this purpose

intended.

Stage 4. Re-comprehension

The stage can be considered the most difficult and the least

studied – at it the sense SW constructed on elements of

essence of Representation of i in identical sense on elements

of essence of Representation of j will be transformed. The

stage is similar to modeling process where the essence of

Representation of i has an appearance of a certain internal

model in a brain of the person which then is investigated for

the purpose of receiving (or transformations in her) the new

model corresponding to the essence of Representation of j.

So, the coder, using own cognitive skills, not just finds

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1074

unambiguous compliance of steps of an algorithm to

programming language designs, namely will transform them

in more difficult way. At the same time the rule «one in one»

doesn't work as the flowchart of an algorithm already is 2D

(the unidirectional count with cycles), and a program code –

1D (a set of lines with own structure). The situation many

times becomes complicated if the algorithm corresponds to

one paradigm of programming (for example, imperative), and

the required programming language – another (for example,

functional).

C. Phase 3. Synthesis

The synthesis phase following a reconsideration phase has

to construct his form on the essence of Representation of j –

to transfer Representation from the subjective world of the

person to objective surrounding. Thus, the phase reasonably

can consist of the stages belonging to an analysis phase, but

which are carried out upside-down. There are even utilities

with the close purposes and the principles of work (for

example, SWIM [11]).

Stage 5. Shaping

At this stage person breaks the uniform essence of

Representation on elementary, ready for reflection in the

physical world. There is a certain structure of maintenance of

Representation of j though without any specification

concerning her form. So, the coder from conscious sense of

work of an algorithm (step-by-step) receives the scheme of

performance according to a programming paradigm (in this

case, imperative).

Stage 6. Exposition

At this stage person compares to each elementary essence

the same elementary form. The return thesaurus (the system

of comparisons of concepts and their terms) is for this

purpose used. Programming language forms are compared to

semantic elements of Representation of j. So, the coder

presents the scheme of performance in the form of set of

designs of language.

Stage 7. Decoration

At this stage person makes concrete entry of

Representation of j strictly in the required look – graphic,

text, binary and so forth. Representation has a uniform

consistent form. So, the coder makes the end result of the

activity – writes down a program code of an algorithm.

Stages can be considered intuitive and logical on a set of

examples. The structure of phases and stages and also graphic

interpretation of their work in categories of a form/ essence is

given in the Fig. 1. Zone 1, 2 and 3 correspond to conditional

degree of sensibleness of essence by the person for each of

Phase and Stage of transformation of Representations.

Fig. 1. Scheme of transformation of Representation and its graphic interpretation

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1075

Explanations to the diagram in the Fig. 1 for the example

consisting in creation of the source code of function of a

choice maximum of two numbers according to the given

flowchart of an algorithm are provided in Table 2.

TABLE 2.
EXPLANATIONS TO THE SCHEME OF TRANSFORMATION OF

REPRESENTATION AND EXAMPLE OF CODING

№
Result of

transformation

Elements of the scheme of transformation (for

example)

 Submission of the

flowchart of an

algorithm

(Representation i)

Begin

End

Arguments:
X, Y

Return: T

Input: X, Y

Output: T

X > Y T = XT = Y YesNo

1 Visual elements of

the flowchart of an

algorithm

(Form 1, 2)

«Begin» with receiving two variables: X and Y;

«Decision» on transition (conditional branch)

with a condition of comparing of two variables

«X > Y»;

two «Processes», each of which appropriates to

temporary variable T one of two X and U

variables;

«End» with return of a variable T; unidirectional

connectors of all elements;

2 Sense of elements

of the flowchart of

an algorithm

(Essence 1, 2)

Obtaining value of the X and Y variables;

comparing of the X and Y variables;

if X > Y, then assignment of a variable T of

variable X value , else – value variable Y;

resetting of variable T value;

3 Sense of all

algorithm

(Total Essence)

Comparing of values of the X and Y variables

and resetting maximum of them through variable

T value;

4 Sense of the source

code implementing

the algorithm

(Total Essence’)

received by the

intermediate

models

(Model, Model’)

Determination of function with arguments X and

Y returning the value, maximum from them;

use for storage of result of temporary variable T;

5 Sense of elements

of the source code

(Essence 1’, 2’, 3’)

Targeting a signature of function with

arguments of X and Y; comparing values of the

X and Y variables of construction IF-ELSE;

depending on result of comparing locating in

temporary variable T of one of values of the X

and Y variables;

resetting from function variable value T;

6 Constructions of

the source code

according to a

language syntax

(Form 1’, 2’, 3’)

Function title with two arguments X and Y;

beginning and end of a function body;

declaration of temporary variable T;

conditional GOTO statement for «X > Y»;

branches of the conditional branch on the

separate units of a code containing assignment of

a variable T of the X or Y variables;

return statement from function of a variable T;

7 Representation

listing of the source

code

(Representation j)

int funct(int x, int y) {
 int t;
 if (x>y) {
 t = x;
 } else {
 t = y;
 }
 return t;
}

Note. First column «№» means order number of Stage.

