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Abstract— Deep reinforcement learning has been successfully 

used to train artificial intelligent (AI) agents, which outperforms 

humans in many tasks. The objective of this research is to train 

an AI agent to draw SVG images by using scalable vector 

graphic (SVG) editor with deep reinforcement learning, where 

the AI agent is to draw SVG images that are similar as much as 

possible to the given target raster images. In this paper, we 

propose framework to train the AI agent by value-function 

based Q-learning and policy-gradient based learning methods. 

With Q-learning based method, we find that it is crucial to 

distinguish the action space into two sets to apply a different 

exploration policy on each set during the training process. 

Evaluations show that our proposed dual ϵ-greedy exploration 

policy greatly stabilizes the training process and increases the 

accuracy of the AI agent. On the other hand, policy-gradient 

based training does not depend on external reward function. 

However, it is hard to implement especially in the environment 

with a large action space. To overcome this difficulty, we propose 

a strategy similar to the dynamic programming method to allow 

the agent to generate training samples by itself. In our 

evaluation, the highest score is archived by the agent trained by 

this proposed method. SVG images produced by the proposed 

AI agent have also superior quality compared to popular raster-

to-SVG conversion softwares. 

 
Keywords—Reinforcement Learning, SVG, Exploration 

Policy, Q-learning 

I. INTRODUCTION 

Besides defeating the world best human player in Go [1], 

AI agent (hereafter referred as agent) trained by deep 

reinforcement learning (RL) [2] has achieved human-level in 

a wide variety of tasks like playing 3D first-person shooter 

game [3], and enhances the capability of robotic automation 

[4]. For example, Mnih et. al. have introduced deep Q-

network (DQN) [5] that plays Atari 2600 games well above 

the skill of human players and any other linear models. 

Subsequently, the works on prioritized experience replay [6], 

double Q-network [7], duel Q-network [8] and asynchronous 

actor-critic method [9] further enhance the efficiency of the 

training process. 

On the subject of image understanding and raster-to-vector 

(R2V) conversion, Karpathy et. al. present a breakthrough 

work [10] on training a deep neural network (DNN) [11] for 

automatic image description. Beltramelli proposes Pix2Code 

DNN [12] that generates Extensible Markup Language (XML) 

based code from raster screenshot of graphical user interface 

(GUI).  

Despite being a mature branch of research, image-

processing based R2V conversion is not yet reliable [13]. 

Therefore, we propose a framework to train an agent to use 

SVG editor (hereafter referred as editor) with RL. The 

objective of this agent is to draw an SVG image that is similar 

as much as possible to a given target raster image. It can be 

considered as a new paradigm to solve the R2V problem. 

In this paper, we concentrate on exploring the feasibility of 

this new paradigm by training the agent to work on randomly 

generated target images. A custom editor is created for 

carrying out the research, which has modeled after OpenAI 

Gym [14] environment due to its robustness in interface 

design. 

We train the agent by using both Q-leaning based and 

policy-gradient based methods. We evaluate the agent 

performance by comparing the similarity between generated 

SVG images and target images. Finally, we compare the 

quality between the SVG image produced by the proposed 

agent with that produced by popular R2V softwares.  

This paper is organized as follows: Section II describes 

related works on R2V and RL. Section III describes our 

proposal for both the agent and the environment design. 

Section IV describes the agent model. Then, Section V 

describes training and evaluation process in detail. Section VI 

concludes the paper with possible improvement and future 

works. 

II. RELATED WORKS 

The agent needs to be trained to ultimately convert a raster 

image to an equivalent vector representation by using the 

editor. Therefore, this research is related to not only RL but 

also a series of visual-vector cross model works. There are 

two categories of works related to this paper: image-

processing based R2V and deep learning based R2V 

conversions. 

A. Image-Processing Based R2V conversion 

As mentioned in Section I, image-processing based R2V 

conversion is not yet reliable [13]. Major problems include 

difficulties of color quantization, aliasing effects, shift, 
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superposition effects, and miss-identification of texture and 

text [15]. 

There are numerous works to try to solve the above-

mentioned problems. For example, Kansal et. al. propose a 

framework to reproduce linear filled gradient [16]. Vector 

representation of halftone dots in binary images is presented 

by Kawamura et. al. [17]. However, they leave the work of 

identifying the type of problems to the human operator. Thus, 

for example, well-known conversion tools such as Potrace [18] 

still require human’s intervention to achieve desirable results 

[19]. 

