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Abstract— The advancement of storage technologies and 

the fast-growing number of generated data have made the 
world moved into the Big Data era. In this past, we had many 
data mining tools but they are inadequate to process 
Data-Intensive Scalable Computing workloads. The Apache 
Spark framework is a popular tool designed for Big Data 
processing. It leverages in-memory processing techniques that 
make Spark up to 100 times faster than Hadoop. Testing this 
kind of Big Data program is time consuming. Unfortunately, 
developers lack a proper testing framework, which cloud help 
assure quality of their data-intensive processing programs 
while saving development time and storage usages. 

We propose Distributed Test Checkpointing (DTC) for 
Apache Spark. DTC applies unit testing to the Big Data 
software development life cycle and reduce time spent for 
each testing loop with checkpoint. By using checkpoint 
technique, DTC keeps quality of Big Data processing software 
while keeps an inexpensive testing cost by overriding original 
Spark mechanism so that developers no pain to learn how to 
use DTC. Moreover, DTC has no addition abstraction layers. 
Developers can upgrade to a new version of Spark seamlessly. 
From the experimental results, we found that in the 
subsequence rounds of unit testing, DTC dramatically speed 
the testing time up to 450-500% faster. In case of storage, 
DTC can cut unnecessary data off and make the storage 19.7 
times saver than the original checkpoint of Spark. DTC can be 
used either in case of JVM termination or testing with random 
values. 
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I. INTRODUCTION 
HE increasing and diversity of electronic devices, 
sensors, IoT devices and the fast-growing numbers of 

Internet users have been generating tremendous amount of 
data recently. They are not only the large amount of data 
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but their structures are also complex as well. This 
complexity makes the traditional data mining tools 
inadequate to manage today’s data [1]. 

The MapReduce [2] programming model has induced the 
development of many frameworks such as Apache Hadoop 
[4], Map-reduce-merge [5] and Apache Spark [6], which 
aim to process data intensive tasks. Developers only need to 
rewrite their programming logic in the form of map and 
reduce functions in order to process data on a MapReduce 
framework. These functions will be automatically managed 
by the framework’s default configuration. This mechanism 
makes the MapReduce framework easy to use. At its 
simplest form, a MapReduce program usually starts by a 
map function creating key/value pairs from the input. These 
intermediate key/value pairs are then passed to a reduce 
function to produce the final results. The MapReduce 
model is parallel by nature. It is designed to allow 
developers to run MapReduce programs for high 
performance computing jobs using a commodity cluster, 
built from low-cost hardwares. With this kind of the cluster 
architecture, we can handle massive amount of data and 
process them on numerous cluster nodes without a single 
point of failure [3]. 

Although the MapReduce model is easy to use for 
software development, but it is quite tricky to test software 
written by the MapReduce model. Software testing is a vital 
part of the development process. Testing is usually 25-50% 
of the overall cost [8]. We found that the current 
mechanism is not enough to assure quality for Big Data 
processing programs. Unit testing is a software testing 
technique which properly leads to better levels of quality. 
However, tools like Scalatest[9] or jUnit[10] have their own 
limitations to use with a MapReduce framework like Spark. 
For example, SparkContext and SparkSession objects must 
be instantiated only once for each running Java Virtual 
Machine (JVM) to avoid unexpected testing results [12]. 
Spark-testing-base [11] also does not have a testing 
mechanism for Spark. Without modification, it cannot work 
on a Spark cluster because if its inability to distribute class 
files across worker nodes. There aforementioned techniques 
are not suitable for Spark simply because they are not 
designed to test programs that distributelly process large 
amount of data. 

Test-driven development (TDD) is a software 
development technique that helps developers to focus on 
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writing a specific test at a time. It additionally allows code 
improvement while preserving correctness according to the 
specification. TDD workflow consists of the following 
steps, (1) writing a minimum test (2) writing codes to just 
make the test passed, and (3) refactoring to remove 
unnecessary codes while still making the current test passed 
[13]. We call these steps a TDD workflow herein this paper. 
Applying TDD to data intensive programs is difficult due to 
the nature of workloads, which need to process on a cluster. 
So, developers require a special tool to help shorten each 
loop of the TDD workflow. 