IV.TYPIFICATION OF VULNERABILITIES WHEN TRANSFORMING

REPRESENTATION

As it was specified, vulnerabilities can appear in the course

of change of Representations (incremental and step by step),

it is expedient to enter their typification in the place in which

they appeared – i.e. to the stage initiating vulnerability. So,

the erratic understanding the coder on Stage will lead 2 senses

of an element of the conditional branching (for example, the

incorrect sign of comparing) to incorrect interpretation of a

sense of all algorithm and, as a result, to writing of the

incorrect source code (for example, returning the minimum

number instead of maximum) even if all remained stages

were executed absolutely truly.

The premeditation level corresponding to a conscious

participle of the person to vulnerability appearance can be

additional typification reasonably. The following can be such

types of premeditation for the given stages:

 unwitting – shown in the mistakes made by the person

not consciously i.e. owing to its physical or

psychological state, or because of external factors;

 malicious – based on conscious entering of mistakes

into Representations, for example, owing to personal

ambitions, the order or the compelled reactions.

It is obvious that if the casual nature of vulnerabilities is

inherent with different degree in all stages of transformation

of Representations, then malicious can belong only to a stage

of reconsideration and the next to him. It follows from the

fact that around a stage there is sufficient degree of

sensibleness of essence by the malefactor (corresponding to

zones in the Fig. 1); at all other stages person just tries to

understand sense of Representation through perception, and

then to describe it.

V.ASSESSMENT OF SAFETY OF TRANSFORMATION OF

REPRESENTATION

We will consider process of receiving each new

Representation of safety change, previous from a position.

We will enter the level of safety of Representation of i as

density of his essence without vulnerabilities (or the relation

of «volume» of essence without vulnerabilities to general

«volume») and we will designate him the 𝑆𝑖 parameter. It is

obvious that for Representation without vulnerabilities of

𝑆𝑖=1. Safety of the following Representation j is defined by

𝑆𝑗 ; at the same time 𝑆𝑗 < 𝑆𝑖 condition will be always met.

Equality of 𝑆𝑗 = 𝑆𝑖 is possible only at automatic

transformation by the entrusted Utilities and won't be

considered here. The situation when 𝑆𝑗 > 𝑆𝑖 meaning that as

a result of transformation, a part of vulnerabilities has

disappeared and in general is extremely improbable (though

some Utilities of assembly can signal about use of unsafe

operations and offers options of their correction).

We will consider features of each of the specified SW

development process stages and also types of vulnerabilities

from the point of view of premeditation. For this purpose we

will compare coefficient of increase in level of insecurity of

Representation with each stage – 𝐾𝑁
𝑃(𝑡), corresponding to

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1076

probability of emergence of vulnerability like P (U –

Unwitting, M – Malicious) at the Stage N (from 1 to 7) in

timepoint of t (a point on a scale of performance of stages).

The value of coefficient can lie in the range [0..1]. Then

coefficients influence the level of safety of Representation as:

𝑆𝑗 = ∏ (1 − 𝐾𝑁
𝑃(𝑡)) × 𝑆𝑖

𝑁=1..7

.

Thus, each stage due to «nonzero» probability of

emergence of vulnerabilities inevitably reduces safety of new

Representation.

The coefficient 𝐾𝑁
𝑃(𝑡) has dependence on timepoint

because of stages aren't carried out instantly, and have a

certain duration in process of which (from the beginning of a

stage before its end) vulnerabilities can appear with various

speed (the corresponding derivative from 𝐾𝑁
𝑃(𝑡) in a certain

timepoint of 𝑡0). Such assumption is competent as at some

stages of vulnerability practically don't appear (because of

simple subconscious work of a human brain), on some have

the increased intensity (because of need to the person to work

with the large volume of memory), and on some have growth

rate, time-dependent (because of complex processing by a

brain both the initial, and constantly obtained new

information). We will consider coefficient 𝐾𝑁
𝑃(𝑡) for each of

a stage and type of premeditation of vulnerability.

