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Abstract—In recent years, most of the industries 

promoting their products based on the quality certification 

they received on the products. The traditional way of 

assessing the product quality is time consuming, however 

with the invent of machine learning techniques the 

processes has become more efficient and consumed less 

time than before. In this paper we have explored, some of 

the machine learning techniques to assess the quality of 

wine based on the attributes of wine that depends on 

quality. We have used white wine and red wine quality 

dataset for this research work. We have used different 

feature selection technique such as genetic algorithm (GA) 

based feature selection and simulated annealing (SA) 

based feature selection to check the prediction 

performance. We have used different performance 

measure such as accuracy, sensitivity, specificity, positive 

predictive value, negative predictive value for comparison 

using different feature sets and different supervised 

machine learning techniques. We have used nonlinear, 

linear and probabilistic classifiers. We have found that 

feature selection-based feature sets able to provide better 

prediction than considering all the features for 

performance prediction.  
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We have found accuracy ranging from 95.23% to 

98.81% with different feature sets. This analysis will help 

the industries to access the quality of the products at less 

time and more efficient way. 
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I.  INTRODUCTION  

In recent years there is a modest increase in the wine 
consumption as it has been found that wine consumption has a 
positive correlation to the heart rate variability [1]. With the 
increase in the consumption wine industries are looking for 
alternatives to produce good quality wine at less cost. Different 
wines have different purposes. Although most of the chemicals 
are same for different type of wine based on the chemical tests, 
the quantity of each chemicals have different level of 
concentration for different type of wine. These days it is really 
important to classify different wine for quality assurance [2]. In 
the past due to lack of technological resources it become 
difficult for most of the industries to classify the wines based 
on the chemical analysis as it takes lot of time and also need 
more money. These days with the advent of the machine 
learning techniques it is possible to classify the wines as well 
as it is possible to figure out the importance of each chemical 
analysis parameters in the wine and which one to ignore for 
reduction of cost. The performance comparison with different 
feature sets will also help to classify it in a more distinctive 
way. In this paper an intelligent approach is proposed by 
considering genetic algorithm (GA) based feature selection as 
well as simulated annealing-based feature selection considering 
the nonlinear classifiers, linear classifiers and probabilistic 
classifiers to predict the quality in red wine as well as the white 
wine. 

The structure of the paper is organized as follows: Section 
II presents the past work related to this field. Section 3 
describes about the methodologies used for this research work. 
Section 4 describes about the result of feature selection as well 
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as the result of classification. Section 5 describes about the 
conclusion and future work. 

II. RELATED WORKS 

In the past few attempts have been made to use different 
machine learning approaches and feature selection techniques 
to the wine dataset. Er and Atasoy proposed a method to 
classify the quality of wines using three different classifier such 
as support vector machines, Random forest and k-nearest 
neighborhood. They have used principal component analysis 
for feature selection and they found good result using Random 
forest algorithm [3]. Chen et al proposed an approach that will 
predict the grade of wine using the human savory reviews. 
They have used hierarchical clustering approach and 
association rule algorithm to process the reviews and predict 
the wine grade and they found an accuracy of 85.25% while 
predicting the grade [4]. Appalasamy et al proposed a method 
to predict wine quality based on physiochemical test data. They 
have pointed out that classification approach helps to improve 
the quality of wine during the production [5]. Beltrán et al 
proposed an approach to classify the wine based on aroma 
chromatograms and they have used PCA for dimensionality 
reduction and wavelet transform for feature extraction and 
classifiers such as neural network, linear discriminant analysis 
and support vector machine and found that support vector 
machine with wavelet transforms perform better than other 
classifiers [6]. Thakkar et al., used analytical hierarchy process 
(ahp) to rank the attributes and then used different machine 
learning classifiers such as support vector machine and random 
forest and they found accuracy of 70.33% using random forest 
and 66.54% using SVM [7]. Reddy and Govindarajulu used a 
user centric clustering approach to recommend the product. 
They have used red wine data set for the survey purpose. They 
have allocated relative voting to the attributes based on the 
literature review. Then they assigned weight to the attributes 
using Gaussian Distribution Process. They judged the quality 
based on the user preference group [8]. The above past work 
motivated us to try different feature selection algorithm as well 
as different classifiers to compare the performance metrics. 
This paper proposed GA based feature selection and SA based 
feature selection and used different classifiers such as PART, 
RPART, Bagging, C5.0, random forest, svm, lda, naïve bayes 
etc.  

