

1
Abstract— The advancement of storage technologies and

the fast-growing number of generated data have made the
world moved into the Big Data era. In this past, we had many
data mining tools but they are inadequate to process
Data-Intensive Scalable Computing workloads. The Apache
Spark framework is a popular tool designed for Big Data
processing. It leverages in-memory processing techniques that
make Spark up to 100 times faster than Hadoop. Testing this
kind of Big Data program is time consuming. Unfortunately,
developers lack a proper testing framework, which cloud help
assure quality of their data-intensive processing programs
while saving development time and storage usages.

We propose Distributed Test Checkpointing (DTC) for
Apache Spark. DTC applies unit testing to the Big Data
software development life cycle and reduce time spent for
each testing loop with checkpoint. By using checkpoint
technique, DTC keeps quality of Big Data processing software
while keeps an inexpensive testing cost by overriding original
Spark mechanism so that developers no pain to learn how to
use DTC. Moreover, DTC has no addition abstraction layers.
Developers can upgrade to a new version of Spark seamlessly.
From the experimental results, we found that in the
subsequence rounds of unit testing, DTC dramatically speed
the testing time up to 450-500% faster. In case of storage,
DTC can cut unnecessary data off and make the storage 19.7
times saver than the original checkpoint of Spark. DTC can be
used either in case of JVM termination or testing with random
values.

Keyword— Distributed Checkpointing; Apache Spark; Big Data
Testing; Software Testing;

I. INTRODUCTION
HE increasing and diversity of electronic devices,
sensors, IoT devices and the fast-growing numbers of

Internet users have been generating tremendous amount of
data recently. They are not only the large amount of data

———————————————————————
Manuscript received December 27th, 2017. This work was supported by

Suranaree University of Technology, and a follow-up of the invited journal
to the accepted & presented paper of the 20th International Conference on
Advanced Communication Technology (ICACT2018),

Bhuridech Sudsee is with School of Computer Engineering, Suranaree
University of Technology, Nakhon Ratchasrima, Thailand (corresponding
author phone: +66-44-22-4422; e-mail: m5741861@g.sut.ac.th).

Chanwit Kaewkasi is with School of Computer Engineering, Suranaree
University of Technology, Nakhon Ratchasrima, Thailand (e-mail:
chanwit@sut.ac.th).

but their structures are also complex as well. This
complexity makes the traditional data mining tools
inadequate to manage today’s data [1].

The MapReduce [2] programming model has induced the
development of many frameworks such as Apache Hadoop
[4], Map-reduce-merge [5] and Apache Spark [6], which
aim to process data intensive tasks. Developers only need to
rewrite their programming logic in the form of map and
reduce functions in order to process data on a MapReduce
framework. These functions will be automatically managed
by the framework’s default configuration. This mechanism
makes the MapReduce framework easy to use. At its
simplest form, a MapReduce program usually starts by a
map function creating key/value pairs from the input. These
intermediate key/value pairs are then passed to a reduce
function to produce the final results. The MapReduce
model is parallel by nature. It is designed to allow
developers to run MapReduce programs for high
performance computing jobs using a commodity cluster,
built from low-cost hardwares. With this kind of the cluster
architecture, we can handle massive amount of data and
process them on numerous cluster nodes without a single
point of failure [3].

Although the MapReduce model is easy to use for
software development, but it is quite tricky to test software
written by the MapReduce model. Software testing is a vital
part of the development process. Testing is usually 25-50%
of the overall cost [8]. We found that the current
mechanism is not enough to assure quality for Big Data
processing programs. Unit testing is a software testing
technique which properly leads to better levels of quality.
However, tools like Scalatest[9] or jUnit[10] have their own
limitations to use with a MapReduce framework like Spark.
For example, SparkContext and SparkSession objects must
be instantiated only once for each running Java Virtual
Machine (JVM) to avoid unexpected testing results [12].
Spark-testing-base [11] also does not have a testing
mechanism for Spark. Without modification, it cannot work
on a Spark cluster because if its inability to distribute class
files across worker nodes. There aforementioned techniques
are not suitable for Spark simply because they are not
designed to test programs that distributelly process large
amount of data.

Test-driven development (TDD) is a software
development technique that helps developers to focus on

An Improvement of a Checkpoint-based
Distributed Testing Technique

on a Big Data Environment
Bhuridech Sudsee, Chanwit Kaewkasi

School of Computer Engineering

Suranaree University of Technology, Nakhon Ratchasrima, Thailand, 30000

m5741861@g.sut.ac.th, chanwit@sut.ac.th

T

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1081

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

writing a specific test at a time. It additionally allows code
improvement while preserving correctness according to the
specification. TDD workflow consists of the following
steps, (1) writing a minimum test (2) writing codes to just
make the test passed, and (3) refactoring to remove
unnecessary codes while still making the current test passed
[13]. We call these steps a TDD workflow herein this paper.
Applying TDD to data intensive programs is difficult due to
the nature of workloads, which need to process on a cluster.
So, developers require a special tool to help shorten each
loop of the TDD workflow.

