
SvgAI – Training Methods Analysis of

Artificial Intelligent Agent to use SVG

Editor

Anh H. Dang*, Wataru Kameyama**

*GITS, Waseda University, Tokyo, Japan

** Faculty of Science and Engineering, Waseda University, Tokyo, Japan

danghoanganh@akane.waseda.jp, wataru@waseda.jp

Abstract— Deep reinforcement learning has been successfully

used to train artificial intelligent (AI) agents, which outperforms

humans in many tasks. The objective of this research is to train

an AI agent to draw SVG images by using scalable vector

graphic (SVG) editor with deep reinforcement learning, where

the AI agent is to draw SVG images that are similar as much as

possible to the given target raster images. In this paper, we

propose framework to train the AI agent by value-function

based Q-learning and policy-gradient based learning methods.

With Q-learning based method, we find that it is crucial to

distinguish the action space into two sets to apply a different

exploration policy on each set during the training process.

Evaluations show that our proposed dual ϵ-greedy exploration

policy greatly stabilizes the training process and increases the

accuracy of the AI agent. On the other hand, policy-gradient

based training does not depend on external reward function.

However, it is hard to implement especially in the environment

with a large action space. To overcome this difficulty, we propose

a strategy similar to the dynamic programming method to allow

the agent to generate training samples by itself. In our

evaluation, the highest score is archived by the agent trained by

this proposed method. SVG images produced by the proposed

AI agent have also superior quality compared to popular raster-

to-SVG conversion softwares.

Keywords—Reinforcement Learning, SVG, Exploration

Policy, Q-learning

I. INTRODUCTION

Besides defeating the world best human player in Go [1],

AI agent (hereafter referred as agent) trained by deep

reinforcement learning (RL) [2] has achieved human-level in

a wide variety of tasks like playing 3D first-person shooter

game [3], and enhances the capability of robotic automation

[4]. For example, Mnih et. al. have introduced deep Q-

network (DQN) [5] that plays Atari 2600 games well above

the skill of human players and any other linear models.

Subsequently, the works on prioritized experience replay [6],

double Q-network [7], duel Q-network [8] and asynchronous

actor-critic method [9] further enhance the efficiency of the

training process.

On the subject of image understanding and raster-to-vector

(R2V) conversion, Karpathy et. al. present a breakthrough

work [10] on training a deep neural network (DNN) [11] for

automatic image description. Beltramelli proposes Pix2Code

DNN [12] that generates Extensible Markup Language (XML)

based code from raster screenshot of graphical user interface

(GUI).

Despite being a mature branch of research, image-

processing based R2V conversion is not yet reliable [13].

Therefore, we propose a framework to train an agent to use

SVG editor (hereafter referred as editor) with RL. The

objective of this agent is to draw an SVG image that is similar

as much as possible to a given target raster image. It can be

considered as a new paradigm to solve the R2V problem.

In this paper, we concentrate on exploring the feasibility of

this new paradigm by training the agent to work on randomly

generated target images. A custom editor is created for

carrying out the research, which has modeled after OpenAI

Gym [14] environment due to its robustness in interface

design.

We train the agent by using both Q-leaning based and

policy-gradient based methods. We evaluate the agent

performance by comparing the similarity between generated

SVG images and target images. Finally, we compare the

quality between the SVG image produced by the proposed

agent with that produced by popular R2V softwares.

This paper is organized as follows: Section II describes

related works on R2V and RL. Section III describes our

proposal for both the agent and the environment design.

Section IV describes the agent model. Then, Section V

describes training and evaluation process in detail. Section VI

concludes the paper with possible improvement and future

works.

II. RELATED WORKS

The agent needs to be trained to ultimately convert a raster

image to an equivalent vector representation by using the

editor. Therefore, this research is related to not only RL but

also a series of visual-vector cross model works. There are

two categories of works related to this paper: image-

processing based R2V and deep learning based R2V

conversions.

A. Image-Processing Based R2V conversion

As mentioned in Section I, image-processing based R2V

conversion is not yet reliable [13]. Major problems include

difficulties of color quantization, aliasing effects, shift,

Manuscript received on Dec. 31, 2017. This work is a follow-up of the

invited journal to the accepted & presented paper of the 20th International

Conference on Advanced Communication Technology (ICACT2018).
Anh H. Dang is with Graduate School of Global Information and

Telecommunication Studies, Waseda University, Tokyo, Japan

(corresponding author, phone: +81-80-1367-9637, email:
danghoanganh@akane.waseda.jp)

Wataru Kameyama is with School of Science and Engineering, Waseda
University, Tokyo, Japan (email: wataru@waseda.jp)

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1159

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

mailto:1first.author@first-third.edu

superposition effects, and miss-identification of texture and

text [15].

There are numerous works to try to solve the above-

mentioned problems. For example, Kansal et. al. propose a

framework to reproduce linear filled gradient [16]. Vector

representation of halftone dots in binary images is presented

by Kawamura et. al. [17]. However, they leave the work of

identifying the type of problems to the human operator. Thus,

for example, well-known conversion tools such as Potrace [18]

still require human’s intervention to achieve desirable results

[19].