Spark has cache, persist and checkpoint methods to help 
mitigate job failure. These mechanisms however do not 
help software testing process much. The main reason is that 
a cluster state cached or persisted by them does not survive 
across runs of JVMs. A cluster state saved by the 
checkpoint method does survive on disk but unfortunately it 
cannot be retrieved back by a newly started JVM [14, 15]. 

In this paper, we present Distributed Test Checkpointing 
(DTC), a technique that leverages the checkpoint technique 
to enhance software testing for data intensive jobs. With 
DTC, developers can increase productivity when testing 
their software on a distributed cluster repeatedly. DTC 
applied a hash function on each data partition of a Resilient 
Distributed Datasets (RDD) [18] to use an identifier. 
Modification of an RDD or a Dataset can be traced by the 
hashed number. The testcase that uses the RDD is also 
hashed at the bytecode level. Combining these techniques, 
DTC is found to reduce testing time and storage required by 
checkpointing significantly compared to the original 
Spark’s checkpointing technique. 

The remaining of this paper is organized as followed. 
Section II discusses related works, including Apache Spark. 
Section III presents the design and internal mechanism of 
DTC. Section IV presents the system architecture of the 
cluster used by our experiments, and the experimental 
results. This paper then ends with conclusion and future 
works in Section V. 

II. BACKGROUND AND RELATED WORK 

A. Apache Spark 
Spark is a data intensive processing framework focusing 

on in-memory data processing [6], which is implemented in 
the form of Resilient Distributed Dataset (RDD) [18]. RDD 
is designed to take care of the data flow and handle the 
processing mechanism. An RDD could be created using one 
of the following methods (1) reading data from file (2) 
parallelizing collection in the driver program (3) 
transforming from another RDD (4) and by transforming 
back from a persisted RDD [6]. An RDD comprises with 
two kinds of command, transformations and actions. A 
transformation command transforms an RDD to another 
RDD. These commands are map, filter and groupByKey, for 
example. Another set of commands are actions, which are 
collect and count, for example. An RDD keeps all previous 
transformation inside itself. This direct acyclic graph of 
transformation is known as lineage. The beginning of the 
real computation occurs only when an action is called. This 
is the lazy evaluation nature of Spark. 

A mechanism for failure recovery that helps an RDD to 
resume the processing without re-computation from scratch 
are methods such as cache, persist and checkpoint. The 
cache method uses persistency at MEMORY_ONLY, while 
the persist method has several levels of persistency. The 
checkpoint method, in contrast, uses the technique which 
save data onto a reliable storage, such as HDFS, Amazon 
S3 or Ceph. An RDD is usually cached or persisted during 
its computation to avoid re-computation previous steps 
[15]. 

The checkpoint technique is also applicable for Spark 
Streaming because it truncates the internal lineage, so the 
RDD does not need to knowledge of its parent. However, 
this mechanism is not designed for software testing. The 
re-computation is still required to start from the beginning 
when the testcase is re-run. The rerunning of the testcase 
destroys a Block Manager inside an Executor. This Block 
Manage is responsible for keeping cached and persisted 
data. The new Driver program and the testcase therefore is 
not able to access the location of checkpoints. 

In addition, Spark has introduced the Dataframe API in 
1.3 and Dataset in 1.6. Both abstractions can be used 
interchangeably because Dataset[Row] is the type safer 
version of DataFrame. A dataset is also convertible to an 
RDD. In the case of DTC proposed in this paper, we read 
and write data directly without triggering any computation 
of related RDDs. 

B. Debugging framework for Spark 
A technique used to improve quality of the software is 

debugging. Developers usually debug to observe certain set 
of variables they are interested. However, in the 
Data-intensive Scalable Computing (DISC), the debugging 
process is difficult as data are computed distributedly on a 
cluster. 