Spark has cache, persist and checkpoint methods to help
mitigate job failure. These mechanisms however do not
help software testing process much. The main reason is that
a cluster state cached or persisted by them does not survive
across runs of JVMs. A cluster state saved by the
checkpoint method does survive on disk but unfortunately it
cannot be retrieved back by a newly started JVM [14, 15].

In this paper, we present Distributed Test Checkpointing
(DTC), a technique that leverages the checkpoint technique
to enhance software testing for data intensive jobs. With
DTC, developers can increase productivity when testing
their software on a distributed cluster repeatedly. DTC
applied a hash function on each data partition of a Resilient
Distributed Datasets (RDD) [18] to use an identifier.
Modification of an RDD or a Dataset can be traced by the
hashed number. The testcase that uses the RDD is also
hashed at the bytecode level. Combining these techniques,
DTC is found to reduce testing time and storage required by
checkpointing significantly compared to the original
Spark’s checkpointing technique.

The remaining of this paper is organized as followed.
Section II discusses related works, including Apache Spark.
Section III presents the design and internal mechanism of
DTC. Section IV presents the system architecture of the
cluster used by our experiments, and the experimental
results. This paper then ends with conclusion and future
works in Section V.

II. BACKGROUND AND RELATED WORK

A. Apache Spark
Spark is a data intensive processing framework focusing

on in-memory data processing [6], which is implemented in
the form of Resilient Distributed Dataset (RDD) [18]. RDD
is designed to take care of the data flow and handle the
processing mechanism. An RDD could be created using one
of the following methods (1) reading data from file (2)
parallelizing collection in the driver program (3)
transforming from another RDD (4) and by transforming
back from a persisted RDD [6]. An RDD comprises with
two kinds of command, transformations and actions. A
transformation command transforms an RDD to another
RDD. These commands are map, filter and groupByKey, for
example. Another set of commands are actions, which are
collect and count, for example. An RDD keeps all previous
transformation inside itself. This direct acyclic graph of
transformation is known as lineage. The beginning of the
real computation occurs only when an action is called. This
is the lazy evaluation nature of Spark.

A mechanism for failure recovery that helps an RDD to
resume the processing without re-computation from scratch
are methods such as cache, persist and checkpoint. The
cache method uses persistency at MEMORY_ONLY, while
the persist method has several levels of persistency. The
checkpoint method, in contrast, uses the technique which
save data onto a reliable storage, such as HDFS, Amazon
S3 or Ceph. An RDD is usually cached or persisted during
its computation to avoid re-computation previous steps
[15].

The checkpoint technique is also applicable for Spark
Streaming because it truncates the internal lineage, so the
RDD does not need to knowledge of its parent. However,
this mechanism is not designed for software testing. The
re-computation is still required to start from the beginning
when the testcase is re-run. The rerunning of the testcase
destroys a Block Manager inside an Executor. This Block
Manage is responsible for keeping cached and persisted
data. The new Driver program and the testcase therefore is
not able to access the location of checkpoints.

In addition, Spark has introduced the Dataframe API in
1.3 and Dataset in 1.6. Both abstractions can be used
interchangeably because Dataset[Row] is the type safer
version of DataFrame. A dataset is also convertible to an
RDD. In the case of DTC proposed in this paper, we read
and write data directly without triggering any computation
of related RDDs.

B. Debugging framework for Spark
A technique used to improve quality of the software is

debugging. Developers usually debug to observe certain set
of variables they are interested. However, in the
Data-intensive Scalable Computing (DISC), the debugging
process is difficult as data are computed distributedly on a
cluster.

BigDebug [7] is a tool designed to helps Spark’s
developers deal with debugging a Big Data program. There
is a downside that the tool requires user’s interaction during
the debugging process. Those interactions make the
debugging more difficult than those of normal programs
because the Big Data programs are distributed by nature.
Moreover, a BigDebug program cannot tackle the problem
when the RDD being debug requires changes. The whole
debugging process needs to start over in that case. In case of
the developer changing codes on-the-fly, the RDD will
become in-consistent as some partitions of the RDD has
been processed by the old version of codes, while other
partitions will be processed by the new codes. BigDebug
support Spark up to 1.2.1 as the time writing.