B. Deep Learning Based R2V conversion 

Image annotation has been an active research area. It 

becomes overly crowded recently due to the advancement of 

deep learning based natural language processing and 

computer vision. Karpathy et. al. achieve a breakthrough with 

an end-to-end DNN model [10]. Learning only from images 

and corresponding annotations, this model not only 

recognizes and locates objects, but also annotates images at 

different  hierarchical levels. The model is realized by the 

embedding visual model using RCNN (Regional 

Convolutional Neural Network) [20] and the language model 

using BRNN (Bi-directional Recurrent Neural Network) [21] 

into the same multimodal space. 

Beltramelli proposes Pix2Code [12], an end-to-end DNN 

that generates XML based GUI code from mock-up images. 

Even though similar to [10] in general design, the visual 

model used in Pix2Code is a plain CNN block while language 

model is handled by a Long-Short Term Memory (LSTM) 

network [22] block. Another LSTM block is used to decode 

the network’s output into code tokens. This work can be 

understood as a rigid version of automated image annotation. 

However, the model is not flexible because the visual 

presentations of all the GUI elements in this work are 

templated. Thus, it only works with GUI images based on the 

fixed templates. 

C. Reinforcement Learning 

The agent in deep RL holds a policy set that ultimately 

decides which action to be performed in the next step. At each 

state of time step 𝑡 , the agent observes the state 𝑠𝑡  of the 

environment, and decides action 𝑎𝑡 based on its current policy 

𝜋. Reward 𝑟𝑡 is then given to the agent as the feedback from 

the environment. The objective of the training process is to 

train the agent so that its policy will result in maximized 

reward in the future. The expected reward is calculated as 

follows. 

𝑅𝑡 = ∑ 𝛾𝑖−𝑡  𝑟i

𝑇

𝑖=𝑡

(1) 

Where 𝑅𝑡 is the sum of expected discounted reward at time 

step 𝑡, 𝑇 is the time when the episode is terminated, and 𝛾 is 

the discount factor which lies within the range of [0 … 1]. The 

higher the value is, the more important the future reward is. 

1) Q-learning:  In Q-learning, 𝑅𝑡 is approximated by the 

𝑄  function. This function returns an action-state value 

according to policy 𝜋 as follows: 

𝑄𝜋 (𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2) 

Hence, 𝑄𝜋(𝑠, 𝑎) is essentially an expected future reward if 

the agent performs action 𝑎 in the given state 𝑠. In practice, 

the action that gives the highest 𝑄  value is chosen to be 

executed by the agent. The optimal value 𝑄∗(𝑠, 𝑎) is defined 

as follows: 

𝑄∗ (𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎) = max
𝜋

𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3) 

Hence, using (1) and (2), equation (3) can be written as 

follows: 

𝑄∗ (𝑠, 𝑎) = 𝔼 [𝑟 + 𝛾 max
𝑎′

〖𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎〗] (4) 

Where 𝑠′  and 𝑎′  are the state and the action of the 

subsequent time step, respectively, and 𝑟  is the immediate 

reward for action 𝑎 given in state 𝑠. In deep 𝑄-learning, this 

value is approximated by the neural network parameterized 

by 𝜃: 

𝑄𝜃(𝑠, 𝑎) ≈ 𝑄∗ (𝑠, 𝑎) (5) 

Thus, with a trained agent, the 𝑄 value of an action 𝑎 can 

be estimated as follows: 

𝑄𝜃(𝑠, 𝑎) ≈ 𝑟𝑡 + 𝛾 max
𝑎′

𝑄𝜃(𝑠′, 𝑎′) (6) 

Given that 𝑦𝑡 = 𝑟𝑡 + 𝛾 max
𝑎′

𝑄𝜃(𝑠′, 𝑎′), the loss function is 

defined as follows: 

𝐿𝑡(𝜃𝑡) =  𝔼𝑠,𝑎,𝑟,𝑠′ [|𝑦𝑡 − 𝑄𝜃𝑡
(𝑠, 𝑎)|

2
] (7) 

In practice, instead of squared difference loss, Huber loss 

is usually used to stabilize the training process: 

𝐿(𝛼) = {

1

2
𝛼2 if |𝛼| ≤ 𝛿

𝜎 (|𝛼| −
1

2
𝛿) otherwise

(8) 

Where 𝛼 is the difference between 𝑦𝑡  and 𝑄𝜃𝑡
(𝑠, 𝑎), and 𝛿 

is the point where the loss function change from quadratic to 

linear. 

2) Policy-Gradient: Agents trained by the Q-learning 

method predict the state-action value as in formula (6), then 

the action is chosen deterministically based on this value. 