BigDebug [7] is a tool designed to helps Spark’s 
developers deal with debugging a Big Data program. There 
is a downside that the tool requires user’s interaction during 
the debugging process. Those interactions make the 
debugging more difficult than those of normal programs 
because the Big Data programs are distributed by nature. 
Moreover, a BigDebug program cannot tackle the problem 
when the RDD being debug requires changes. The whole 
debugging process needs to start over in that case. In case of 
the developer changing codes on-the-fly, the RDD will 
become in-consistent as some partitions of the RDD has 
been processed by the old version of codes, while other 
partitions will be processed by the new codes. BigDebug 
support Spark up to 1.2.1 as the time writing. 

C. Checkpoint implementation for Spark 
Researchers have been employed the checkpoint of Spark 

in many ways to improve its efficiency, as follows. 
Flint [26] was created atop the original checkpoint 

technique of Spark. It aims at applying checkpoint and store 
their data on transient instances to reduce the VM usage 
cost. A transient instance in a kind of low-cost computing 
unit, which can be recalled anytime by its cloud provider. 
Flint solves this problem by writing an RDD’s partitions to 
an HDFS, which is operated on on-demand instances. We 
found that this implementation lacks a mechanism to 
prevent re-calculation when JVM is terminated. In addition, 
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their checkpoint will be saved automatically so developers 
need to prepare a huge amount of space in order to prevent 
the full of storage, which can lead to the failure of the 
whole system. 

TR-Spark [27] implements the similar approach as Flint. 
The difference is that TR-Spark allows fined-granularity 
checkpoints at task-level. By leveraging this level of 
checkpoints, the storage usage cloud be reduced in 
comparison to checkpoint the whole RDD. However, 
TR-Spark makes it difficult to use as developers need to 
collect the information of VM failure to let it know the 
failure probability. TR-Spark does not deal with changes of 
the Driver program. 

Automatic Spark Checkpointing (ASC) [25] was designed 
to help analyze the trade-off between RDD checkpointing 
and its restore. ASC performs this computation by 
estimating them from an RDD lineage. Nevertheless, this 
technique does not support checkpoint across JVM 
termination. It also lacks the ability to recognize the 
similarity or identity of an RDD. 

Spark-flow [24] aims to mitigate the effect of JVM 
termination for checkpoint restoration. It makes use of 
Distributed Collection (DC), a library similar to the Dataset 
API. DC is able to analyze an RDD at the bytecode level 
with ASM. It can identify the location of checkpoint calls, 
inside an anonymous function. It also uses the MD5 hash 
function to help detect changes at the bytecode level. 
However, DC has some downside as the following. First, 
when calling checkpoint on a DC, the data is re-read again 
after checkpointing. Second, when restoring from 
checkpoint, the action count will be triggered, so the 
re-computation kicks in. Finally, computation is mainly 
done on the Driver machine, so the mechanism is actually 
not distributed. This often causes Out-of-Memory exception 
inside the Driver program and it stops working.  

 

III. DESIGN AND IMPLEMENTATION 
Spark stores the RDD transformations in the form of a 

lineage graph a.k.a. the logical execution plan. When an 
action is triggered for a certain RDD, its job will be 
submitted to the DAG Scheduler to transform the RDD’s 
lineage into a directed acyclic graph, whose a vertex is an 

RDD partition and edge is a transformation. After that the 
staging process will be kicked in. This staging process will 
be started from the final action going backwards to the 
beginning of the RDD. However, in the real execution, the 
process will be performed from the beginning of the RDD 
forwardly to the final action. After the staging, the system 
obtains a set of Stages and Tasks. 