For definition of a temporary type of coefficient of increase

in level of insecurity we will use the simplified reasoning –

but, nevertheless, reasonable logic and experience as

definition of an exact formula for 𝐾𝑁
𝑃(𝑡) demands carrying

out a full-fledged research on a set of statistics (and its

processing) concerning places and types of emergence of

vulnerabilities on each of stages of transformation of

Representations. Also we will divide a type of conversion

within each stage from the point of view of topology into 4

groups:

 «one to one» (further, «1:1») or the transformation of

one element to other element;

 «one to several» (further, «1:N») or the transformation

of a uniform element to a set of other elements;

 «several to one» (further, «N:1») or the transformation

a set of one elements in a uniform element;

 «several to several» (further, «N:N») or the

transformation a set of one elements to a set of other elements.

VI.INFLUENCE OF SUBJECTIVE COMPONENTS OF THE PERSON

The Stage 1 is defined by consecutive perception of

elementary forms of Representation of i from a uniform form

and is carried out by the person with good degree of

automaticity, though in the form of «1:N». As essence by the

person is still not understood, emergence only of casual

vulnerabilities is possible. Thus, the stage can be

characterized by the average value of coefficient having a

linear appearance:

{
𝐾1

𝑈(𝑡) = 𝑘1
𝑈 × 𝑡

𝐾1
𝑀(𝑡) ≡ 0

.

The Stage 2 is defined by consecutive understanding of

elementary forms of Representation of i by their

«replacement» by the corresponding elements of essence, i.e.

in the form of «1:1». As the understanding of elementary

essence doesn't give a full picture of sense an Idea, emergence

only of casual vulnerabilities is possible. Thus, the stage can

be characterized by low value of coefficient and have a linear

appearance:

{
𝐾2

𝑈(𝑡) = 𝑘2
𝑈 × 𝑡

𝐾2
𝑀(𝑡) ≡ 0

.

The Stage 3 is defined by consecutive interpretation of

elementary essence of Representation of i in uniform essence

which is carried out by the person with good degree of

automaticity, though in the form of «N:1». As the person at

the end of a stage already has an idea of full essence, besides

casual vulnerabilities emergence of rare malicious

vulnerabilities is possible. Thus, the stage can be

characterized by average value of coefficient for casual and

very low for malicious vulnerabilities and have a linear

appearance:

{
𝐾3

𝑈(𝑡) = 𝑘3
𝑈 × 𝑡

𝐾3
𝑀(𝑡) = 𝑘3

𝑀 × 𝑡
.

The Stage 4 is defined by transformation of sense of

Representation of i to sense of Representation of j (by their

essence) which is made by the person most consciously.

Transformation is similar to process of «the solution of a

task» – poorly studied creative action. Nevertheless, the

approximate type of coefficient of 𝐾4
𝑃 can be received as a

result of the following reasonings. Firstly, the stage isn't

consecutive (on extremely measure, in the same degree as

others) since there is no uniform algorithm of the decision any

tasks – it is creative with emergence of Insight. Secondly,

though transformation is also similar to a look «1:1»,

nevertheless, because of their dimensions of keeping of

people is capable to work only with their parts that leads to a

type of «N:N». And, thirdly, standard feature of work with

non-standard tasks is existence of a step of assessment i.e. as

far as the decision has come or has achieved the objectives.

Thus, it is possible to assume that generally the stage will

gradually transform one parts of essence of Representation i

to other parts of essence of Representation j, checking at the

same time each new received part for coordination both with

initial, and with already received from the point of view of

proximity to a goal.

According to the made assumption, with each

transformation of a part of essence the number of the made

actions increases by one – because of need of coordination of

each following part for a limit with all previous. The last

corresponds to the arithmetic sequence (which sum of

members is equal: 1 + 2 + ⋯ + 𝑛 =
(𝑛+1)×𝑛

2
) and directly

influences emergence of casual vulnerabilities.

As the person has complete idea of the essence of

Representations, this stage is most preferable to the

vulnerabilities introduced by the malefactor; at the same time,

their addition can be carried out in process of transformation.

Thus, the stage can be characterized by coefficient with the

high value for casual vulnerabilities having a square

appearance and an average for malicious vulnerabilities and

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1077

to have a linear appearance:

{
𝐾4

𝑈 = 𝑘4
𝑈 × 𝑡2

𝐾4
𝑀 = 𝑘4

𝑀 × 𝑡
.