Thus, it heavily depends on the value function to result in 

better policy approximation. On the contrary, with policy-

gradient based training, the agent is trained to output the 

action probability directly from a given state. Formally, 

policy-gradient optimizes policy 𝜃 to maximize the expected 

discount return 𝑅𝑡: 

𝜃 = argmax
𝜃

𝔼[𝑅𝑡] (9) 

To optimize the policy 𝜃, the gradient of policy 𝜃 is given 

by: 

∇𝜃𝔼[𝑅𝑡] = 𝔼[∇𝜃 log 𝑃(𝑎𝑡)𝑅𝑡]  (10) 

Where 𝑃(𝑎𝑡) is the probability of action 𝑎 at time step 𝑡. 

Thus, actions that lead to better expected reward 𝑅𝑡  are 

encouraged. In order to train an agent using policy-gradient, 

𝑅𝑡 must be known or has to be approximated. 

3) Experience Memory Replay: One of the most 

significant difficulties in training an agent is the strong 
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correlation between the network policy and the action 

outcome of subsequent time steps. This difficulty makes 

online training impossible. To break the strong correlation, 

experience memory replay [6] is used. 

In the experience memory replay, at every time step 𝑡, the 

experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)  of the agent is stored in replay 

memory which is a large capacity queue. In popular works 

like DQN, it is usually set to store one million experiences. 

When it’s full, the oldest experience in the queue is removed 

to make place for a new experience. The network is trained by 

using mini batches randomly drawn from this memory. 

4) Exploration in RL: Training an agent using RL 

requires a right balance between exploitation and exploration. 

Exploitation is relying on the learned policy to improve the 

prediction accuracy while exploration allows the agent to seek 

for better potential solutions (i.e. avoiding sub-optimal trap). 

A popular exploration policy being used in RL is 𝜖-greedy [2]. 

Under this policy, the output of the agent has an 𝜖 chance of 

being random. 

There are other exploration policies based on 

randomization, such as Thompson sampling [23] and 

Bayesian sampling [24]. However, a variance of ϵ-greedy 

policy named reducing ϵ -greedy is most commonly used. 

With this policy, the agent starts with high exploration rate, 

and gradually reduces it throughout the training process. Thus, 

it allows the agent to explore in the beginning, and to focus 

more on exploitation in the later phase of the training process. 

In this paper, we evaluate the reducing 𝜖-greedy variances 

only. All 𝜖 -greedy policies mentioned hereafter refer to 

reducing 𝜖-greedy exploration policy. 

III. SVG EDITOR 

As seen in common in AI settings, the proposed framework 

consists of two parts: the agent and the environment. As 

shown in Fig. 1, the editor is playing the role of the 

environment in this research. For every time step, the agent 

observes the state of the editor (step 1). Then, the agent 

processes the observed state and sends a new action to the 

editor (step 2). So, the editor executes the action as requested 

and sends reward back to the agent (step 3). And the process 

goes back to step 1. 

A. SVG Construction 

SVG is an XML based vector image format. An SVG 

document is composed of different types of elements, such as 

path, circle, and rectangle. Previous works on R2V 

conversion usually produce SVG image using path element 

exclusively because this element is flexible and can be used 

to form any type of shape. Furthermore, using fundamental 

shape elements, such as rectangle, circle and arc, not only 

requires the higher level of visual understanding but also 

comes with none trivial challenges. 

On the other hand, using a large number of elements and 

paths significantly increases the SVG image size. Thus, the 

output SVG requires much more computational resource to be 

displayed. In this research, we utilize two fundamental shape 

elements (and with their transformations) that are square 

element and circle element for SVG image construction. 

Fig. 2 shows the process of SVG composition, where every 

episode starts with a blank canvas. During the process, the 

agent is either adding a new element into the working image 

or editing the most recently added element. 

The newly added element has a default presentation when 

it’s firstly added. The default presentations of the circle and 

square elements are shown in sub-figure (a) and (g) of Fig. 5. 

As the agent keeps editing, the presentation of the element is 

to be updated. For example, subfigure (l) in Fig. 5 is the 

presentation of a circle element after 400 steps of editing. 

B. Action Space 

With the above-explained process, once a new element is 

added to the working SVG document, the old element is no 

longer editable. Thus, the consequence of adding new 

elements is more significant compared to editing them. 

Therefore, for Q-learning based training, it is crucial to 

distinguish the two sets of actions, set A and set B, and to 

apply separated exploration policies during the training   

process. Otherwise, it is impossible for the model to converge. 