C. Checkpoint implementation for Spark
Researchers have been employed the checkpoint of Spark

in many ways to improve its efficiency, as follows.
Flint [26] was created atop the original checkpoint

technique of Spark. It aims at applying checkpoint and store
their data on transient instances to reduce the VM usage
cost. A transient instance in a kind of low-cost computing
unit, which can be recalled anytime by its cloud provider.
Flint solves this problem by writing an RDD’s partitions to
an HDFS, which is operated on on-demand instances. We
found that this implementation lacks a mechanism to
prevent re-calculation when JVM is terminated. In addition,

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1082

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

their checkpoint will be saved automatically so developers
need to prepare a huge amount of space in order to prevent
the full of storage, which can lead to the failure of the
whole system.

TR-Spark [27] implements the similar approach as Flint.
The difference is that TR-Spark allows fined-granularity
checkpoints at task-level. By leveraging this level of
checkpoints, the storage usage cloud be reduced in
comparison to checkpoint the whole RDD. However,
TR-Spark makes it difficult to use as developers need to
collect the information of VM failure to let it know the
failure probability. TR-Spark does not deal with changes of
the Driver program.

Automatic Spark Checkpointing (ASC) [25] was designed
to help analyze the trade-off between RDD checkpointing
and its restore. ASC performs this computation by
estimating them from an RDD lineage. Nevertheless, this
technique does not support checkpoint across JVM
termination. It also lacks the ability to recognize the
similarity or identity of an RDD.

Spark-flow [24] aims to mitigate the effect of JVM
termination for checkpoint restoration. It makes use of
Distributed Collection (DC), a library similar to the Dataset
API. DC is able to analyze an RDD at the bytecode level
with ASM. It can identify the location of checkpoint calls,
inside an anonymous function. It also uses the MD5 hash
function to help detect changes at the bytecode level.
However, DC has some downside as the following. First,
when calling checkpoint on a DC, the data is re-read again
after checkpointing. Second, when restoring from
checkpoint, the action count will be triggered, so the
re-computation kicks in. Finally, computation is mainly
done on the Driver machine, so the mechanism is actually
not distributed. This often causes Out-of-Memory exception
inside the Driver program and it stops working.

III. DESIGN AND IMPLEMENTATION
Spark stores the RDD transformations in the form of a

lineage graph a.k.a. the logical execution plan. When an
action is triggered for a certain RDD, its job will be
submitted to the DAG Scheduler to transform the RDD’s
lineage into a directed acyclic graph, whose a vertex is an

RDD partition and edge is a transformation. After that the
staging process will be kicked in. This staging process will
be started from the final action going backwards to the
beginning of the RDD. However, in the real execution, the
process will be performed from the beginning of the RDD
forwardly to the final action. After the staging, the system
obtains a set of Stages and Tasks.

A checkpoint of an RDD however must be done before
the first action is performed. From the source code in the
Fig. 1, when a program starts to process an array of integer
1 to 5, the array will be passed as a parameter of method
parallelize of class SparkContext. This result in a
ParallelCollectionRDD stored in variable data. At line 2,
each element from the data RDD is mapped with 1 using
the map method as a key/value pair. The result is a
MapPartitionsRDD stored in variable distData. At line 3,
method dtCheckpoint is invoked. Please note that the
original Spark and DTC both use the lazy evaluation
mechanism, this means that the checkpoint method only
marks at a certain point over the DAG, where checkpoints
will happen there. At line 4, command distData.count() is
the first action. When this first action is triggered, the
checkpoint is not yet created. The computation then is
started from the beginning of the RDD to the mark point.
After that, the checkpoint is stored at the first upper
directory level as a hash value generated by the mechanism
of DTC. At the line no 5, method distData.collect() is
invoked as the second action. The system will then check
backwards from the action to the beginning of the RDD.
This time the system will find a checkpoint already existed
because there is a directory whose name matches with the
hash. When the DAG Scheduler starts to transform the
lineage, it uses the data directly from the checkpoint
without re-computation. Please also note that action count()
and collect() belong to the different jobs. The result
computed by count() will not be included as an input for
collect(), despite their order of execution.

In Scala, it allows us to implement a new feature for a
class by creating an Implicit Class then mixes it in to the
existing classes, like RDD or Dataset. The DTC
mechanisms proposed in this paper are implemented using
that technique. With DTC as an Implicit Class, developers
could still use all existing properties and behavior of an
RDD, while having an additional method from DTC.
Developers are also able to upgrade the Spark framework to
the newer versions without rewriting this mechanism. DTC
is more suitable for testing than Spark-flow, which has
many abstraction layers. These abstraction makes it
difficult to enhance capability of Spark-flow.