B. Deep Learning Based R2V conversion

Image annotation has been an active research area. It

becomes overly crowded recently due to the advancement of

deep learning based natural language processing and

computer vision. Karpathy et. al. achieve a breakthrough with

an end-to-end DNN model [10]. Learning only from images

and corresponding annotations, this model not only

recognizes and locates objects, but also annotates images at

different hierarchical levels. The model is realized by the

embedding visual model using RCNN (Regional

Convolutional Neural Network) [20] and the language model

using BRNN (Bi-directional Recurrent Neural Network) [21]

into the same multimodal space.

Beltramelli proposes Pix2Code [12], an end-to-end DNN

that generates XML based GUI code from mock-up images.

Even though similar to [10] in general design, the visual

model used in Pix2Code is a plain CNN block while language

model is handled by a Long-Short Term Memory (LSTM)

network [22] block. Another LSTM block is used to decode

the network’s output into code tokens. This work can be

understood as a rigid version of automated image annotation.

However, the model is not flexible because the visual

presentations of all the GUI elements in this work are

templated. Thus, it only works with GUI images based on the

fixed templates.

C. Reinforcement Learning

The agent in deep RL holds a policy set that ultimately

decides which action to be performed in the next step. At each

state of time step 𝑡 , the agent observes the state 𝑠𝑡 of the

environment, and decides action 𝑎𝑡 based on its current policy

𝜋. Reward 𝑟𝑡 is then given to the agent as the feedback from

the environment. The objective of the training process is to

train the agent so that its policy will result in maximized

reward in the future. The expected reward is calculated as

follows.

𝑅𝑡 = ∑ 𝛾𝑖−𝑡 𝑟i

𝑇

𝑖=𝑡

(1)

Where 𝑅𝑡 is the sum of expected discounted reward at time

step 𝑡, 𝑇 is the time when the episode is terminated, and 𝛾 is

the discount factor which lies within the range of [0 … 1]. The

higher the value is, the more important the future reward is.

1) Q-learning: In Q-learning, 𝑅𝑡 is approximated by the

𝑄 function. This function returns an action-state value

according to policy 𝜋 as follows:

𝑄𝜋 (𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2)

Hence, 𝑄𝜋(𝑠, 𝑎) is essentially an expected future reward if

the agent performs action 𝑎 in the given state 𝑠. In practice,

the action that gives the highest 𝑄 value is chosen to be

executed by the agent. The optimal value 𝑄∗(𝑠, 𝑎) is defined

as follows:

𝑄∗ (𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎) = max
𝜋

𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3)

Hence, using (1) and (2), equation (3) can be written as

follows:

𝑄∗ (𝑠, 𝑎) = 𝔼 [𝑟 + 𝛾 max
𝑎′

〖𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎〗] (4)

Where 𝑠′ and 𝑎′ are the state and the action of the

subsequent time step, respectively, and 𝑟 is the immediate

reward for action 𝑎 given in state 𝑠. In deep 𝑄-learning, this

value is approximated by the neural network parameterized

by 𝜃:

𝑄𝜃(𝑠, 𝑎) ≈ 𝑄∗ (𝑠, 𝑎) (5)

Thus, with a trained agent, the 𝑄 value of an action 𝑎 can

be estimated as follows:

𝑄𝜃(𝑠, 𝑎) ≈ 𝑟𝑡 + 𝛾 max
𝑎′

𝑄𝜃(𝑠′, 𝑎′) (6)

Given that 𝑦𝑡 = 𝑟𝑡 + 𝛾 max
𝑎′

𝑄𝜃(𝑠′, 𝑎′), the loss function is

defined as follows:

𝐿𝑡(𝜃𝑡) = 𝔼𝑠,𝑎,𝑟,𝑠′ [|𝑦𝑡 − 𝑄𝜃𝑡
(𝑠, 𝑎)|

2
] (7)

In practice, instead of squared difference loss, Huber loss

is usually used to stabilize the training process:

𝐿(𝛼) = {

1

2
𝛼2 if |𝛼| ≤ 𝛿

𝜎 (|𝛼| −
1

2
𝛿) otherwise

(8)

Where 𝛼 is the difference between 𝑦𝑡 and 𝑄𝜃𝑡
(𝑠, 𝑎), and 𝛿

is the point where the loss function change from quadratic to

linear.

2) Policy-Gradient: Agents trained by the Q-learning

method predict the state-action value as in formula (6), then

the action is chosen deterministically based on this value.

Thus, it heavily depends on the value function to result in

better policy approximation. On the contrary, with policy-

gradient based training, the agent is trained to output the

action probability directly from a given state. Formally,

policy-gradient optimizes policy 𝜃 to maximize the expected

discount return 𝑅𝑡:

𝜃 = argmax
𝜃

𝔼[𝑅𝑡] (9)

To optimize the policy 𝜃, the gradient of policy 𝜃 is given

by:

∇𝜃𝔼[𝑅𝑡] = 𝔼[∇𝜃 log 𝑃(𝑎𝑡)𝑅𝑡] (10)

Where 𝑃(𝑎𝑡) is the probability of action 𝑎 at time step 𝑡.