A checkpoint of an RDD however must be done before 
the first action is performed. From the source code in the 
Fig. 1, when a program starts to process an array of integer 
1 to 5, the array will be passed as a parameter of method 
parallelize of class SparkContext. This result in a 
ParallelCollectionRDD stored in variable data. At line 2, 
each element from the data RDD is mapped with 1 using 
the map method as a key/value pair. The result is a 
MapPartitionsRDD stored in variable distData. At line 3, 
method dtCheckpoint is invoked. Please note that the 
original Spark and DTC both use the lazy evaluation 
mechanism, this means that the checkpoint method only 
marks at a certain point over the DAG, where checkpoints 
will happen there. At line 4, command distData.count() is 
the first action. When this first action is triggered, the 
checkpoint is not yet created.  The computation then is 
started from the beginning of the RDD to the mark point. 
After that, the checkpoint is stored at the first upper 
directory level as a hash value generated by the mechanism 
of DTC. At the line no 5, method distData.collect() is 
invoked as the second action. The system will then check 
backwards from the action to the beginning of the RDD. 
This time the system will find a checkpoint already existed 
because there is a directory whose name matches with the 
hash. When the DAG Scheduler starts to transform the 
lineage, it uses the data directly from the checkpoint 
without re-computation. Please also note that action count() 
and collect() belong to the different jobs. The result 
computed by count() will not be included as an input for 
collect(), despite their order of execution. 

In Scala, it allows us to implement a new feature for a 
class by creating an Implicit Class then mixes it in to the 
existing classes, like RDD or Dataset. The DTC 
mechanisms proposed in this paper are implemented using 
that technique. With DTC as an Implicit Class, developers 
could still use all existing properties and behavior of an 
RDD, while having an additional method from DTC. 
Developers are also able to upgrade the Spark framework to 
the newer versions without rewriting this mechanism. DTC 
is more suitable for testing than Spark-flow, which has 
many abstraction layers. These abstraction makes it 
difficult to enhance capability of Spark-flow.  

A. DtCheckpointing 
This mechanism works when the method dtCheckpoint of 

an RDD or a DataSet is called. This call marks an RDD and 
also starts the Hashing RDD mechanism to obtain a 
directory path from hash transformation. If there is no 
directory matched the hash value, it means that the system 
never created that checkpoint. After the creation of the 
directory content of the RDD will be stored inside of it. But 
if the directory exists, the system will read the content as 
the data of the RDD. In Fig. 2, when an RDD is created 
using the parallelize method and is transformed with map 
followed by an invocation of dtCheckpoint. The sub-system 

1 val data = sc.parallelize(Array(1,2,3,4,5)) 
2 val distData = data.map(x => (x,1)) 
3 distData.dtCheckpoint() 
4 distData.count()  
5 distData.collect() 

Fig. 1. Example of a dtCheckpoint call on an RDD 

Fig. 2. The dtCheckpointing mechanism inside DTC 

 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 1, January 2018 1083

Copyright ⓒ 2018 GiRI (Global IT Research Institute) 



 

DtCheckpointing kicks in to mark points in the RDD for 
later storing when action count is called. 

We usually perform the test on a Spark Cluster with SBT, 
which is an interactive build tool to help develop software 
with Java or Scala. SBT allows us to write a build file using 
Scala-based Domain Specific Language. It manages a 
program dependency with Apache Ivy. With DTC, we 
modify test commands of the SBT namely test, test-only, 
and test-quick to support not only the local execution but 
also in the real working cluster. We solve the problem of 
ClassNotFoundException and NoClassDefFoundError by 
making a fat jar via custom SBT task. So, we introduce 
testOnCluster for testing every testcase, testOnlyOnCluster 
to test a specific testcase, and testQuickOnCluster to test a 
certain testcase which may be failed from last time, or never 
tested or need re-computation. Our modification to SBT 
allows the new mode of testing on the real cluster. 

B. Hashing an RDD 
Hash function is a one-way function which can be used to 

check data modification. Eve one bit of data is changed this 
function notices that modification. In this paper, we will 
compare MD5, SHA-1 and SHA-256 because these 
algorithms have various speed of hash and resource usage. 

This technique of the DTC framework is able to track the 
change of an RDD because the generated transformations. 
So we can use this mechanism to detect modification of any 
transformation back to the original RDD. When an action is 
triggered, the DTC framework detects all RDD 
dependencies and prepares a clean bytecode available by 
the CleanF property of the RDD, following by preparing 
other Java bytecode’s files which related to the 
dependencies. In preparation stage, DTC uses ASM, a tool 
to manage a Java bytecode [17], which Scala internally uses 
it for the compilation mechanism. With a ASM, the DTC’s 
hashing an RDD mechanism can access Java class file at 
runtime and de-serialize them for reverse engineering 
propose. DTC needs to remove some brittle information 
such as LINENUMBER or serialVersionUID from a class 
file. With this information filtered out, we can detect 
changes of an RDD or DataSet even when the line numbers 
have been changed. 