Table I lists all the actions of set A and B supported by the 

editor. Set A consists of actions that add new element into the 

working SVG document, while set B consists of editing 

actions, i.e. element-shape manipulation actions. 

START

END

Element EditingAdd New 

Element

1a 2a 3a 4a ja

1ja 2ja 3ja 4ja ka
1ka 

Ta1Ta 2Ta 

3Ta 
 

 

Fig. 2.  The process of SVG composition: the agent keeps adding and 

editing new elements until the desired result is achieved. 𝑎𝑖 is action given 

by the agent at time step 𝑡. 𝑇 is the last time step in the episode. 

 

 

 

Fig. 1.  The proposed framework of SvgAI. The editor is playing the role of 

the environment. 
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OBSERVATION

ACTION

REWARD

SVG EDITOR

TABLE I 
LIST OF ACTIONS SUPPORTED BY THE EDITOR 

Set Action Id. Description 

A 0, 1 Add circle/square element 

B 

2, 3, 4, 5 Move element left/right/up/down 

6, 7, 8, 9 Compress/expand element horizontally/vertically  

10, 11 Rotate the element clockwise/counter clockwise 

12, 13 Reduce/increase element’s line thickness 

14, .., 21 Adjusta. element’s line color (RGB𝛼) 

22, .., 29 Adjusta. element’s fill color (RGB𝛼) 
a. Increase/decrease value of each channel 
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C. State Observation 

The state of the editor at any time step 𝑡 consists of four 

components: 

1. Raster version of the image being edited 𝐼𝑡. 

2. Raster target image 𝑌, i.e. the image which the agent 

attempts to compose by using the editor. 

3. Raster image of the element being editted in 𝐼𝑡 

(component 1). Thus, , this component is exactly the 

same to 𝐼𝑡 when only one element is in 𝐼𝑡. 

4. An auxiliary vector that describes the state of the SVG 

element being edited (component 3). This auxiliary 

vector consist of paremeters such as orientation, 

position, line thickness, line color, and fill color. 

All raster images are in the RGB 𝛼  format with the 

resolution of 128 by 128 pixels. The first three component are 

stacked in channels dimention to form the image stack. 

IV.  MODEL 

A. Network Architecture 

Fig. 3 shows the architecture of the proposed agent. The 

above mentioned image stack is processed by the 

convolutional neural network (CNN) blocks. These blocks 

produce a feature map with around 27k parameters. The 

combination of this feature map and the auxiliary vector is 

then processed by a fully connected block to produce a score 

or probability for each action supported by the environment. 

B. Error and Reward 

With every action received from the agent, the score is 

calculated as follows: 

𝑔𝑡 = exp (−
|𝐼𝑡 − 𝑌|2

𝜎2
) (11) 

Where 𝑔𝑡 is the score at time step 𝑡, which describes the 

similarity between the rasterized version 𝐼𝑡  of the working 

SVG document at time step 𝑡 and the target image 𝑌, and 𝜎 is 

the scaling factor. Thus, the domain of the score 𝑔𝑡 is from 0 

to 1 where 1 means perfect matching. 

Base on the score 𝑔𝑡, the reward is given to the agent as 

follows: 

𝑟𝑡 = {
1 + 𝑔𝑡 𝑖𝑓 𝑔𝑡 > 𝑔𝑡−1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12) 

Where 𝑟𝑡 is the immediate reward at time step 𝑡. Thus, the 

environment returns 0 reward when the action results in no 

improvement, and returns a small reward ranging from 1 to 2 

depending on the similarity between the result and the target 

image. 

Given 𝑣𝑡  which is the number of SVG elements at time 

step 𝑡, the penalty 𝑝𝑡  is given as follows: 

𝑝𝑡 = {
−1 𝑖𝑓 𝑣𝑡 > 𝑣𝑡−1

    0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(13) 

Hence, the discounted reward 𝑅𝑡 at time step 𝑡 is calculated 

as follows: 

𝑅𝑡 = ∑(𝑟𝑖 + 𝑝𝑖)𝛾𝑖−𝑡

𝑇

𝑖=𝑡

(14) 

Where 𝛾 is the discount factor and 𝑇 is the length of the 

episode. By giving a penalty for adding elements more than 

necessary, the agent is discouraged to perform actions in set 𝐴. 

However, this technique is only feasible with a controlled 

environment in which the structure of a state is known. The 

training process is expected to be slower without this penalty. 