A. DtCheckpointing
This mechanism works when the method dtCheckpoint of

an RDD or a DataSet is called. This call marks an RDD and
also starts the Hashing RDD mechanism to obtain a
directory path from hash transformation. If there is no
directory matched the hash value, it means that the system
never created that checkpoint. After the creation of the
directory content of the RDD will be stored inside of it. But
if the directory exists, the system will read the content as
the data of the RDD. In Fig. 2, when an RDD is created
using the parallelize method and is transformed with map
followed by an invocation of dtCheckpoint. The sub-system

1 val data = sc.parallelize(Array(1,2,3,4,5))
2 val distData = data.map(x => (x,1))
3 distData.dtCheckpoint()
4 distData.count()
5 distData.collect()

Fig. 1. Example of a dtCheckpoint call on an RDD

Fig. 2. The dtCheckpointing mechanism inside DTC

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1083

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

DtCheckpointing kicks in to mark points in the RDD for
later storing when action count is called.

We usually perform the test on a Spark Cluster with SBT,
which is an interactive build tool to help develop software
with Java or Scala. SBT allows us to write a build file using
Scala-based Domain Specific Language. It manages a
program dependency with Apache Ivy. With DTC, we
modify test commands of the SBT namely test, test-only,
and test-quick to support not only the local execution but
also in the real working cluster. We solve the problem of
ClassNotFoundException and NoClassDefFoundError by
making a fat jar via custom SBT task. So, we introduce
testOnCluster for testing every testcase, testOnlyOnCluster
to test a specific testcase, and testQuickOnCluster to test a
certain testcase which may be failed from last time, or never
tested or need re-computation. Our modification to SBT
allows the new mode of testing on the real cluster.

B. Hashing an RDD
Hash function is a one-way function which can be used to

check data modification. Eve one bit of data is changed this
function notices that modification. In this paper, we will
compare MD5, SHA-1 and SHA-256 because these
algorithms have various speed of hash and resource usage.

This technique of the DTC framework is able to track the
change of an RDD because the generated transformations.
So we can use this mechanism to detect modification of any
transformation back to the original RDD. When an action is
triggered, the DTC framework detects all RDD
dependencies and prepares a clean bytecode available by
the CleanF property of the RDD, following by preparing
other Java bytecode’s files which related to the
dependencies. In preparation stage, DTC uses ASM, a tool
to manage a Java bytecode [17], which Scala internally uses
it for the compilation mechanism. With a ASM, the DTC’s
hashing an RDD mechanism can access Java class file at
runtime and de-serialize them for reverse engineering
propose. DTC needs to remove some brittle information
such as LINENUMBER or serialVersionUID from a class
file. With this information filtered out, we can detect
changes of an RDD or DataSet even when the line numbers
have been changed.

The result of class file analysis in preparation stage, after
unnecessary dependencies was eliminated, these
dependencies will compute hash number and input data,
which the origin of an RDD will compute hash number also.
The computation is distributed computing with Spark’s
accumulator in the first level hash number computation will

compute hash number of input data for every partition, and
then collect and reorder result because unpredictable
computation time. After that, the DTC will compute hash
number of sorted hash number again. Fig. 3, illustrates the
steps of hashing mechanism please note that the
computation of input data is an option that can specify with
dtCheckpoint(true).

IV. EXPERIMENTS

A. Cluster configuration
The experiments presented in this paper have been

conducted on a Spark cluster consisted of 10 nodes. Each
node is an Intel Core i5-4570 Quad-core with 4 GB of
RAM. The drive node is an Intel Xeon E5-2650V3
Deca-core with 8GB of RAM. We use Apache Spark 2.0 for
the experiments along with Ceph as the distributed file
system over these 10 nodes. The Ceph storage is 10 TB.
The system architecture is illustrated in Fig. 4.

B. Methodology
For the experiments, we use a MapReduce program

Wordcount on 31 GB data dump of Wikipedia, Triangle
Counting with Google Web Graph [28], PageRank with
Google Web Graph and the last one is Pi Estimation with
one billion times. Each program with its input dataset is
shown in Table I. The Wordcount Program splits sentences
into array of words and counts them using both RDD and
Dataset (or DC in case of Spark-flow) with different
checkpoint mechanisms. We tested each checkpoint
mechanism 10 times continuously and measured both in
space and time perspectives. Moreover, we tested 5
additional with JVM termination. Then we started the JVM
again to test the recovery process of checkpoints.