Thus, actions that lead to better expected reward 𝑅𝑡 are

encouraged. In order to train an agent using policy-gradient,

𝑅𝑡 must be known or has to be approximated.

3) Experience Memory Replay: One of the most

significant difficulties in training an agent is the strong

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1160

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

correlation between the network policy and the action

outcome of subsequent time steps. This difficulty makes

online training impossible. To break the strong correlation,

experience memory replay [6] is used.

In the experience memory replay, at every time step 𝑡, the

experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) of the agent is stored in replay

memory which is a large capacity queue. In popular works

like DQN, it is usually set to store one million experiences.

When it’s full, the oldest experience in the queue is removed

to make place for a new experience. The network is trained by

using mini batches randomly drawn from this memory.

4) Exploration in RL: Training an agent using RL

requires a right balance between exploitation and exploration.

Exploitation is relying on the learned policy to improve the

prediction accuracy while exploration allows the agent to seek

for better potential solutions (i.e. avoiding sub-optimal trap).

A popular exploration policy being used in RL is 𝜖-greedy [2].

Under this policy, the output of the agent has an 𝜖 chance of

being random.

There are other exploration policies based on

randomization, such as Thompson sampling [23] and

Bayesian sampling [24]. However, a variance of ϵ-greedy

policy named reducing ϵ -greedy is most commonly used.

With this policy, the agent starts with high exploration rate,

and gradually reduces it throughout the training process. Thus,

it allows the agent to explore in the beginning, and to focus

more on exploitation in the later phase of the training process.

In this paper, we evaluate the reducing 𝜖-greedy variances

only. All 𝜖 -greedy policies mentioned hereafter refer to

reducing 𝜖-greedy exploration policy.

III. SVG EDITOR

As seen in common in AI settings, the proposed framework

consists of two parts: the agent and the environment. As

shown in Fig. 1, the editor is playing the role of the

environment in this research. For every time step, the agent

observes the state of the editor (step 1). Then, the agent

processes the observed state and sends a new action to the

editor (step 2). So, the editor executes the action as requested

and sends reward back to the agent (step 3). And the process

goes back to step 1.

A. SVG Construction

SVG is an XML based vector image format. An SVG

document is composed of different types of elements, such as

path, circle, and rectangle. Previous works on R2V

conversion usually produce SVG image using path element

exclusively because this element is flexible and can be used

to form any type of shape. Furthermore, using fundamental

shape elements, such as rectangle, circle and arc, not only

requires the higher level of visual understanding but also

comes with none trivial challenges.

On the other hand, using a large number of elements and

paths significantly increases the SVG image size. Thus, the

output SVG requires much more computational resource to be

displayed. In this research, we utilize two fundamental shape

elements (and with their transformations) that are square

element and circle element for SVG image construction.

Fig. 2 shows the process of SVG composition, where every

episode starts with a blank canvas. During the process, the

agent is either adding a new element into the working image

or editing the most recently added element.

The newly added element has a default presentation when

it’s firstly added. The default presentations of the circle and

square elements are shown in sub-figure (a) and (g) of Fig. 5.

As the agent keeps editing, the presentation of the element is

to be updated. For example, subfigure (l) in Fig. 5 is the

presentation of a circle element after 400 steps of editing.

B. Action Space

With the above-explained process, once a new element is

added to the working SVG document, the old element is no

longer editable. Thus, the consequence of adding new

elements is more significant compared to editing them.

Therefore, for Q-learning based training, it is crucial to

distinguish the two sets of actions, set A and set B, and to

apply separated exploration policies during the training

process. Otherwise, it is impossible for the model to converge.

Table I lists all the actions of set A and B supported by the

editor. Set A consists of actions that add new element into the

working SVG document, while set B consists of editing

actions, i.e. element-shape manipulation actions.

START

END

Element EditingAdd New

Element

1a 2a 3a 4a ja

1ja 2ja 3ja 4ja ka
1ka 

Ta1Ta 2Ta 

3Ta 

Fig. 2. The process of SVG composition: the agent keeps adding and

editing new elements until the desired result is achieved. 𝑎𝑖 is action given

by the agent at time step 𝑡. 𝑇 is the last time step in the episode.

Fig. 1. The proposed framework of SvgAI. The editor is playing the role of

the environment.

A
I
A

G
E
N

T

SVG

DOCUMENT
OBSERVATION

ACTION

REWARD

SVG EDITOR

TABLE I
LIST OF ACTIONS SUPPORTED BY THE EDITOR

Set Action Id. Description

A 0, 1 Add circle/square element

B

2, 3, 4, 5 Move element left/right/up/down

6, 7, 8, 9 Compress/expand element horizontally/vertically

10, 11 Rotate the element clockwise/counter clockwise

12, 13 Reduce/increase element’s line thickness

14, .., 21 Adjusta. element’s line color (RGB𝛼)

22, .., 29 Adjusta. element’s fill color (RGB𝛼)
a. Increase/decrease value of each channel

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1161

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

C. State Observation

The state of the editor at any time step 𝑡 consists of four

components:

1. Raster version of the image being edited 𝐼𝑡.

2. Raster target image 𝑌, i.e. the image which the agent

attempts to compose by using the editor.