III. METHODOLOGIES 

The flow chart of the proposed methodology is shown in 
the Fig. 1. 

A. Data Collection  

The wine data set is publicly available in the database of 
UCI. The two datasets are related to red and white variants of 
the Portuguese "Vinho Verde" wine. This data set contains the 
physiochemical variables as well as sensory variables; 
altogether there are 12 attributes [9]. We have used genetic 
algorithm (GA)-based feature sets for feature selection. Pledsoe 
first presented an adaptive optimization search methodology is 
called genetic algorithm and Holland mathematically presented 
the genetic algorithm-based approach by getting inspiration 
from Darwin’s theory of evolution. A variable is mentioned as 

a gene. A chromosome is nothing but a sequence of gene. An 
initialization is done randomly by using population of 
chromosome. The quality of the chromosomes is evaluated 
according to a predefined fitness function. High performance 
chromosomes are used to produce the offspring. The genetic 
operators such as mutation and crossover are used to form the 
offspring. In this process the chromosomes are 
competing with each other and the fittest one survives at the 
end. The optimal solution comes after a series of iterative 
computations. [10, 11].  

 

Fig. 1. Flow chart of proposed method 

We have also used simulated annealing-based feature set 
for feature selection. The widely used combinatorial 
optimization method is called simulated annealing. It is one of 
the most popular search algorithms. This method used 
probabilistic technique to find the local optima that ultimately 
find a better solution [12]. This method is widely used for 
feature selection method. The simulated algorithm procedure is 
mentioned below. It runs based on the number of classes. If the 
number of classes is n then it runs n

th 
times. In each run j, the 
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subset of the feature for the j
th 

class is found. All the j
th 

class 
patterns are taken into one class and other pattern belong to the 
other class while evaluating the current string. This process 
helps to give the features which classify patterns as belonging 
to class j or not class j [13]. After selecting the features by 
using simulated annealing (SA) and genetic algorithm (GA), 
we have implemented the data sets into various classifiers and 
compare the performance parameters. 

B. Performance Measure Metrics 

 The parameters used to compare the performance and 

validations of classifier are as follows: accuracy, sensitivity, 

specificity, positive predictive value (ppv), negative predictive 

value (npv). The sensitivity is defined as the ratio of true 

positives to the sum of true positives and false negatives. The 

specificity is defined as the ratio of true negatives to the sum 

of false positives and true negatives. In our research we have 

used the Positive predictive value and negative predictive 

value to check the present and absent of one type of wine. So, 

the ppv is the probability that the one type of wine is present 

given a positive test result and npv is the probability that the 

one type of wine is absent given a negative test result [14]. 

Accuracy is defined as the ratio of number of correct 

predictions made to the total prediction made and the ratio is 

multiplied by 100 to make it in terms of percentage.  

IV. RESULTS AND DISCUSSION 

We have divided the data into two groups such as train data 
and test data. We trained each classifier based on the trained 
data and predict the power of classifier on the test data. So, 
each classifier able to show all the performance metrics such as 
accuracy, sensitivity, specificity, PPV, and NPV based on the 
test data. We have applied all the classification techniques to 
the GA based reduced feature sets for two types of wine as well 
as SA based reduced feature sets for two types of wine to 
measures the performance parameter with respect to each 
classifier. We separated each performance measures with 
respect to GA and SA sets and plot the column plot for better 
visualization. The results of each performance measure with 
respect to two feature sets are shown in the Fig. 2, 3, 4, 5, and 6 
respectively for red wine and 7, 8, 9, 10, 11 for white wine. 

A. Comparison of Accuracy for red wine 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of Accuracy on PCA and RFE sets 

Fig. 2 show that SVM classifier shows maximum accuracy 

among all the classifiers. It is performed better with the SA 

based feature sets. The accuracy of SVM classifier with SA 

feature set found to be 95. 23%. 