C. Q-learning and Exploration Policy 

In our early attempts, the conventional 𝜖-greedy policy was 

used. On average, with the action sets exlained in Section III-

B, there was a new element added into the image for every 14 

adjustments during the exploration process. It means, 

regardless the value set to the exploration rate 𝜖, actions in set 

A were explored more than necessary. This bad exploration is 

most likely making the network to be trapped in sub-optimal 

solution [25]. 

The simplest solution is to apply lower weight for the 

actions in set A during the random exploration process. The 

probability for an action being performed randomly by the 𝜖-

greedy policy is: 

𝑝(𝑎𝑖) = {
𝜖𝜔𝑎 if 𝑎𝑖 ∈ A
𝜖𝜔𝑏 if 𝑎𝑖 ∈ B

 (15) 

Where 𝜔𝐴 and 𝜔𝐵 are weights for the actions of set A and 

B. However, we observe that the agent trained by using this 

Conv 1

[8 × 8 × 12 × 96] – Stride 4

Observation

[128 × 128 × 12]

Feature map 1

[31 × 31 × 96]

Conv 2

[4 × 4 × 96 × 192] – Stride 2

Feature map 2

[14 × 14 × 192]

Conv 3

[3 × 3 × 192 × 192] – Stride 1

Feature map 3

[12 × 12 × 192]

Flattened 

feature map 3

Auxiliary 

vector

FC 1

[2048]

FC 2

[2048]

Action scores

[number_of_actions]

 
Fig. 3.  The architechture of the agent. The stacked images explained in Secion III-C is processed by the convolution layers. Auxilary vector is concatenated 

with the output of the convolution layers before feeding to fully connected blocks at the end of the network. 
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weighted 𝜖-greedy policy often inserts incorrect element into 

the working image. A possible explanation for this problem is 

that the 𝜖 value is already saturated when the agent does not 

learn yet the long-term reward of adding the right element. 

Prolonging the exploration phase does not improve the 

result because the agent has to keep exploring more on 

element editing (i.e. action set B) in order to discover better 

solution. Our approach to solve this problem is to apply the 

different reducing 𝜖 -greedy policies (hereafter referred as 

dual 𝜖-greedy policy) on each action set. In this setting, there 

are two independent reducing 𝜖-greedy polices applied for 

each action set: 

𝑝(𝑎𝑖) = {
𝜖𝑎𝜔𝑎 if 𝑎𝑖 ∈ A
𝜖𝑏𝜔𝑏 if 𝑎𝑖 ∈ B

 (16) 

Where 𝜖𝐴  and 𝜖𝐵  are weight values of two 𝜖 -greedy 

policies for the action set A and B, respectively. In this way, 

the action set A and B can be independently explored. 

Algorithm 1 shows the pseudo code to train the agent using 

Q-learning paradigm with dual 𝜖-greedy policy, where the 

random function has several forms (analogous to C++’s 

function overloading). The function Rnd(A)  and Rnd(B) 

randomly select an action in set 𝐴 and 𝐵. Rnd(X ∣ W) picks 

element from X  with weight W . The difficulty 𝑘  is the 

minimum number of steps to compose the target image from 

a blank canvas as explained in Section IV-D. 

D. Policy-Gradient 

As mentioned in Section II-C-2, in order to train the agent 

using policy-gradient, 𝑅𝑡 has to be known. This value can be 

approximated for training. Thus, it makes the efficiency of the 

training process again depend on an external function. 

Another solution is to fully unroll the episodes. Monte Carlo 

method is commonly used for this purpose. However, this 

method is intractable in the environment with a large action 

space, as it requires an immerse computational resource. 

To overcome this difficulty, we unroll the episode and train 

the agent reversively. As shown in Fig. 4, supposing that 𝑘 is 

the minimum number of steps to compose the target image 

from a blank canvas, if an agent is trained to perform last 𝑑 

step from time step 𝑡, action at time step 𝑡 − 1 can be unrolled 

in a brute force way: 

𝑃(𝑎𝑖 ∣ 𝑠𝑡−1) =
[𝐷(𝑠𝑡∣𝑎𝑖

, 𝑌) = d]

∑ [𝐷 (𝑠𝑡∣𝑎𝑗
, 𝑌) = d]𝑗

 (17) 

Where 𝑃(𝑎𝑖 ∣ 𝑠𝑡−1) is the probability of action 𝑎𝑖 given the 

state 𝑠𝑡−1  at time step 𝑡 − 1 , 𝐷(𝑠𝑡∣𝑎𝑖
, 𝑌)  is the minimum 

number of steps for the agent to finish the episode given in the 

state 𝑠𝑡∣𝑎𝑖
 at time step 𝑡  which is the result from action 𝑎𝑖 

from the last time step. 