3. Raster image of the element being editted in 𝐼𝑡

(component 1). Thus, , this component is exactly the

same to 𝐼𝑡 when only one element is in 𝐼𝑡.

4. An auxiliary vector that describes the state of the SVG

element being edited (component 3). This auxiliary

vector consist of paremeters such as orientation,

position, line thickness, line color, and fill color.

All raster images are in the RGB 𝛼 format with the

resolution of 128 by 128 pixels. The first three component are

stacked in channels dimention to form the image stack.

IV. MODEL

A. Network Architecture

Fig. 3 shows the architecture of the proposed agent. The

above mentioned image stack is processed by the

convolutional neural network (CNN) blocks. These blocks

produce a feature map with around 27k parameters. The

combination of this feature map and the auxiliary vector is

then processed by a fully connected block to produce a score

or probability for each action supported by the environment.

B. Error and Reward

With every action received from the agent, the score is

calculated as follows:

𝑔𝑡 = exp (−
|𝐼𝑡 − 𝑌|2

𝜎2
) (11)

Where 𝑔𝑡 is the score at time step 𝑡, which describes the

similarity between the rasterized version 𝐼𝑡 of the working

SVG document at time step 𝑡 and the target image 𝑌, and 𝜎 is

the scaling factor. Thus, the domain of the score 𝑔𝑡 is from 0

to 1 where 1 means perfect matching.

Base on the score 𝑔𝑡, the reward is given to the agent as

follows:

𝑟𝑡 = {
1 + 𝑔𝑡 𝑖𝑓 𝑔𝑡 > 𝑔𝑡−1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

Where 𝑟𝑡 is the immediate reward at time step 𝑡. Thus, the

environment returns 0 reward when the action results in no

improvement, and returns a small reward ranging from 1 to 2

depending on the similarity between the result and the target

image.

Given 𝑣𝑡 which is the number of SVG elements at time

step 𝑡, the penalty 𝑝𝑡 is given as follows:

𝑝𝑡 = {
−1 𝑖𝑓 𝑣𝑡 > 𝑣𝑡−1

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(13)

Hence, the discounted reward 𝑅𝑡 at time step 𝑡 is calculated

as follows:

𝑅𝑡 = ∑(𝑟𝑖 + 𝑝𝑖)𝛾𝑖−𝑡

𝑇

𝑖=𝑡

(14)

Where 𝛾 is the discount factor and 𝑇 is the length of the

episode. By giving a penalty for adding elements more than

necessary, the agent is discouraged to perform actions in set 𝐴.

However, this technique is only feasible with a controlled

environment in which the structure of a state is known. The

training process is expected to be slower without this penalty.

C. Q-learning and Exploration Policy

In our early attempts, the conventional 𝜖-greedy policy was

used. On average, with the action sets exlained in Section III-

B, there was a new element added into the image for every 14

adjustments during the exploration process. It means,

regardless the value set to the exploration rate 𝜖, actions in set

A were explored more than necessary. This bad exploration is

most likely making the network to be trapped in sub-optimal

solution [25].

The simplest solution is to apply lower weight for the

actions in set A during the random exploration process. The

probability for an action being performed randomly by the 𝜖-

greedy policy is:

𝑝(𝑎𝑖) = {
𝜖𝜔𝑎 if 𝑎𝑖 ∈ A
𝜖𝜔𝑏 if 𝑎𝑖 ∈ B

 (15)

Where 𝜔𝐴 and 𝜔𝐵 are weights for the actions of set A and

B. However, we observe that the agent trained by using this

Conv 1

[8 × 8 × 12 × 96] – Stride 4

Observation

[128 × 128 × 12]

Feature map 1

[31 × 31 × 96]

Conv 2

[4 × 4 × 96 × 192] – Stride 2

Feature map 2

[14 × 14 × 192]

Conv 3

[3 × 3 × 192 × 192] – Stride 1

Feature map 3

[12 × 12 × 192]

Flattened

feature map 3

Auxiliary

vector

FC 1

[2048]

FC 2

[2048]

Action scores

[number_of_actions]

Fig. 3. The architechture of the agent. The stacked images explained in Secion III-C is processed by the convolution layers. Auxilary vector is concatenated

with the output of the convolution layers before feeding to fully connected blocks at the end of the network.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1162

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

weighted 𝜖-greedy policy often inserts incorrect element into

the working image. A possible explanation for this problem is

that the 𝜖 value is already saturated when the agent does not

learn yet the long-term reward of adding the right element.

Prolonging the exploration phase does not improve the

result because the agent has to keep exploring more on

element editing (i.e. action set B) in order to discover better

solution. Our approach to solve this problem is to apply the

different reducing 𝜖 -greedy policies (hereafter referred as

dual 𝜖-greedy policy) on each action set. In this setting, there

are two independent reducing 𝜖-greedy polices applied for

each action set:

𝑝(𝑎𝑖) = {
𝜖𝑎𝜔𝑎 if 𝑎𝑖 ∈ A
𝜖𝑏𝜔𝑏 if 𝑎𝑖 ∈ B

 (16)

Where 𝜖𝐴 and 𝜖𝐵 are weight values of two 𝜖 -greedy

policies for the action set A and B, respectively. In this way,

the action set A and B can be independently explored.

