
 

 

Abstract—The SHA-256 algorithm is used to ensure the 

integrity and authenticity of data in order to achieve a good 

security thus is playing an important role  in various 

applications, such as e -transactions and bitcoins. The 

SHA-256 computation capacity is  a main research direction 

of Hashing Algorithm. In order to improve the computation 

capacity of hardware, the proposed design first uses pipeline 

principle  and circuitry of timing prediction to find a most 

efficient architecture for implementation. Then it is 

optimized with hash function and hardware characteristics  

to give a high-performance hardware architecture of 

SHA-256 hash. Three pipelines are used to replace the 

critical path in the round functions which can shorten the 

timing path, and divide the computation chain into 

independent steps. Multi-computation of SHA-256 is 

working in paralle l pipelines, indicating that the 

computation capacity can be 3 times of that with standard 

SHA-256 implementation. The proposed SHA-256 hardware 

architecture has be en implemented and synthesized with 

Intel 14nm technology. Simulation and synthesis results 

show the proposed SHA-256 hashing throughput can be 

improved by 3 times with 50.7% power reduction, at an area 

cost of 2.9 times compared to that of the standard 

implementation.      

 
Keyword—Application specific integrated circuits,  

Cryptography, High-speed integrated circuits, Low-power 

electronics  

 

I. INTRODUCTION 

ECURE hashing algorithm is used to ensure the data 

integrity and authenticity while being stored and 

transferred. Hash functions take input data of arbitrary 

length and convert them into some fixed data, called hash 

value or message digest. The SHA-256 of hashing 

 
——————————————————————— 

Manuscript received Jan. 10, 2019.  This work is a follow-up of the invited 

journal to the accepted & presented paper of the 21th International Conference 

on Advanced Communication Technology (ICACT2019), and Grant ID is 

ICACT-20190011. 

Ruizhen Wu is with the Inspur Electronic Information Industry Co.,Ltd, 

Xi’an, Shaanxi 710071 China.  (Phone: +86 15909206044; e-mail: 

wuruizhen@inspur.com).  

Xiaoyong Zhang is with the Biren Technology Ltd, Shanghai 201210 

China. (E-mail: xyz8070@126.com). 

Mingming Wang is with the Inspur Electronic Information Industry Co., 

Ltd, Xi’an, Shaanxi 710071 China. (E-mail: 

wangmingming02@inspur.com). 

Lin Wang is with the Inspur Electronic Information Industry Co.,Ltd, 

Xi’an, Shaanxi 710071 China. (E-mail: wanglinlc@inspur.com). 

algorithm is playing an important role in various 

applications. Almost all e-transactions, high-throughput 

designs of security schemes are needed. Bitcoin is a new 

and popular use of SHA-256, as the POW (“Proof of 

Work” [1]) mentions in the Bitcoin protocol:  the POW 

requests a huge number of SHA-256 computations to find 

a proper 32-bit number to satisfy the protocol requirement. 

The first finder is awarded by bitcoin, which means the 

computation capacity of SHA-256 is the key factor to get 

awarded, therefor the main research direction.  

The SHA-256 hash architecture acts more and more 

important nowadays thus several improved designs are 

proposed. To embed a security engine in a RFID tag, two 

compact SHA-256 implementation are presented, a low 

area design and a low power design [2]. To achieve the 

improvement several adder cycles and adder selectors  

were added in the round computation which made it very 

suitable for power-area balanced applications. 

One application of ideas and techniques from functional 

languages to the model-driven design and synthesis of 

hardware artifacts for SHA-256 was proposed in [3]. The 

co-design of hardware and software not just made the 

SHA-256 algorithm easier to implement, but also gave a 

more effective way to optimize the performance of 

SHA-256 from software to hardware based on designer’s 

need. 