 
Blank canvas Target image

StepsCurrent image

k

d

t

 

Fig. 4.  The minimum number of steps to compose target image from a 

blank canvas is 𝑘. The minimum number of steps to compose target image 

from the current image is 𝑑. 

Algorithm 2 shows the pseudo code of the policy-gradient 

based training. The agent is trained to work on the 

incrementally difficult states. The difficulty of a state is 

measured by distance 𝑑 . Once the policy network 𝜃𝑑  for 

distance 𝑑 is converged, it is then trained with more difficult 

distance 𝑑 + 1. 𝑈(⋅) is an uniform sampling function. 

The primary disadvantage of this method is that it is only 

feasible with a controlled environment where the difficulty of 

the state can be calculated. However, it is useful in 

combination with techniques such as transfer learning when 

applying it for more complex data. 

V. EVALUATION 

A. Dataset 

Works on image-processing based R2V conversion have 

many diverse objectives. As the result, they mostly use 

relatively plain and small datasets. The diversity in research 

objectives also leads to the lack of unified evaluation dataset 

[15]. While the complexity of these data sets is suitable for 

this research, their modest size and heterogeneous properties 

are not adequate to be used to train DNN. 
 

ALGORITHM 1. Q-LEARNING BASED TRAINING ALGORITHM 

inputs:  Maximum time step 𝑡𝑚𝑎𝑥 
Number of actions 𝑛 

output:  Optimized policy 𝜃 
variables:  𝑀 experience memory 

𝐿 training interval 
𝑡 time step 
𝑔𝑡 global counter 

 
while not converged 

𝑌 ← random target image 𝑌 with random 𝑘 
for 𝑡 =  0 to 𝑡𝑚𝑎𝑥 

𝑔𝑡 ← 𝑔𝑡 + 1  
𝑎𝐴 ← Rnd(A) ;  𝑎𝐵 ← Rnd(B) 

𝑎𝑄 ← max
𝑎

(𝑄𝜃(𝑠𝑡, 𝑎))  

𝑎𝑡 ← Rnd (𝑎𝐴, 𝑎𝐵, 𝑎𝑄 ∣ 𝑝(𝑎𝐴), 𝑝(𝑎𝐵), 𝑝(𝑎𝑄))  

unroll episode with action 𝑎𝑡 
add 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 to 𝑀 
if 𝑔𝑡 mod 𝐿 = 0 

train mini batch taken from 𝑀 
if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 end 

break 

 

ALGORITHM 2. POLICY-GRADIENT BASED TRAINING ALGORITHM 

inputs:  Upper limit 𝑘𝑚𝑎𝑥 
Number of actions 𝑛 

output:  Optimized policy 𝜃 
variables:  𝑀 experience memory 

𝑔𝑡 global counter 
𝐿 training interval 

 
for 𝑑 = 1 to 𝑘𝑚𝑎𝑥 

while θ𝑑 is not  converged: 
𝑘 ← 𝑈([𝑑. . 𝑘𝑚𝑎𝑥]) 
𝑡 ← 𝑘 − 𝑑 
with random 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 at difficulty 𝑘 

𝑌 ←  last state of 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 
𝑠𝑡−1 ← state at time step 𝑡 − 1 of 𝑒𝑝𝑖𝑠𝑜𝑑𝑒   
for 𝑖 = 0 to 𝑛 

if 𝐷(𝑠𝑡∣𝑎𝑖
, 𝑌) = 𝑑: 

add (𝑠𝑡−1, 𝑎𝑖) to 𝑀 
𝑔𝑡 ← 𝑔𝑡 + 1  
if 𝑔𝑡 mod 𝐿 = 0 

train mini batch taken from 𝑀 
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With the above reasons, the training and the evaluation of 

the agent have been done on a randomly generated data set. It 

not only helps in avoiding the above-mentioned problems, but 

also provides a controlled level of difficulty and the 

uniformity of the dataset. Target images are created by 

rasterizing the randomly generated SVG documents. These 

documents contain a single shape element with difficulty 𝑘. 

Fig. 5 shows examples of target images in format <element>-

<k>. 

B. Episode Termination 

The episode is terminated if one of the following conditions 

is met: 

• After a fixed time step 𝑡𝑚𝑎𝑥. Since there is no further 

step after the termination, for Q-learning, the 𝑄 value 

as mentioned in (6) at the final step 𝑡𝑚𝑎𝑥  is:  

𝑄𝜃(𝑠𝑡𝑚𝑎𝑥
, 𝑎𝑡𝑚𝑎𝑥

) = 𝑟𝑡𝑚𝑎𝑥
. 