The Stage 5 is defined consecutive decomposition of

uniform essence of Representation of j in elementary essence

which is carried out by the person with good degree of

automaticity, though in the form of «1:N». As the person at

the beginning of a stage still operates with full essence,

besides casual vulnerabilities emergence rare malicious is

possible. Thus, the stage can be characterized by average

value of coefficient for casual and very low for malicious

vulnerabilities and have a linear appearance:

{
𝐾5

𝑈(𝑡) = 𝑘5
𝑈 × 𝑡

𝐾5
𝑀(𝑡) = 𝑘5

𝑀 × 𝑡
.

The Stage 6 is defined by consecutive formation of

elementary forms of Representation of j by «replacement» of

the corresponding elements of essence with them, i.e. in the

form of «1:1». As work with elementary essence doesn't

allow to operate with full sense of Representation, emergence

only of casual vulnerabilities is possible. Thus, the stage can

be characterized by low value of coefficient and have a linear

appearance:

{
𝐾6

𝑈(𝑡) = 𝑘6
𝑈 × 𝑡

𝐾6
𝑀(𝑡) ≡ 0

.

The Stage 7 is defined by the consecutive description of a

uniform form of Representation of j from elementary forms

which is carried out by the person with good degree of

automaticity, though in the form of «N:1». As the person have

completely departed from the essence of Representation,

emergence only of casual vulnerabilities is possible. Thus, the

stage can be characterized by average value of coefficient and

have a linear appearance:

{
𝐾7

𝑈(𝑡) = 𝑘7
𝑈 × 𝑡

𝐾7
𝑀(𝑡) ≡ 0

.

It is expedient to write down the level of insecurity of

Representation a two-component vector which elements set

density of each of types of vulnerabilities (casual and

malicious): 𝑆𝑖 ≡ [𝑆𝑖
𝑈, 𝑆𝑖

𝑀]. The general deterioration in safety

in this case and also according to the entered coefficients, will

be defined by the equation[𝑆𝑗
𝑈, 𝑆𝑗

𝑀] = 𝑀 × [𝑆𝑖
𝑈, 𝑆𝑖

𝑀], where

M – a metrics (in the form of a single matrix) increases in

insecurity when transforming Representations. The metrics is

defined how:

М ≡ ∏ ([
1 − 𝐾0𝑁

𝑈 0

0 1 − 𝐾0𝑁
𝑀] × [𝑆𝑖

𝑈, 𝑆𝑖
𝑀]) ,

𝑁=1..7

where 𝐾0𝑁
𝑃 – coefficient of increase in level of insecurity on

the termination of a stage N for type of premeditation of

vulnerability of U or M. Thus, the metrics doesn't depend on

time and her components are calculated as number. Unlike

existing (diverse and specialized for own tasks, for example

[12, 13, 14, 15]), the entered metrics at rather high level of

abstraction sets safety of the gained Impression on everyone

a stage of interaction of people code. At the same time, the

metrics allows to predict safety level in the future as it

depends only on the chosen life cycle of creation SW.

In case of more real reflection of safety the matrix of M

won't be single since unwitting and malicious vulnerabilities

exert impact at each other on each of stages of transformation

of Representations. Formalization of this situation is more

difficult and demands carrying out additional researches.

Graphic interpretation of coefficient 𝐾𝑁
𝑃(𝑡) for various

stages and types of vulnerabilities, illustrating their

distinctions and features, has the following stylized

appearance (Fig. 2):

Fig. 2. Graphic interpretation of coefficient of increase in level of insecurity

of Representations for each phase

VII.COMPARISON OF SAFETY OF TRANSFORMATION OF

REPRESENTATIONS FOR STANDARD SCENARIOS OF SOFTWARE

DEVELOPMENT

As an example of potential applicability of the explained

approach to assessment of safety we will make hypothetical

comparing of two methods of creation of a program code

(Representation 5) on its architecture (Representation 3) –

with use of the intermediate algorithmized representation

(Representation 4) and without it. In the second case the

programmer receives the essence of Representation of

algorithms of a code implicitly in the course of

reconsideration of essence of Representation of architecture

in Representation of the source code, passing thereby phases

of synthesis of algorithmized Representation, its explicit

processing and the subsequent analysis.