The result of class file analysis in preparation stage, after 
unnecessary dependencies was eliminated, these 
dependencies will compute hash number and input data, 
which the origin of an RDD will compute hash number also. 
The computation is distributed computing with Spark’s 
accumulator in the first level hash number computation will 

compute hash number of input data for every partition, and 
then collect and reorder result because unpredictable 
computation time. After that, the DTC will compute hash 
number of sorted hash number again. Fig. 3, illustrates the 
steps of hashing mechanism please note that the 
computation of input data is an option that can specify with 
dtCheckpoint(true). 

IV. EXPERIMENTS 

A. Cluster configuration 
The experiments presented in this paper have been 

conducted on a Spark cluster consisted of 10 nodes. Each 
node is an Intel Core i5-4570 Quad-core with 4 GB of 
RAM. The drive node is an Intel Xeon E5-2650V3 
Deca-core with 8GB of RAM. We use Apache Spark 2.0 for 
the experiments along with Ceph as the distributed file 
system over these 10 nodes. The Ceph storage is 10 TB. 
The system architecture is illustrated in Fig. 4. 

B. Methodology 
For the experiments, we use a MapReduce program 

Wordcount on 31 GB data dump of Wikipedia, Triangle 
Counting with Google Web Graph [28], PageRank with 
Google Web Graph and the last one is Pi Estimation with 
one billion times. Each program with its input dataset is 
shown in Table I. The Wordcount Program splits sentences 
into array of words and counts them using both RDD and 
Dataset (or DC in case of Spark-flow) with different 
checkpoint mechanisms. We tested each checkpoint 
mechanism 10 times continuously and measured both in 
space and time perspectives. Moreover, we tested 5 
additional with JVM termination. Then we started the JVM 
again to test the recovery process of checkpoints. 

 Table II shows the comparison of checkpoint mechanism 
properties. If we do not use checkpoint, the system does not 
have the fault tolerance property. If we use the original 
Spark, it is not suitable for testing because its checkpoint 
mechanism does not work well in the test environment. In 
case of Spark-flow it does not work on the cluster 
environment out-of-the-box. DTC, on the other hand, is 
designed to address these problems in the testing 

SET hash_array = empty array of string 

IF (HASH_INPUT_DATA = true) THEN 

  READ each data partition from (RDD or DataSet) 

  COMPUTE hash of each data partition 

  APPEND hashes to hash_array 

ENDIF 

Fig. 3. Pseudo codes of the mechanism of Hashing an RDD 

 

Fig. 4. The cluster architecture used by the experiments  

TABLE I 
COMPUTATION PROGRAMS AND INPUT DATA OF EXPERIMENTAL 

Program Input dataset 
Wordcount 31 GB of Wikipedia 
Triangle Counting 875,713 vertices and 5,105,039 edges 
PageRank 875,713 vertices and 5,105,039 edges 
Pi Estimation 109 times 
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environment. So, DTC provides the better environment to 
support unit testing.  

Table II shows a brief differentiation of comparison 
method that we will experiment. That meant, if we have no 
checkpoint it will lack failure tolerance, the Spark original 
checkpoint insufficient to testing. The Spark-flow push 
developer in more abstraction layer by create a higher level 
of a DataSet and it not work on cluster naturally. In Table 
III, we show the combination of all experimental 
configurations. Accordingly, the DTC introduce to rectify 
that plain. 

We compared with MapReduce Wordcount algorithms 
on Wikipedia 31 GB with separating each word from each 
other with white space. And then, we filtered only word 
occurred more than 10 million times, after that asserted 
with the most word occurred. We consecutively repeated 
these steps 10 cases and performed testing on 5 cases then 
stopped the JVM. After that we re-run these 5 cases again 
on both RDD and DataSet. 