• When 𝑔𝑡 in (11) is greater than a certain threshold. 

C. Frame Skip 

Due to the computational demand of the agent, it is 

inefficient to let the agent perform an action at every time step. 

The popular solution is the frame skip [14] where the agent 

only interacts with the environment in every 𝑟  steps. 

Therefore, once an action is decided by agent, it repeats 𝑟-

time steps. A popular value of 𝑟 in many tasks is 4 as it is 

usually a good tradeoff between the performance and the 

training speed.  

In this research, dismissing frame skip helps to improve the 

performance of the agent because one action repeated several 

times makes the agent miss its target due to overshooting. 

D. Parameter Update 

The agent does not update its parameter at every time step, 

but once for every 𝐿 experiences added in the replay memory. 

Thus, given the batch size of 𝑁, one experience is learned by 

the agent 𝑁/𝐿 times in average. 

E. Settings 

We have implemented the agent using the model proposed 

in Section IV. We evaluate the performance of the agent 

trained by different training schemes:  

• Policy-gradient 

• Q-learning under different exploration policies 

o Conventional ϵ-greedy policy. 

o Weighted ϵ-greedy policy. 

o Dual 𝜖-greedy policy as. 

Table II shows the hyperparameters used for the 

experiments. Policy-gradient training experiments share the 

first 5 parameters with other experiments. 

F. Performance 

Fig. 6 shows the distribution of the evaluation scores of the 

agent under different training schemes. Similar to the training 

configuration, the target images used for evaluation are 

generated with random difficulty 𝑘 given that 𝑘 ≤ 400. The 

box plot describes the distribution of evaluation scores by 

5 × 104  iterations interval from 0 to 40 × 104 . For each 

scheme, we train the agent 5 times. Each time, we evaluate 

the agent after every 100 training iteration and collect 

evaluation score calculated using equation (11). Thus, each 

box describes the distribution of 500 evaluation scores. The 

colored box indicates IQR (interquartile range). The 

horizontal line within the box indicates the median score, and 

the extended bar indicates the maximum and minimum scores. 

Dots indicate outliers. Our proposed dual 𝜖-greedy policy not 

only shows significant performance gain but also highly 

stable compared to conventional 𝜖 -greedy policy and 

weighted 𝜖 -greedy policy during the training process. The 

agent trained by policy-gradient achieves the best result and 

the high stability when the number of iterations is more than 

or equal to 15 × 104. 

G. Accuracy 

With dual 𝜖-greedy policy, our trained agent favors adding 

circle element and achieves higher score by editing circle 

element in general. To further analyze this observation, we 

evaluate each trained agents for 500 episodes with the same 

setting used in Section V-F and drill down the evaluation 

results. In general, evaluation results can be divided into two 

sets: 

• Circle set: consists of episodes with target images that 

contain circle elements only (250 episodes for each 

agent). 

• Square set: consists of episodes with target images that 

contain the square elements only (250 episodes for each 

agent). 

(a) Circle-0 (b) Circle-50 (c) Circle-100 (d) Circle-200

(e) Circle-300 (f) Circle-400 (g) Square-0 (h) Square-50

(i) Square-100 (g) Square-200 (k) Square-300 (l) Square-400  
Fig. 5.  Examples of images generated by training and evaluation 

processes. The caption under each image shows the name of the element 

and the minimum number of steps (𝑘 as in Fig. 4) required to compose that 

image from a blank canvas by using the editor. 

TABLE II 

HYPER-PARAMETER SETTING FOR EXPERIMENTS 

 Conventional Weighted Dual 

Minibatch size 32 32 32 

Upper limit 𝑘𝑚𝑎𝑥 400 400 400 

Train Interval 𝐿 16 16 16 

Discount factor 𝛾 0.999 0.999 0.999 

Memory replay size 1e6 1e6 1e6 

𝜖-greedy 
max - min 1 – 0.1 1 – 0.1 - 

start - end 0 – 1e6 0 – 1e6 - 

𝜖𝐴-greedy 
max - min - - 1e-3 – 0 

start - end - - 5e6 – 10e6 

𝜖𝐵-greedy 
max - min - - 0.999 – 0.1 

start - end - - 0 – 1e6 

𝑊𝐴 1 1e-3 1 

𝑊𝐵 1 999e-3 1 
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With each set, we analyze the performance of the agent on 

action set A and set B separately. The agent’s performance on 

action set A is measured by the number of episodes where a 

correct shape element inserted into the working SVG 

document over the total number of episodes in the set. 