Algorithm 1 shows the pseudo code to train the agent using

Q-learning paradigm with dual 𝜖-greedy policy, where the

random function has several forms (analogous to C++’s

function overloading). The function Rnd(A) and Rnd(B)

randomly select an action in set 𝐴 and 𝐵. Rnd(X ∣ W) picks

element from X with weight W . The difficulty 𝑘 is the

minimum number of steps to compose the target image from

a blank canvas as explained in Section IV-D.

D. Policy-Gradient

As mentioned in Section II-C-2, in order to train the agent

using policy-gradient, 𝑅𝑡 has to be known. This value can be

approximated for training. Thus, it makes the efficiency of the

training process again depend on an external function.

Another solution is to fully unroll the episodes. Monte Carlo

method is commonly used for this purpose. However, this

method is intractable in the environment with a large action

space, as it requires an immerse computational resource.

To overcome this difficulty, we unroll the episode and train

the agent reversively. As shown in Fig. 4, supposing that 𝑘 is

the minimum number of steps to compose the target image

from a blank canvas, if an agent is trained to perform last 𝑑

step from time step 𝑡, action at time step 𝑡 − 1 can be unrolled

in a brute force way:

𝑃(𝑎𝑖 ∣ 𝑠𝑡−1) =
[𝐷(𝑠𝑡∣𝑎𝑖

, 𝑌) = d]

∑ [𝐷 (𝑠𝑡∣𝑎𝑗
, 𝑌) = d]𝑗

 (17)

Where 𝑃(𝑎𝑖 ∣ 𝑠𝑡−1) is the probability of action 𝑎𝑖 given the

state 𝑠𝑡−1 at time step 𝑡 − 1 , 𝐷(𝑠𝑡∣𝑎𝑖
, 𝑌) is the minimum

number of steps for the agent to finish the episode given in the

state 𝑠𝑡∣𝑎𝑖
 at time step 𝑡 which is the result from action 𝑎𝑖

from the last time step.

Blank canvas Target image

StepsCurrent image

k

d

t

Fig. 4. The minimum number of steps to compose target image from a

blank canvas is 𝑘. The minimum number of steps to compose target image

from the current image is 𝑑.

Algorithm 2 shows the pseudo code of the policy-gradient

based training. The agent is trained to work on the

incrementally difficult states. The difficulty of a state is

measured by distance 𝑑 . Once the policy network 𝜃𝑑 for

distance 𝑑 is converged, it is then trained with more difficult

distance 𝑑 + 1. 𝑈(⋅) is an uniform sampling function.

The primary disadvantage of this method is that it is only

feasible with a controlled environment where the difficulty of

the state can be calculated. However, it is useful in

combination with techniques such as transfer learning when

applying it for more complex data.

V. EVALUATION

A. Dataset

Works on image-processing based R2V conversion have

many diverse objectives. As the result, they mostly use

relatively plain and small datasets. The diversity in research

objectives also leads to the lack of unified evaluation dataset

[15]. While the complexity of these data sets is suitable for

this research, their modest size and heterogeneous properties

are not adequate to be used to train DNN.

ALGORITHM 1. Q-LEARNING BASED TRAINING ALGORITHM

inputs: Maximum time step 𝑡𝑚𝑎𝑥
Number of actions 𝑛

output: Optimized policy 𝜃
variables: 𝑀 experience memory

𝐿 training interval
𝑡 time step
𝑔𝑡 global counter

while not converged

𝑌 ← random target image 𝑌 with random 𝑘
for 𝑡 = 0 to 𝑡𝑚𝑎𝑥

𝑔𝑡 ← 𝑔𝑡 + 1
𝑎𝐴 ← Rnd(A) ; 𝑎𝐵 ← Rnd(B)

𝑎𝑄 ← max
𝑎

(𝑄𝜃(𝑠𝑡, 𝑎))

𝑎𝑡 ← Rnd (𝑎𝐴, 𝑎𝐵, 𝑎𝑄 ∣ 𝑝(𝑎𝐴), 𝑝(𝑎𝐵), 𝑝(𝑎𝑄))

unroll episode with action 𝑎𝑡
add 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 to 𝑀
if 𝑔𝑡 mod 𝐿 = 0

train mini batch taken from 𝑀
if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 end

break

ALGORITHM 2. POLICY-GRADIENT BASED TRAINING ALGORITHM

inputs: Upper limit 𝑘𝑚𝑎𝑥
Number of actions 𝑛

output: Optimized policy 𝜃
variables: 𝑀 experience memory

𝑔𝑡 global counter
𝐿 training interval

for 𝑑 = 1 to 𝑘𝑚𝑎𝑥

while θ𝑑 is not converged:
𝑘 ← 𝑈([𝑑. . 𝑘𝑚𝑎𝑥])
𝑡 ← 𝑘 − 𝑑
with random 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 at difficulty 𝑘