 Table II shows the comparison of checkpoint mechanism
properties. If we do not use checkpoint, the system does not
have the fault tolerance property. If we use the original
Spark, it is not suitable for testing because its checkpoint
mechanism does not work well in the test environment. In
case of Spark-flow it does not work on the cluster
environment out-of-the-box. DTC, on the other hand, is
designed to address these problems in the testing

SET hash_array = empty array of string

IF (HASH_INPUT_DATA = true) THEN

 READ each data partition from (RDD or DataSet)

 COMPUTE hash of each data partition

 APPEND hashes to hash_array

ENDIF

Fig. 3. Pseudo codes of the mechanism of Hashing an RDD

Fig. 4. The cluster architecture used by the experiments

TABLE I
COMPUTATION PROGRAMS AND INPUT DATA OF EXPERIMENTAL

Program Input dataset
Wordcount 31 GB of Wikipedia
Triangle Counting 875,713 vertices and 5,105,039 edges
PageRank 875,713 vertices and 5,105,039 edges
Pi Estimation 109 times

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1084

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

environment. So, DTC provides the better environment to
support unit testing.

Table II shows a brief differentiation of comparison
method that we will experiment. That meant, if we have no
checkpoint it will lack failure tolerance, the Spark original
checkpoint insufficient to testing. The Spark-flow push
developer in more abstraction layer by create a higher level
of a DataSet and it not work on cluster naturally. In Table
III, we show the combination of all experimental
configurations. Accordingly, the DTC introduce to rectify
that plain.

We compared with MapReduce Wordcount algorithms
on Wikipedia 31 GB with separating each word from each
other with white space. And then, we filtered only word
occurred more than 10 million times, after that asserted
with the most word occurred. We consecutively repeated
these steps 10 cases and performed testing on 5 cases then
stopped the JVM. After that we re-run these 5 cases again
on both RDD and DataSet.

Next, we compared with Triangle Counting Program
which gathers the number of vertices whose has two
adjacent vertices with an edge between them. And then
perform PageRank Program to ranks members onto the
graph. Input of these programs came from Google Web
Graph. with 875,713 vertices and 5,105,039 edges, testing
on 5 cases then stop the JVM, after that re-run these 5 cases
again on RDD.

Finally, we compared the Pi Estimation program by using
Monte Carlo algorithm shows in (1) [29].

 (1)

The algorithm randomly generated two values which
represent to coordinate x and y of unit circle (so both x and
y are between -1 to 1). After that, trying to addition
between square magnitude of x and square magnitude of y
and if that result less than or equal to 1 will be count as fall
in the unit circle. That number will use to represent π/4, so

that we can multiply by 4 to roughly results Pi number. We
tested 5 cases then stop the JVM, after that we re-run these
5 cases again on RDD.

C. Experimental results (consecutively 10 cases)
From the experiments, we start discussing in the case of

no hashing input data, denoted not-hashinput by running
consecutively 10 cases. In this case the input will not be
verified by hashing functions before the program starts. We
assume that development and during the tests. The
experimental results are show in Fig. 5. At the first run,
DTC and the original-checkpoint mechanism are
all slow with insignificant difference. The
DTC-Java-SHA1 is slowest. It uses 636 seconds slightly

different from original-checkpoint. The
no-checkpoint configuration does not have this startup
overhead, so it run at 136 seconds on average. For the first
run, All DTC and the original-checkpoint are 4.7
times or slower than the no-checkpoint mechanism.
However, all DTC configurations are significantly faster in
the subsequence runs.

Fig. 6 shows the comparison between cases of applying
hash functions over input data to allow the system to detect

= 	
∬ 1 %& %'{)*+,*-.}

∬ 1%& %'{0.-),,-.}

= 	π4

ℙ	($%&'	()*ℎ),	-)%-./) =	2%/3	&4	*ℎ/	5,)*	-)%-./2%/3	&4	*ℎ/	6753%/

TABLE IV
CHECKPOINT’S STORAGE USAGE OF AN RDD

Storage usage Size Unit
No-checkpoint 0 MB
Spark original checkpoint 9.870 MB
DTC-Java-with-hash 0.987 MB
DTC-Java-without-hash 0.987 MB
DTC-Kryo-with-hash 0.501 MB
DTC-Kryo-without-hash 0.501 MB

TABLE V

CHECKPOINT’S STORAGE USAGE OF DATASET
Storage usage Size Unit

No-checkpoint 0 MB
Spark original checkpoint 9.860 MB
DTC-Avro-with-hash 0.987 MB
DTC-Avro-without-hash 0.987 MB
DTC-Parquet-with-hash 0.993 MB
DTC-Parquet-without-hash 0.993 MB
Spark-flow 9.930 MB