Correctly insterting a shape is important because further 

editing an incorrect element results in a large number of bad 

experience that negatively affects the agent’s policy network. 

Table III shows the performance on action set A of the agents 

trained under different training schemes.  

To evaluate the agent’s performance on action set B. We 

again evaluate each agent for 500 episodes with an element 

already inserted. The evaluation results are divided into two 

sets: 

• Set 1: consists of episodes with target images that 

contain the same element with the pre-inserted element 

(250 episodes each agent). 

• Set 2: consists of episodes with target images that 

contain an element that is different from the pre-

inserted element (250 episodes for each agent). 

Table IV shows the agent’s performance on action set B. 

The evaluation scores of set 1 are in the grey background. For 

this set, the performance of agents trained by policy-gradient 

are better than the agents trained by Q-learning.  

The evaluation scores of set 2 are in white background. 

Interestingly, for set 2, even with the wrong element pre-

inserted, the performance of all the trained agents are over 0.5. 

This reflects the fact that all the agents are trained with a 

sustainable amount of episodes in which the wrong element is 

inserted. This result is also correlated to action set A 

performance shown in Table II: Because the agents trained by 

policy-gradient have high accuracy for action set A, they 

rarely experience the training episodes where the wrong 

element is added. Thus, on set 2, their performance is even 

lower than the performance of agents trained by dual ϵ-greedy 

policy (bolded italic v.s. italic on Table IV). 

H. SVG Quality 

We visually compare the SVG image produced by our 

trained agent with two popular opensource and commercial 

R2V solutions: Potrace and AutoTrace [26]. Fig. 7 shows the 

comparison between the outputs. As shown in the figure, 

Potrace not only has a problem on color quantization but also 

results in distorted circle. On the other hand, AutoTrace 

produces a much better result, however, the linear gradient fill 

has been converted into color blobs. Without any manual 

configurations prior to the conversion/drawing process, our 

agent produces significantly better result. 
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Fig. 7.  Comparision between SVG images produced by our agent (SvgAI), 

Portrace and AutoTrace. SvgAI trained by Q-learning and policy-gradient 

produces identical result for this example. 

Not only visually better, but the SVG images produced by 

our agent are also smaller both in file size and node counts. 

As shown in Table V, SVG images produced by our agent are 

40% smaller in size and 63% smaller in node counts than the 

second best solution in average over 100 images where each 

one contains a single element, i.e. a circle or a square. 
 

TABLE V 

AVERAGE SVG SIZE COMPARISON 

 Target SvgAI Potrace AutoTrace 

File Size 5.8KB 852B 1.4KB 15.5KB 

Node Count - 1.4 2.7 174 

Color ≥ 16mil ≥ 16mil 2 10 

VI. CONCLUSION 

In this paper, we introduce a new paradigm to solve the 

R2V conversion problem. We propose an agent model and a 

framework to train the agent to use SVG editor by using Q-

learning and policy-gradient. In order to successfully train the 

agent by using Q-learning, we divide the action space into two 

sets and apply independent exploration policies on each 

 
Fig. 6.  Evaluation score distribution of the agent throughout the training 

process under different training scheme. 

TABLE IV 
AGENT PERFORMANCE ON ACTION SET B 

Agent Pre-insterted 
Target Image 

Circle Square 

Policy-Gradient 
Circle 0.97 0.65 

Square 0.71 0.94 

Q
-l

ea
rn

in
g
 Dual 𝜖-greedy 

Circle 0.93 0.78 

Square 0.72 0.89 

Weighted 𝜖-greedy 
Circle 0.81 0.76 

Square 0.67 0.79 

Conventional 𝜖-greedy 
Circle 0.59 0.66 

Square 0.61 0.73 

 

TABLE III 
AGENT PERFORMANCE ON ACTION SET A 

 Circle set Square set 

Policy-gradient 0.99 0.95 

Q-learning   

Dual 𝜖-greedy 0.94 0.76 

Weighted 𝜖-greedy 0.67 0.58 

Conventional 𝜖-greedy 0.53 0.61 
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action set. Evaluation results show the efficiency of the 

proposed dual 𝜖-greedy policy and policy-gradient. The SVG 

image quality produced by our agent is also superior 

compared to the popular software solutions. The problem of 

incorrect shape detection as explained in Section V-G shows 

a weakness of Q-learning in applying it to this problem. While 

policy-gradient produces the most efficient agent, it can only 

be used for managed environments. For future works, we will 

investigate and improve the training process for better reward 

back-propagation and for better shape detection accuracy. 
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