Next, we compared with Triangle Counting Program 
which gathers the number of vertices whose has two 
adjacent vertices with an edge between them. And then 
perform PageRank Program to ranks members onto the 
graph. Input of these programs came from Google Web 
Graph. with 875,713 vertices and 5,105,039 edges, testing 
on 5 cases then stop the JVM, after that re-run these 5 cases 
again on RDD. 

Finally, we compared the Pi Estimation program by using 
Monte Carlo algorithm shows in (1) [29]. 

 
 
 
 
 
 
 

 (1)   
 

The algorithm randomly generated two values which 
represent to coordinate x and y of unit circle (so both x and 
y are between -1 to 1). After that, trying to addition 
between square magnitude of x and square magnitude of y 
and if that result less than or equal to 1 will be count as fall 
in the unit circle. That number will use to represent π/4, so 

that we can multiply by 4 to roughly results Pi number. We 
tested 5 cases then stop the JVM, after that we re-run these 
5 cases again on RDD. 

C. Experimental results (consecutively 10 cases) 
From the experiments, we start discussing in the case of 

no hashing input data, denoted not-hashinput by running 
consecutively 10 cases. In this case the input will not be 
verified by hashing functions before the program starts. We 
assume that development and during the tests. The 
experimental results are show in Fig. 5. At the first run, 
DTC and the original-checkpoint mechanism are 
all slow with insignificant difference. The 
DTC-Java-SHA1 is slowest. It uses 636 seconds slightly 

different from original-checkpoint. The 
no-checkpoint configuration does not have this startup 
overhead, so it run at 136 seconds on average. For the first 
run, All DTC and the original-checkpoint are 4.7 
times or slower than the no-checkpoint mechanism. 
However, all DTC configurations are significantly faster in 
the subsequence runs.  

Fig. 6 shows the comparison between cases of applying 
hash functions over input data to allow the system to detect 

= 	
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TABLE IV 
CHECKPOINT’S STORAGE USAGE OF AN RDD 

Storage usage Size Unit 
No-checkpoint 0 MB 
Spark original checkpoint 9.870 MB 
DTC-Java-with-hash 0.987 MB 
DTC-Java-without-hash 0.987 MB 
DTC-Kryo-with-hash 0.501 MB 
DTC-Kryo-without-hash 0.501 MB 

 
TABLE V 

CHECKPOINT’S STORAGE USAGE OF DATASET 
Storage usage Size Unit 

No-checkpoint 0 MB 
Spark original checkpoint 9.860 MB 
DTC-Avro-with-hash 0.987 MB 
DTC-Avro-without-hash 0.987 MB 
DTC-Parquet-with-hash 0.993 MB 
DTC-Parquet-without-hash 0.993 MB 
Spark-flow 9.930 MB 
 

TABLE II 
FEATURE COMPARISON BETWEEN CONFIGURATIONS 

Method Failure 
tolerance 

More abstraction 
layer 

Prevent re-calculation 
from beginning 

Suitable for 
Testing Cluster 

No-Checkpoint No No No No Yes 
Spark Original Yes No Yes Not Suitable Yes 
Spark-flow Yes Yes Yes Yes No 
DTC Yes No Yes Yes Yes 

 

TABLE III 
THE COMBINATION OF ALL EXPERIMENTAL CONFIGURATIONS 

Configuration 
Type Checkpoint Data Format Hash Algorithm 

RDD DataSet DC Java Kryo Avro Parquet MD5 SHA1 SHA256 
No-checkpoint √ √ - - - - - - - - 
Spark Original √ √ - √ - - - - - - 
Spark-flow - - √ - - - √ √ - - 
DTC √ √ - √ √ √ √ √ √ √ 
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changes of the input. It shows that DTC mechanisms are 
slower than no-checkpoint and 
original-checkpoint only in the first run. In the 
subsequence runs, DTC mechanisms make the test s faster 
than those run by no-checkpoint and 
original-checkpoint. We found that 
DTC-Kryo-SHA1 is slowest in the first run. It uses 908 
seconds on average, while no-checkpoint uses 136 
seconds and original-checkpoint use 636 seconds. 
In the subsequence runs, DTC mechanism uses around 85 
seconds on average. It is significantly faster that both 
no-checkpoint and original-checkpoint, which 
is 60%  

In the first run with hash input, the fastest DTC 
mechanism is DTC-Java-SHA256 it is 480% slower than 
no-checkpoint and 24% slower than 
original-checkpoint. In the subsequence runs, this 
mechanism is 40% faster than no-checkpoint and 
590% faster than original-checkpoint. Other cases 
are in similar trends. 