𝑌 ← last state of 𝑒𝑝𝑖𝑠𝑜𝑑𝑒
𝑠𝑡−1 ← state at time step 𝑡 − 1 of 𝑒𝑝𝑖𝑠𝑜𝑑𝑒
for 𝑖 = 0 to 𝑛

if 𝐷(𝑠𝑡∣𝑎𝑖
, 𝑌) = 𝑑:

add (𝑠𝑡−1, 𝑎𝑖) to 𝑀
𝑔𝑡 ← 𝑔𝑡 + 1
if 𝑔𝑡 mod 𝐿 = 0

train mini batch taken from 𝑀

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1163

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

With the above reasons, the training and the evaluation of

the agent have been done on a randomly generated data set. It

not only helps in avoiding the above-mentioned problems, but

also provides a controlled level of difficulty and the

uniformity of the dataset. Target images are created by

rasterizing the randomly generated SVG documents. These

documents contain a single shape element with difficulty 𝑘.

Fig. 5 shows examples of target images in format <element>-

<k>.

B. Episode Termination

The episode is terminated if one of the following conditions

is met:

• After a fixed time step 𝑡𝑚𝑎𝑥. Since there is no further

step after the termination, for Q-learning, the 𝑄 value

as mentioned in (6) at the final step 𝑡𝑚𝑎𝑥 is:

𝑄𝜃(𝑠𝑡𝑚𝑎𝑥
, 𝑎𝑡𝑚𝑎𝑥

) = 𝑟𝑡𝑚𝑎𝑥
.

• When 𝑔𝑡 in (11) is greater than a certain threshold.

C. Frame Skip

Due to the computational demand of the agent, it is

inefficient to let the agent perform an action at every time step.

The popular solution is the frame skip [14] where the agent

only interacts with the environment in every 𝑟 steps.

Therefore, once an action is decided by agent, it repeats 𝑟-

time steps. A popular value of 𝑟 in many tasks is 4 as it is

usually a good tradeoff between the performance and the

training speed.

In this research, dismissing frame skip helps to improve the

performance of the agent because one action repeated several

times makes the agent miss its target due to overshooting.

D. Parameter Update

The agent does not update its parameter at every time step,

but once for every 𝐿 experiences added in the replay memory.

Thus, given the batch size of 𝑁, one experience is learned by

the agent 𝑁/𝐿 times in average.

E. Settings

We have implemented the agent using the model proposed

in Section IV. We evaluate the performance of the agent

trained by different training schemes:

• Policy-gradient

• Q-learning under different exploration policies

o Conventional ϵ-greedy policy.

o Weighted ϵ-greedy policy.

o Dual 𝜖-greedy policy as.

Table II shows the hyperparameters used for the

experiments. Policy-gradient training experiments share the

first 5 parameters with other experiments.

F. Performance

Fig. 6 shows the distribution of the evaluation scores of the

agent under different training schemes. Similar to the training

configuration, the target images used for evaluation are

generated with random difficulty 𝑘 given that 𝑘 ≤ 400. The

box plot describes the distribution of evaluation scores by

5 × 104 iterations interval from 0 to 40 × 104 . For each

scheme, we train the agent 5 times. Each time, we evaluate

the agent after every 100 training iteration and collect

evaluation score calculated using equation (11). Thus, each

box describes the distribution of 500 evaluation scores. The

colored box indicates IQR (interquartile range). The

horizontal line within the box indicates the median score, and

the extended bar indicates the maximum and minimum scores.

Dots indicate outliers. Our proposed dual 𝜖-greedy policy not

only shows significant performance gain but also highly

stable compared to conventional 𝜖 -greedy policy and

weighted 𝜖 -greedy policy during the training process. The

agent trained by policy-gradient achieves the best result and

the high stability when the number of iterations is more than

or equal to 15 × 104.

G. Accuracy

With dual 𝜖-greedy policy, our trained agent favors adding

circle element and achieves higher score by editing circle

element in general. To further analyze this observation, we

evaluate each trained agents for 500 episodes with the same

setting used in Section V-F and drill down the evaluation

results. In general, evaluation results can be divided into two

sets:

• Circle set: consists of episodes with target images that

contain circle elements only (250 episodes for each

agent).

• Square set: consists of episodes with target images that

contain the square elements only (250 episodes for each

agent).

(a) Circle-0 (b) Circle-50 (c) Circle-100 (d) Circle-200

(e) Circle-300 (f) Circle-400 (g) Square-0 (h) Square-50

(i) Square-100 (g) Square-200 (k) Square-300 (l) Square-400
Fig. 5. Examples of images generated by training and evaluation

processes. The caption under each image shows the name of the element

and the minimum number of steps (𝑘 as in Fig. 4) required to compose that

image from a blank canvas by using the editor.