TABLE II
FEATURE COMPARISON BETWEEN CONFIGURATIONS

Method Failure
tolerance

More abstraction
layer

Prevent re-calculation
from beginning

Suitable for
Testing Cluster

No-Checkpoint No No No No Yes
Spark Original Yes No Yes Not Suitable Yes
Spark-flow Yes Yes Yes Yes No
DTC Yes No Yes Yes Yes

TABLE III
THE COMBINATION OF ALL EXPERIMENTAL CONFIGURATIONS

Configuration
Type Checkpoint Data Format Hash Algorithm

RDD DataSet DC Java Kryo Avro Parquet MD5 SHA1 SHA256
No-checkpoint √ √ - - - - - - - -
Spark Original √ √ - √ - - - - - -
Spark-flow - - √ - - - √ √ - -
DTC √ √ - √ √ √ √ √ √ √

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1085

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

changes of the input. It shows that DTC mechanisms are
slower than no-checkpoint and
original-checkpoint only in the first run. In the
subsequence runs, DTC mechanisms make the test s faster
than those run by no-checkpoint and
original-checkpoint. We found that
DTC-Kryo-SHA1 is slowest in the first run. It uses 908
seconds on average, while no-checkpoint uses 136
seconds and original-checkpoint use 636 seconds.
In the subsequence runs, DTC mechanism uses around 85
seconds on average. It is significantly faster that both
no-checkpoint and original-checkpoint, which
is 60%

In the first run with hash input, the fastest DTC
mechanism is DTC-Java-SHA256 it is 480% slower than
no-checkpoint and 24% slower than
original-checkpoint. In the subsequence runs, this
mechanism is 40% faster than no-checkpoint and
590% faster than original-checkpoint. Other cases
are in similar trends.

In case of DataSet, we found the similar trends as the
case of RDD. During the first run DTC mechanisms are
slowest, and significantly faster in subsequence runs. Fig. 7
and Fig. 8 show the comparison between checkpoint
mechanisms for the DataSet without hashing input and with
hashing input, respectively. We also include Spark-flow
in these experiments. We found that Spark-flow uses
752 seconds at the first run, while DTC-Parquet-MD5

uses 606 seconds, so DTC is 24% faster than
Spark-flow. In case of hash input data, DTC is 40%
slower than Spark-flow for the first run. However, in the
subsequence runs, DTC dramatically reduces time
spending, according aforementioned trends.

The mechanism of checkpoint usually requires use of
storage. The storage usage comparison is then presented in
Table IV. According to the table, DTC with Java serializer
uses the storage only one-tenth of those used by the original
Spark checkpoint. In case of DTC with Kryo, it uses storage
only 5% of the original-checkpoint.

This storage usages are similar for DataSet. According to
Table IV, DTC with Avro format uses only 10% of the
original storage. In case of DTC with Parquet format, it uses
only 11% of the original storage. Comparison of these
results with Spark-flow, we are roughly at the same
ration.

DTC is designed to allow re-usability of RDDs and
DataSets. It can traverse and detect change of the
dependency of each RDD or a DataSet. From the
experiments, we have found that DTC has a larger overhead
than the mechanism of the Original Spark only when a
testcases are in first run. When the testcases are in the later
runs, DTC makes them 5-6 times faster than running by the
Original Spark and Spark-flow. Moreover, DTC uses
disk space 8-9 times less than both implementations as
shown in Table IV and Table V.

Fig. 7. Comparison of checkpoint time of DataSet,including Spark-flow without
hashing inputs using the Wordcount program (10 cases consecutively).

Fig. 8. Comparison of checkpoint time of DataSet,including Spark-flow with
hashing inputs using the Wordcount program (10 cases consecutively).

Fig. 5. Comparison of checkpoint time of RDDs without hashing inputs using the
Wordcount program. (10 cases consecutively)

Fig. 6. Comparison of checkpoint time of RDDs with hashing inputs using the
Wordcount program. (10 cases consecutively)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1086

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

D. Experimental results (5 cases with JVM termination)
In this section, we discuss the experimental results in

case of running 5 cases consecutively, then stopping the
JVM, after that the experimental cases were re-run again.
Its behavior on different frameworks were observed.

Firstly, we discuss the result of the Wordcount program
on RDD. We found that DTC-Java-SHA256 used 542
seconds at the first run in case of running if before stopping
JVM, so DTC is 9% faster than original-checkpoint
which uses 596 seconds. After stopping JVM or closing the
program then re-running the test cases, DTC with all
settings used only few seconds to recover checkpoint, while
other frameworks used hundreds of second, as showed in
Fig 9. In Fig 9, the dashed line is the first running before
JVM terminating and the solid line is the second running
after restarting the JVM.