B. Comparison of Sensitivity for red wine 

Fig. 3 shows the sensitivity plot of all the classifiers with two 

different feature sets. The plot shows SVM has the highest 

sensitivity compared to others and it was found to be 0.9717 

with the SA based feature sets 

 

 
 

Fig. 3. Comparison of Sensitivity on PCA and RFE sets 

C. Comparison of Specificity for red wine 

 

 
 

Fig. 4. Comparison of Specificity on PCA and RFE sets 

Fig. 4 shows that SVM classifier shows maximum specificity 

among all the classifiers. It is performed better with the SA 

based feature sets. The specificity of SVM classifier with SA 

feature set found to be 0.9835 

D. Comparison of PPV for red wine 
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Fig. 5. Comparison of PPV on PCA and RFE sets 

Fig. 5 shows the PPV plot of all the classifiers with two 

different feature sets. The plot shows SVM has the highest 

PPV compared to others and it was found to be 0.9912 with 

the SA based feature sets 

E. Comparison of NPV for red wine 

 
 

 
 

 

 

 

 

 

 

 

Fig. 6. Comparison of NPV on PCA and RFE sets 

Fig. 6 shows that SVM classifier shows maximum NPV 

among all the classifiers. It is performed better with the SA 

based feature sets. The NPV of SVM classifier with SA 

feature set found to be 0.9907 

F. Comparison of Accuracy for white wine 

 

 

Fig. 7. Comparison of Accuracy on PCA and RFE sets 

Fig. 7 shows that SVM classifier shows maximum accuracy 

among all the classifiers. It is performed better with the SA 

based feature sets. The accuracy of SVM classifier with SA 

feature set found to be 98. 81% for white wine data set. 

G. Comparison of Sensitivity for white wine 

 

 

Fig. 8. Comparison of Sensitivity on PCA and RFE sets 

Fig. 8 shows the sensitivity plot of all the classifiers with two 

different feature sets. The plot shows SVM has the highest 

sensitivity compared to others and it was found to be 0.9934 

with the SA based feature sets for white wine data set. 

H. Comparison of Specificity for white wine 

 

 

Fig. 9. Comparison of specificity on PCA and RFE sets 

Fig. 9 shows that SVM classifier shows maximum specificity 

among all the classifiers. It is performed better with the SA 

based feature sets. The specificity of SVM classifier with SA 

feature set found to be 0.9956 for white wine data set. 

I. Comparison of PPV for white wine 
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Fig. 10. Comparison of PPVon PCA and RFE sets 

Fig. 10 shows the PPV plot of all the classifiers with two 

different feature sets. The plot shows SVM has the highest 

PPV compared to others and it was found to be 0.9987 with 

the SA based feature sets for white wine data set. 

 

J. Comparison of NPV for white wine 

 

 

Fig. 11. Comparison of NPV onPCA and RFE sets 

 

Fig. 11 shows that SVM classifier shows maximum NPV 

among all the classifiers. It is performed better with the SA 

based feature sets. The NPV of SVM classifier with SA 

feature set found to be 0.9992 for white wine data set. 

The above plots show the performance metrics comparison of 

different type of wines based on the metrics parameters such 

as accuracy, sensitivity, specificity, ppv and npv on two 

different feature sets. The result shows that the SVM classifier 

performs better for both type of data sets. Specially it is 

performing better in SA based feature sets. Although it is easy 

to say based on our result that Simulated Annealing is better 

algorithm for feature selection compared to genetic algorithm-

based feature selection method, however the result could be 

different for other datasets as well as it could be different for 

bigger datasets. Similarly based on our result we can say that 

SVM classifier is best, but in practical lot of other parameters 

also come into picture that could change the scenario 

completely. This analysis will give a clear idea about the 

important attributes for the prediction of quality as well as it 

saves lot of time and money for the industries. 

V. CONCLUSION AND FUTURE WORK 

 
This paper mentioned about potential of genetic algorithm 

as well as simulated annealing algorithm for feature selection 
as well as the potentials of the classifiers to predict accurately 
based on the new feature sets. The feature selection algorithm 
provided a clear idea about the importance of the attributes for 
prediction of quality, which was time consuming and 
expensive when done in the traditional way. We have also 
compared the performance metrics of linear, nonlinear, and 
probabilistic based classifiers and it was found that these 
classifiers performed well with the new feature sets. We have 
found that the SA based feature sets performed better than the 
GA based feature sets. We have also found that the SVM 
classifier performed better compared to all other classifiers for 
red wine and white wine data sets. We have found accuracy 
ranging from 95.23% to 98.81% with different feature sets. In 
future we can try other performance measures and other 
machine learning techniques for better comparison on results. 
This analysis will help the industries to predict the quality of 
the different type of wines based on certain attributes and also 
it will helpful for them to make good product in the future. 
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