With sufficient degree of convention, but without loss of

Stage 1

Unwitting

Malicious

Stage 2

Unwitting

Malicious

Stage 3

Unwitting

Malicious

Stage 4

Unwitting

Malicious

Stage 5

Unwitting

Malicious

Stage 6

Unwitting

Malicious

Stage 7

Unwitting

Malicious

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1078

sense, change of the general coefficient of increase in level of

insecurity of Representations 𝐾𝑃(𝑡) (as compound of 𝐾𝑁
𝑃(𝑡)

on each phase N) for both types of vulnerabilities (𝑃 =
 {𝐼, 𝑀}) in a case from use of algorithmized Representation

(further – Case 1) and without him (further – Case 2) is shown

on the following schedules (Fig. 3).

t

KP

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Representations: 3 → 4 Representations: 4 → 5

Stage

Malicious

Unwitting

a) transformation through Representation 4 (3→4→5)

t

KP

1 2 3 4 5 6 7

Representations: 3 → 5

Stage

Malicious

Unwitting

b) transformation without Representation 4 (3→5)

Fig. 3. Graphic interpretation of the general coefficient of increase in

insecurity when transforming Representations 3 in 5

At the Fig. 3 the dashed line has shown coefficient 𝐾𝑃(𝑡)

with square dependence on t time. Units of measurements of

schedules and the scale of Stage 4 on graphics 3b are

conditional, designed to reflect the general behavior of

coefficient and difference between him for two options of

transformation.

The analysis of graphics 3) and 3) in the Fig. 3 allows to

draw the following conclusions. First, in Case 1 using of

intermediate Representation 4 means emergence of additional

Stages 5, 6, 7 (for transformation of Representations 3 → 4)

and Stages 1, 2, 3 (for transformation of Representations 4 →

5) that inevitably leads to accumulative increase in insecurity

of Representation 5 because of casual vulnerabilities.

Secondly, in Case 2 the refusal of use of intermediate

Representation 4 means increase in Stage 4 twice that leads

to a bigger increase in insecurity of Representation 5 because

of casual vulnerabilities (because of a square type of

coefficient 𝐾4
𝑈(2𝑡)). Thirdly, existence in Case 2 twice of

smaller quantity of Stages 3, 4, 5 having not zero 𝐾𝑁
𝑀(𝑡) leads

to smaller increase in insecurity of Representation 5 because

of malicious vulnerabilities, than in Case 1.

According to the above-mentioned analysis, it is possible

to claim that the choice of each of the described ways of

creation SW results in various probability of emergence of

vulnerabilities in Representation, at the same time the

quantity of their one type can increase, and another to go

down.

VIII.CONCLUSION

The described approach to safety assessment SW for

various stages of his creation allows to create the formalized

mathematical apparatus, as for assessment of current state of

safety SW, and his forecasting (for example, as in [16]). The

last one helps to make the reasonable choice among different

variations of SW development, calculating at the same time

potentially dangerous places. Collecting expert opinions and

statistical data which will allow to set necessary invariant

parameters of the device is necessary for transformation of a

theoretical research into practical tools. The future of

development of a research can develop into full processing of

all process of creation SW – removal of one of his

representations, addition of others, modification of the third

– that will allow to receive final SW set safety level. Also,

adaptation of process of creation safe SW under the field of

its application, such for example as telecommunication

devices is possible.

REFERENCE

[1] M. Buinevich, K. Izrailov, A. Vladyko, "The life cycle of

vulnerabilities in the representations of software for telecommunication

devices," in Proc. 8th IEEE International Conference on Advanced

Communication Technology (ICACT), South Korea, PyeongChang,

2016, pp. 430-435.
[2] K. Xinogalos, “Using flowchart-based programming environments for

simplifying programming and software engineering processes,” IEEE

Global Engineering Education Conference (EDUCON), Germany,
Berlin, 2013, pp. 1313-1322

[3] M. Buinevich, K. Izrailov, A. Vladyko, "Method for Partial Recovering

Source Code of Telecommunication Devices for Vulnerability Search,"
in Proc. IEEE 17th International Conference on Advanced

Communication Technology (ICACT), South Korea, PyeongChang,

2015, pp. 76-80..
[4] M. Buinevich, K. Izrailov, A. Vladyko, "Method and Prototype of

Utility for Partial Recovering Source Code for Low-Level and

Medium-Level Vulnerability Search," in Proc. IEEE 18th International
Conference on Advanced Communication Technology (ICACT),

South Korea, PyeongChang 2016, pp. 700-707.

[5] M. V. Buinevich, K. E. Izrailov, "Method and utility for recovering
code algorithms of telecommunication devices for vulnerability

search," in Proc. IEEE 16th International Conference on Advanced

Communication Technology (ICACT) , South Korea, PyeongChang,
2014, pp. 172-176.