In the case of DataSet shown you in Fig 10, the dashed
line presents the first run of 5 cases. We found that the
original-checkpoint used 654 seconds, while
Spark-flow used 585 seconds. So, Spark-flow is 11%
faster than the original one. But DTC with the
DTC-Parquet-MD5 configuration, it used 595 seconds,
9% faster than original-checkpoint. However, in
the second run of 5 cases after restarting the JVM, as the
solid line, the results show that the
original-checkpoint used 697 seconds and
Spark-flow used 545 seconds, while DTC with any
configuration used just few seconds.

Fig. 11 shows the results comparing between frameworks
using Triange Counting Program, In the case of not
applying hashing to the input data, we showed that in Fig 11
(a), no-checkpoint, original-checkpoint and
DTC used almost the same amount of time for the first runs.

(a) (b)

Fig. 9. Comparison of checkpoint time of RDDs using the Wordcount program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

(a) (b)

Fig. 10. Comparison of checkpoint time of DataSet using the Wordcount program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1087

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

For the second runs after restarting the JVM, we found the
same trend as we were discussing earlier. DTC with all
configurations could reduce time for testing to just a few
seconds. Due to inputs were in the form of graph (vertices
and edges) as shown in Fig 11 (b), the underlying
mechanism of the Spark Framework tries to perform
operations efficiently by casting the partition of the input to
class ShippableVertexPartition. In the research work
reported in this paper, DTC does not import to support to
read this kind of data type. Fig 11 (b) shows that DTC with
all configurations could not help reduce time much. All
frameworks use the same amount of time processing the
data.

In Fig 12 shows the experimental results obtained from
running the PageRank program. PageRank is a program that

processes graphs. It used the same set of inputs as the
previous experimental, Triangle Counting. In Fig 12 (a), it
shows the results in the case of not applying hashing to the
input data. We found that in the first testcase of the first
run, the results of DTC with Java serialization, with either
MD5 or SHA1 as the hash function, used 204 seconds,
while the original-checkpoint used 214 seconds. In
this comparison, DTC could speed up by 4%. For the rest of
testcases, times spent by DTC is cut down to just a few
seconds. In Fig 12 (b), we also found the same problem as
of the Triangle Counting program. This was the result of
hashing input.

Finally, we discuss the results of the Pi Estimation
program. In Fig. 13, we showed tenor of comparing
frameworks. For the first testcase of the first run, we found

Fig. 11. Comparison of checkpoint time of RDDs using the Triangle Counting program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

 (a)

 (b)

Fig. 12. Comparison of checkpoint time of RDDs using PageRank Program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

 (a)

 (b)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1088

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

that without hashing inputs, the DTC-Kryo-SHA256 used
114 seconds, while the original-checkpoint used
135 seconds as shown in Fig 13 (a) DTC was 18% faster in
this case. In the consequent testcases, DTC could cut the
running time significantly.

In case of hashing inputs, we found the same trend as
shown in Fig 13 (b) as the previous results. DTC used
processing time almost the same as
original-checkpoint at the first testcase then
dramatically speed up by using only a few seconds for
testing each testcase. Moreover, the DTC framework can be
detected in case of random values, so that spark developers
can reproduce the input which causes software is issues.

V. CONCLUSIONS AND FUTURE WORK
The experimental results have obviously shown that DTC

is suitable for improving productivity for unit testing in Big
Data applications in terms of time consumption and storage
usage. We can perform testing for Big Data either on a local
or a cluster. DTC could trace change in testcases with
random values. Unfortunately, we found that DTC could
work well in case of graph algorithms such as Triangle
Counting or PageRank due to spark framework cast
partition of an input to ShippableVertexPartition. So that
one of limitation the DTC is input datatype. We are
researching in potential mechanisms which can be used for
increasing speed of testing and reducing storage usages
such as cache and persist. The JVM configurations are ones
of tuning parameter we are focusing. These subjects are
being studied.

REFERENCES
[1] W. Fan and A. Bifet, “Mining big data: current status, and forecast to

the future,” in ACM SIGKDD Explorations Newsletter, 2012, vol. 14,
pp. 1–5.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM - 50th anniversary
issue: 1958 - 2008, vol. 51, no. 1, pp. 107–113, 2008.

[3] B. Mark and B. Rajkumar, “Cluster Computing: The Commodity
Supercomputer,” in Software-Practice and Experience, 1999, vol.
29(6), pp. 551–576.

[4] “Welcome to ApacheTM Hadoop®!” [Online]. Available:
https://hadoop.apache.org/. [Accessed: 06-May-2017].