TABLE II

HYPER-PARAMETER SETTING FOR EXPERIMENTS

 Conventional Weighted Dual

Minibatch size 32 32 32

Upper limit 𝑘𝑚𝑎𝑥 400 400 400

Train Interval 𝐿 16 16 16

Discount factor 𝛾 0.999 0.999 0.999

Memory replay size 1e6 1e6 1e6

𝜖-greedy
max - min 1 – 0.1 1 – 0.1 -

start - end 0 – 1e6 0 – 1e6 -

𝜖𝐴-greedy
max - min - - 1e-3 – 0

start - end - - 5e6 – 10e6

𝜖𝐵-greedy
max - min - - 0.999 – 0.1

start - end - - 0 – 1e6

𝑊𝐴 1 1e-3 1

𝑊𝐵 1 999e-3 1

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1164

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

With each set, we analyze the performance of the agent on

action set A and set B separately. The agent’s performance on

action set A is measured by the number of episodes where a

correct shape element inserted into the working SVG

document over the total number of episodes in the set.

Correctly insterting a shape is important because further

editing an incorrect element results in a large number of bad

experience that negatively affects the agent’s policy network.

Table III shows the performance on action set A of the agents

trained under different training schemes.

To evaluate the agent’s performance on action set B. We

again evaluate each agent for 500 episodes with an element

already inserted. The evaluation results are divided into two

sets:

• Set 1: consists of episodes with target images that

contain the same element with the pre-inserted element

(250 episodes each agent).

• Set 2: consists of episodes with target images that

contain an element that is different from the pre-

inserted element (250 episodes for each agent).

Table IV shows the agent’s performance on action set B.

The evaluation scores of set 1 are in the grey background. For

this set, the performance of agents trained by policy-gradient

are better than the agents trained by Q-learning.

The evaluation scores of set 2 are in white background.

Interestingly, for set 2, even with the wrong element pre-

inserted, the performance of all the trained agents are over 0.5.

This reflects the fact that all the agents are trained with a

sustainable amount of episodes in which the wrong element is

inserted. This result is also correlated to action set A

performance shown in Table II: Because the agents trained by

policy-gradient have high accuracy for action set A, they

rarely experience the training episodes where the wrong

element is added. Thus, on set 2, their performance is even

lower than the performance of agents trained by dual ϵ-greedy

policy (bolded italic v.s. italic on Table IV).

H. SVG Quality

We visually compare the SVG image produced by our

trained agent with two popular opensource and commercial

R2V solutions: Potrace and AutoTrace [26]. Fig. 7 shows the

comparison between the outputs. As shown in the figure,

Potrace not only has a problem on color quantization but also

results in distorted circle. On the other hand, AutoTrace

produces a much better result, however, the linear gradient fill

has been converted into color blobs. Without any manual

configurations prior to the conversion/drawing process, our

agent produces significantly better result.

T

a
rg

e
t

S
v

g
A

I

P
o

tr
a
c
e

A
u
to

T
ra

c
e

Fig. 7. Comparision between SVG images produced by our agent (SvgAI),

Portrace and AutoTrace. SvgAI trained by Q-learning and policy-gradient

produces identical result for this example.

Not only visually better, but the SVG images produced by

our agent are also smaller both in file size and node counts.

As shown in Table V, SVG images produced by our agent are

40% smaller in size and 63% smaller in node counts than the

second best solution in average over 100 images where each

one contains a single element, i.e. a circle or a square.

TABLE V

AVERAGE SVG SIZE COMPARISON

 Target SvgAI Potrace AutoTrace

File Size 5.8KB 852B 1.4KB 15.5KB

Node Count - 1.4 2.7 174

Color ≥ 16mil ≥ 16mil 2 10

VI. CONCLUSION

In this paper, we introduce a new paradigm to solve the

R2V conversion problem. We propose an agent model and a

framework to train the agent to use SVG editor by using Q-

learning and policy-gradient. In order to successfully train the

agent by using Q-learning, we divide the action space into two

sets and apply independent exploration policies on each

Fig. 6. Evaluation score distribution of the agent throughout the training

process under different training scheme.

TABLE IV
AGENT PERFORMANCE ON ACTION SET B

Agent Pre-insterted
Target Image

Circle Square

Policy-Gradient
Circle 0.97 0.65

Square 0.71 0.94

Q
-l

ea
rn

in
g
 Dual 𝜖-greedy

Circle 0.93 0.78

Square 0.72 0.89

Weighted 𝜖-greedy
Circle 0.81 0.76

Square 0.67 0.79

Conventional 𝜖-greedy
Circle 0.59 0.66

Square 0.61 0.73

TABLE III
AGENT PERFORMANCE ON ACTION SET A

 Circle set Square set

Policy-gradient 0.99 0.95

Q-learning

Dual 𝜖-greedy 0.94 0.76

Weighted 𝜖-greedy 0.67 0.58

Conventional 𝜖-greedy 0.53 0.61

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1165

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

action set. Evaluation results show the efficiency of the

proposed dual 𝜖-greedy policy and policy-gradient. The SVG

image quality produced by our agent is also superior

compared to the popular software solutions. The problem of

incorrect shape detection as explained in Section V-G shows

a weakness of Q-learning in applying it to this problem. While

policy-gradient produces the most efficient agent, it can only

be used for managed environments. For future works, we will

investigate and improve the training process for better reward

back-propagation and for better shape detection accuracy.