In case of DataSet, we found the similar trends as the 
case of RDD. During the first run DTC mechanisms are 
slowest, and significantly faster in subsequence runs. Fig. 7 
and Fig. 8 show the comparison between checkpoint 
mechanisms for the DataSet without hashing input and with 
hashing input, respectively. We also include Spark-flow 
in these experiments. We found that Spark-flow uses 
752 seconds at the first run, while DTC-Parquet-MD5 

uses 606 seconds, so DTC is 24% faster than 
Spark-flow. In case of hash input data, DTC is 40% 
slower than Spark-flow for the first run. However, in the 
subsequence runs, DTC dramatically reduces time 
spending, according aforementioned trends.  

The mechanism of checkpoint usually requires use of 
storage. The storage usage comparison is then presented in 
Table IV. According to the table, DTC with Java serializer 
uses the storage only one-tenth of those used by the original 
Spark checkpoint. In case of DTC with Kryo, it uses storage 
only 5% of the original-checkpoint. 

This storage usages are similar for DataSet. According to 
Table IV, DTC with Avro format uses only 10% of the 
original storage. In case of DTC with Parquet format, it uses 
only 11% of the original storage. Comparison of these 
results with Spark-flow, we are roughly at the same 
ration. 

DTC is designed to allow re-usability of RDDs and 
DataSets. It can traverse and detect change of the 
dependency of each RDD or a DataSet. From the 
experiments, we have found that DTC has a larger overhead    
than the mechanism of the Original Spark only when a 
testcases are in first run. When the testcases are in the later 
runs, DTC makes them 5-6 times faster than running by the 
Original Spark and Spark-flow. Moreover, DTC uses 
disk space 8-9 times less than both implementations as 
shown in Table IV and Table V. 

Fig. 7. Comparison of checkpoint time of DataSet,including Spark-flow without 
hashing inputs using the Wordcount program (10 cases consecutively). 

 

 
 

Fig. 8. Comparison of checkpoint time of DataSet,including Spark-flow with 
hashing inputs using the Wordcount program (10 cases consecutively). 

 

Fig. 5. Comparison of checkpoint time of RDDs without hashing inputs using the 
Wordcount program. (10 cases consecutively) 

Fig. 6. Comparison of checkpoint time of RDDs with hashing inputs using the 
Wordcount program. (10 cases consecutively) 
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D. Experimental results (5 cases with JVM termination) 
In this section, we discuss the experimental results in 

case of running 5 cases consecutively, then stopping the 
JVM, after that the experimental cases were re-run again. 
Its behavior on different frameworks were observed. 

Firstly, we discuss the result of the Wordcount program 
on RDD. We found that DTC-Java-SHA256 used 542 
seconds at the first run in case of running if before stopping 
JVM, so DTC is 9% faster than original-checkpoint 
which uses 596 seconds. After stopping JVM or closing the 
program then re-running the test cases, DTC with all 
settings used only few seconds to recover checkpoint, while 
other frameworks used hundreds of second, as showed in 
Fig 9. In Fig 9, the dashed line is the first running before 
JVM terminating and the solid line is the second running 
after restarting the JVM. 

In the case of DataSet shown you in Fig 10, the dashed 
line presents the first run of 5 cases. We found that the 
original-checkpoint used 654 seconds, while 
Spark-flow used 585 seconds. So, Spark-flow is 11% 
faster than the original one. But DTC with the 
DTC-Parquet-MD5 configuration, it used 595 seconds, 
9% faster than original-checkpoint. However, in 
the second run of 5 cases after restarting the JVM, as the 
solid line, the results show that the 
original-checkpoint used 697 seconds and 
Spark-flow used 545 seconds, while DTC with any 
configuration used just few seconds. 