[5] H. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
“Map-reduce-merge: Simplified Relational Data Processing on Large
Clusters,” in Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2007, pp.
1029–1040.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
second USENIX Conference on Hot Topics in Cloud Computing, 2010,
pp. 10–10.

[7] M. A. Gulzar, M. Interlandi, T. Condie, and M. Kim, “BigDebug:
Interactive Debugger for Big Data Analytics in Apache Spark,” in
Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, New York, NY,
USA, 2016, pp. 1033–1

[8] A. Spillner, T. Linz, and H. Schaefer, Software testing foundations: a
study guide for the certified tester exam. Rocky Nook, Inc., 2014.

[9] “ScalaTest.” [Online]. Available: http://www.scalatest.org/.
[Accessed: 06-May-2017].

[10] “JUnit 5.” [Online]. Available: http://junit.org/junit5/. [Accessed:
06-May-2017].

[11] “holdenk/spark-testing-base,” GitHub. [Online]. Available:
https://github.com/holdenk/spark-testing-base. [Accessed:
06-May-2017].

[12] “[SPARK-2243] Support multiple SparkContexts in the same JVM -
ASF JIRA.” [Online]. Available:
https://issues.apache.org/jira/browse/SPARK-2243. [Accessed:
06-May-2017].

[13] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[14] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning spark:
lightning-fast big data analysis. O’Reilly Media, Inc., 2015.

[15] “JerryLead/SparkInternals,” GitHub. [Online]. Available:
https://github.com/JerryLead/SparkInternals. [Accessed:
07-May-2017].

Fig. 13. Comparison of checkpoint time of RDDs using Pi Estimation Program (5 cases with JVM termination)
while (a) without hashing inputs and (b) with hashing inputs.

 (a)

 (b)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1089

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

[16] H. Karau and R. Warren, High Performance Spark: Best Practices for
Scaling and Optimizing Apache Spark. O’Reilly Media, Incorporated,
2017.

[17] E. Kuleshov, “Using the ASM framework to implement common Java
bytecode transformation patterns,” Aspect-Oriented Software
Development, 2007.

[18] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation, 2012, pp. 2–2.

[19] “A Universally Unique IDentifier (UUID) URN Namespace,” A
Universally Unique IDentifier (UUID) URN Namespace. [Online].
Available: https://www.ietf.org/rfc/rfc4122.txt. [Accessed:
07-May-2017].

[20] S. Saxena, Getting Started with SBT for Scala. Packt Publishing, 2013.
[21] “Home | Apache Ivy TM.” [Online]. Available:

https://ant.apache.org/ivy/. [Accessed: 07-May-2017].
[22] “sbt/sbt-assembly,” GitHub. [Online]. Available:

https://github.com/sbt/sbt-assembly. [Accessed: 07-May-2017].
[23] “The Daily Build - write simple SBT task.” [Online]. Available:

http://blog.bstpierre.org/writing-simple-sbt-task. [Accessed:
07-May-2017].

[24] “bloomberg/spark-flow,” GitHub. [Online]. Available:
https://github.com/bloomberg/spark-flow. [Accessed: 08-May-2017].

[25] W. Zhu, H. Chen, and F. Hu, “ASC: Improving spark driver
performance with automatic spark checkpoint,” in Advanced
Communication Technology (ICACT), 2016 18th International
Conference on, 2016, pp. 607–611.

[26] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint:
batch-interactive data-intensive processing on transient servers,” in
Proceedings of the Eleventh European Conference on Computer
Systems, 2016, p. 6.

[27] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda,
“TR-Spark: Transient Computing for Big Data Analytics,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing,
New York, NY, USA, 2016, pp. 484–496.

[28] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. Internet Mathematics, 2009

[29] A. M. Johansen, L. Evers, "Monte Carlo Methods”, University of
Bristol, Department of Mathematics

Bhuridech Sudsee received B.Eng. in Computer
Engineering from Suranaree University of
Technology and B.Sc. in Information Technology
from Sukhothai Thammathirat Open University, both
in Thailand. Currently, he is studying a Master
degree in Computer Engineering. His fields of
research interests are high-performance computing,
distributed computing, data storage, Big Data
processing and MapReduce frameworks.

Chanwit Kaewkasi received his PhD in Computer
Science from the University of Manchester, United
Kingdom in 2010. He is currently an Assistant
Professor at School of Computer Engineering,
Suranaree University of Technology, Thailand. Dr.
Kaewkasi is actively researching in the areas of
Low-Power Clusters, Cloud Computing, Big Data
and Software Container Technologies.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1090

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	III. DESIGN AND IMPLEMENTATION
	IV. EXPERIMENTS
	V. CONCLUSIONS AND FUTURE WORK
	REFERENCES