REFERENCES

[1] D. Silver et al., “Mastering the game of Go with deep neural

networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,

Jan. 2016.
[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An

introduction, vol. 1, no. 1. MIT press Cambridge, 1998.

[3] G. Lample and D. S. Chaplot, “Playing FPS Games with Deep
Reinforcement Learning.,” in AAAI, 2017, pp. 2140–2146.

[4] Lin and Long-Ji, “Reinforcement learning for robots using neural

networks.” Carnegie Mellon University, 1992.
[5] V. Mnih et al., “Human-level control through deep reinforcement

learning.,” Nature, vol. 518, no. 7540, pp. 529–33, Feb. 2015.

[6] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
Experience Replay,” Nov. 2015.

[7] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double Q-Learning,” Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI Press, pp. 2094–2100,

2016.

[8] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N.
De Freitas, “Dueling network architectures for deep reinforcement

learning,” Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48.
JMLR.org, pp. 1995–2003, 2016.

[9] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement

Learning,” in Proceedings of The 33rd International Conference on
Machine Learning, 2016, vol. 48, pp. 1928–1937.

[10] A. Karpathy and L. Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 4, pp. 664–676, Apr. 2017.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, May 2017.

[12] T. Beltramelli, “pix2code: Generating Code from a Graphical User
Interface Screenshot,” May 2017.

[13] H. S. M. Al-Khaffaf, A. Z. Talib, and R. A. Salam, “Empirical

performance evaluation of raster-to-vector conversion methods: A
study on multi-level interactions between different factors,” IEICE

Trans. Inf. Syst., vol. 94, no. 6, pp. 1278–1288, 2011.

[14] G. Brockman et al., “OpenAI Gym,” Jun. 2016.
[15] V. Lacroix, “Raster-to-Vector Conversion: Problems and Tools

Towards a Solution A Map Segmentation Application,” in 2009

Seventh International Conference on Advances in Pattern
Recognition, 2009, pp. 318–321.

[16] R. Kansal and S. Kumar, “A framework for detection of linear

gradient filled regions and their reconstruction for vector graphics,”
2013.

[17] K. Kawamura, H. Watanabe, and H. Tominaga, “Vector

representation of binary images containing halftone dots,” in 2004
IEEE International Conference on Multimedia and Expo (ICME)

(IEEE Cat. No.04TH8763), pp. 335–338.

[18] P. Selinger and P. Selinger, “Potrace: a polygon-based tracing
algorithm,” IN HTTP://POTRACE.SOURCEFORGE.NET, 2003.

[19] X. Hilaire and K. Tombre, “Robust and accurate vectorization of line

drawings,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6,
pp. 890–904, Jun. 2006.

[20] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference

on Computer Vision (ICCV), 2015, pp. 1440–1448.
[21] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural

networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–

2681, 1997.
[22] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”

Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[23] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,

vol. 25, no. 3/4, pp. 285–294, 1933.

[24] J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate, “A

Bayesian sampling approach to exploration in reinforcement

learning,” in Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, 2009, pp. 19–26.

[25] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement

learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.
[26] M. Weber, “Autotrace-converts bitmap to vector graphics.” 2004.

Anh H. Dang (S’09) received his bachelor degree in

business administration, information &
communication technology from Ritsumeikan Asia

Pacific University (Beppu, Oita, Japan) in 2010. He

then received the master degree in computer science
from Waseda University (Shinjuku, Tokyo, Japan) in

2012. Since 2012, he is a Ph.D. candidate at Waseda

University. He is a member of IEEE, ACM, and
IEICE. His research interests are machine learning,

artificial intelligence, and computer vision.

Prof. Wataru Kameyama (M’86) received the

bachelor’s, master’s, and D.Eng. degrees from the
School of Science and Engineering, Waseda

University, in 1985, 1987, and 1990, respectively. He

joined ASCII Corporation in 1992, and was
transferred to France Telecom CCETT from 1994 to

1996 for his secondment. After joining Waseda

University as an Associate Professor in 1999, he has
been a Professor with the Department of

Communications and Computer Engineering, School of Fundamental

Science and Engineering, Waseda University, since 2014. He has been
involved in MPEG, MHEG, DAVIC, and the TV-Anytime Forum activities.

He was a Chairman of ISO/IEC JTC1/SC29/WG12, and a Secretariat and

Vice Chairman of the TV-Anytime Forum. He is a member of IEICE, IPSJ,
ITE, IIEEJ, and ACM. He received the Best Paper Award of Niwa-

Takayanagi in 2006, the Best Author Award of Niwa-Takayanagi in 2009

from the Institute of Image Information and Television Engineers, and the
International Cooperation Award from the ITU Association of Japan in 2012.

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 7, Issue 6, November 2018 1166

Copyright ⓒ 2018 GiRI (Global IT Research Institute)

	I. INTRODUCTION
	II. RELATED WORKS
	III. SVG EDITOR
	IV. MODEL
	V. EVALUATION
	VI. CONCLUSION
	REFERENCES