Fig. 11 shows the results comparing between frameworks 
using Triange Counting Program, In the case of not 
applying hashing to the input data, we showed that in Fig 11 
(a), no-checkpoint, original-checkpoint and 
DTC used almost the same amount of time for the first runs. 

(a) (b) 

Fig. 9. Comparison of checkpoint time of RDDs using the Wordcount program (5 cases with JVM termination) 
while (a) without hashing inputs and (b) with hashing inputs. 

 

(a) (b) 

Fig. 10. Comparison of checkpoint time of DataSet using the Wordcount program (5 cases with JVM termination) 
while (a) without hashing inputs and (b) with hashing inputs. 
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For the second runs after restarting the JVM, we found the 
same trend as we were discussing earlier. DTC with all 
configurations could reduce time for testing to just a few 
seconds. Due to inputs were in the form of graph (vertices 
and edges) as shown in Fig 11 (b), the underlying 
mechanism of the Spark Framework tries to perform 
operations efficiently by casting the partition of the input to 
class ShippableVertexPartition. In the research work 
reported in this paper, DTC does not import to support to 
read this kind of data type. Fig 11 (b) shows that DTC with 
all configurations could not help reduce time much. All 
frameworks use the same amount of time processing the 
data.  

In Fig 12 shows the experimental results obtained from 
running the PageRank program. PageRank is a program that 

processes graphs. It used the same set of inputs as the 
previous experimental, Triangle Counting. In Fig 12 (a), it 
shows the results in the case of not applying hashing to the 
input data. We found that in the first testcase of the first 
run, the results of DTC with Java serialization, with either 
MD5 or SHA1 as the hash function, used 204 seconds, 
while the original-checkpoint used 214 seconds. In 
this comparison, DTC could speed up by 4%. For the rest of 
testcases, times spent by DTC is cut down to just a few 
seconds. In Fig 12 (b), we also found the same problem as 
of the Triangle Counting program. This was the result of 
hashing input. 

Finally, we discuss the results of the Pi Estimation 
program. In Fig. 13, we showed tenor of comparing 
frameworks. For the first testcase of the first run, we found 

Fig. 11. Comparison of checkpoint time of RDDs using the Triangle Counting program (5 cases with JVM termination) 
while (a) without hashing inputs and (b) with hashing inputs. 

 

 (a)  

 

 (b)  

 

Fig. 12. Comparison of checkpoint time of RDDs using PageRank Program (5 cases with JVM termination) 
while (a) without hashing inputs and (b) with hashing inputs. 

 

 (a)  

 

 (b)  
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that without hashing inputs, the DTC-Kryo-SHA256 used 
114 seconds, while the original-checkpoint used 
135 seconds as shown in Fig 13 (a) DTC was 18% faster in 
this case. In the consequent testcases, DTC could cut the 
running time significantly. 

In case of hashing inputs, we found the same trend as 
shown in Fig 13 (b) as the previous results. DTC used 
processing time almost the same as 
original-checkpoint at the first testcase then 
dramatically speed up by using only a few seconds for 
testing each testcase. Moreover, the DTC framework can be 
detected in case of random values, so that spark developers 
can reproduce the input which causes software is issues. 

V. CONCLUSIONS AND FUTURE WORK 
The experimental results have obviously shown that DTC 

is suitable for improving productivity for unit testing in Big 
Data applications in terms of time consumption and storage 
usage. We can perform testing for Big Data either on a local 
or a cluster. DTC could trace change in testcases with 
random values. Unfortunately, we found that DTC could 
work well in case of graph algorithms such as Triangle 
Counting or PageRank due to spark framework cast 
partition of an input to ShippableVertexPartition. So that 
one of limitation the DTC is input datatype. We are 
researching in potential mechanisms which can be used for 
increasing speed of testing and reducing storage usages 
such as cache and persist. The JVM configurations are ones 
of tuning parameter we are focusing. These subjects are 
being studied.  
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