[6] P. Tripathy, K. Naik. “Reengineering,” Software Evolution and

Maintenance: A Practitioner's Approach, 2014, pp. 133-186.
[7] R. Aliyev, L. Peñalver, "Analyzing Vulnerability Databases," in Proc.

10th IEEE International Conference on Application of Information and

Communication Technologies (AICT), Baku, Azerbaijan, 2016.
[8] A. Fedorchenko, I. Kotenko, A. Chechulin, "Design of Integrated

Vulnerabilities Database for Computer Networks Security Analysis,"

in Proc. 23rd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), Turku, Finland,

2015, pp. 559-566.

[9] M. Gernsbacher, M. Kaschak. “Text Comprehension,” The Oxford
Handbook of Cognitive Psychology, 2013, pp. 462-474.

[10] M. Yeari, “The role of working memory in inference generation during

reading comprehension: Retention, (re)activation, or suppression of
verbal information?,” Learning and Individual Differences, 2017, Vol.

56, pp. 1-12.

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1079

[11] M. Raghothaman, Y. Wei, Y. Hamadi. “SWIM: Synthesizing What I

Mean – Code Search and Idiomatic Snippet Synthesis”, in Proc. IEEE
38th International Conference on Software Engineering (ICSE), USA,

New York, 2016, pp. 357-367.

[12] J. Knight, B. Rodes, K. Wasson, “A security metric based on security
arguments,” In Proc. 5th International Workshop on Emerging Trends

in Software Metrics, USA, New York, 2014, pp. 66–72.

[13] X. Cheng, N. He, M. Hsiao, “A New Security Sensitivity Measurement
for Software Variables,” In Proc. IEEE Conference on Technologies

for Homeland Security, USA, Waltham, 2008, pp. 593-598.

[14] Metrics and measurement of trustworthy systems // Military
Communications Conference (MILCOM). IEEE. 2016. pp. 1237-1242.

[15] J. Cho, P. Hurley, S. Xu “Metrics and measurement of trustworthy

systems,” in Proc. IEEE 35th Military Communications Conference
(MILCOM 2016), Baltimore, United States, 2016, pp. 1237-1242.

[16] M. Buinevich, P. Fabrikantov, E. Stolyarova, K. Izrailov, A. Vladyko

"Software Defined Internet of Things: Cyber Antifragility and
Vulnerability Forecast," in Proc. IEEE 11th International Conference

on Application of Information and Communication Technologies
(AICT), Moscow, Russia, 2017, pp. 293-297.

Mikhail Buinevich received the D.Sc degree in

Engineering from the Naval Institute of Radio

Electronics, St. Petersburg, Russia, in 2010.
He has 20 years of experience in research and

development in IT security. Now he is a Professor at

The Bonch-Bruevich Saint-Petersburg State
University of Telecommunications and supervises

post graduates.

Prof. Buinevich is the Editor-in-chief of “Proceedings
of Telecommunication Universities” scientific journal.

Konstantin Izrailov defense his degree of PhD at
The Bonch-Bruevich Saint-Petersburg State

University of Telecommunications, Russia in 2017.

Now he is an Associate Professor at that University.
Mr. Izrailov interests include: Information & Network

Security; Software-Defined Networking; Internet of
Things.

Andrei Vladyko (IEEE member (M'14)) acquired

his degree of PhD at Komsomolsk-on-Amur State
Technical University, Russia in 2001.

At present he is a head of R&D department of The

Bonch-Bruevich Saint-Petersburg State University of
Telecommunications.

Mr. Vladyko major interests include: Information &

Network Security; Software-Defined Networking;
Internet of Things; Wireless Sensor Network.

Copyright ⓒ 2017 GiRI (Global IT Research Institute)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 6, Issue 6, November 2017 1080

	I. INTRODUCTION
	II. AREAS OF LIFE OF VULNERABILITIES IN SUBMISSIONS OF THE SOFTWARE
	III.REPRESENTATION TRANSFORMATION STAGES
	IV.TYPIFICATION OF VULNERABILITIES WHEN TRANSFORMINGREPRESENTATION
	V.ASSESSMENT OF SAFETY OF TRANSFORMATION OFREPRESENTATION
	VI.INFLUENCE OF SUBJECTIVE COMPONENTS OF THE PERSON
	VII.COMPARISON OF SAFETY OF TRANSFORMATION OF REPRESENTATIONS FOR STANDARD SCENARIOS OF SOFTWARE DEVELOPMENT
	VIII.CONCLUSION
	REFERENCE