However the most challenging request of SHA-256 is 

high processing speed and low power in hardware. An 

optimized pipelined architecture of SHA-256 hash function 

has been implemented in [4] which used custom data path 

that enforces the reuse of modules based on which novel 

processor architecture was implemented. Reference [5] 

proposed a SHA-256 unfolding design based on 

reconfigurable hardware modules. The complex linear 

computing of SHA-256 was reconfigured by newly added 

computation modules. Reference [6] implemented 

SHA-256 architecture based on operation rescheduling to 

minimize the critical path delay. Reference [7] proposed a 

more effective hardware to control the SHA-256 

computation, which was using the finite state machine 

(FSM).  

The purpose of this paper is to provide a high 

A High-Performance Parallel Hardware 

Architecture of SHA-256 Hash in ASIC 

Ruizhen Wu*, Xiaoyong Zhang**, Mingming Wang*, Lin Wang* 

*Inspur Electronic Information Industry Co.,Ltd, Xi’an Shaanxi Province China  

**Biren Technology  Ltd, Shanghai China 
wuruizhen@inspur.com, xyz8070@126.com, wangmingming02@inspur.com, wanglinlc@inspur.com 

S 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 8, Issue 5, September 2019 1242

Copyright ⓒ 2019 GiRI (Global IT Research Institute) 



 

performance parallel computation hardware architecture in 

ASIC of SHA-256 hash. The organization of this paper is: 

Section 2 describes the classic SHA-256 algorithm; 

Section 3 uses the pipeline principle and circuitry timing 

prediction to find the most efficient pipeline architecture 

for SHA-256. Section 4 presents the proposed SHA-256 

parallel computation hardware architecture with 3 

pipelines. The implementation results and comparison 

with other designs are in Section 5. The last section 

provides the conclusions. 

II. SHA-256 ALGORITHM 

This section describes the function of SHA-256 hash. A 

detailed description of the SHA-256 hashing algorithm can 

be found in the official NIST standard [8]. The SHA-256 

computation can be divided into 2 steps. The first step is  to 

pre-process the original messages. It involves message 

padding and expanding the message for the round 

computation. The padding means appending bits 

according to some rules until the total length is integer of 

512-bit. Afterwards every 512-bit will be expanded to 64*32 

bit for SHA-256 round computation.  

Here we use “t” to indicate the number of transformation 

rounds. 

When 0≤t≤15:   

When 16≤t≤63: 

   (1) 

The first 16 W t are input messages. And after that the 

others are from iterative operation. In equation (1) the σ is 

calculated by: 

  (2) 

(3) 

In (2) and (3), the ROTRn(x) means a right rotation of x by 

n bits, and SHRn(x) means shift right of x by n bits. 

The whole SHA-256 computation is showed in Fig. 1. 

A

B

C

D

E

F

G

H

Σ0 

M
aj

(A
,B

,C
)

Σ1 

C
h

(E
,F

,G
) R0

R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15

Kt

Wt

σ0

σ1

Input

 
Fig. 1.  SHA-256 hashing algorithm 

 

The second step is called round computation shown in 

left part of dotted line in Fig. 1 is to obtain the “a”~ “h”, 

which can be calculated by: 

  (4) 

  (5) 

  (6) 

  (7) 

  (8) 

  (9) 

  (10) 

  (11) 

  (12) 

  (13) 

The first round of a, b, c, d, e, f, g and h are assigned by 

the initial value of SHA-256 definition. The Kt is a constant 

in 32-bit and 64 values overall. And the four function 

computations are showed in (14)-(17): 

  (14) 

  (15) 

       (16) 

  (17) 

The  represent bitwise XOR operation, the  

represent bitwise AND operation and the bitwise 

complement operation. 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 8, Issue 5, September 2019 1243

Copyright ⓒ 2019 GiRI (Global IT Research Institute) 



 

Each round of (6)-(13) can generate 8 hash values, they 

were showed in the right part of Fig. 1 and calculated by: 

  (18) 

  (19) 

  (20) 

  (21) 

  (22) 

  (23) 

  (24) 

  (25) 

The final output is obtained by the 64th round has h 

value as below: 

  (26) 

III. PIPELINE ARCHITECTURE  

It is clear from [4]-[7] that to achieve high processing 

speed and low power in hardware the pipeline architecture 

is a good choice of implementation which has gained a lot 

of interests. From hardware design perspective the 

pipeline architecture can work in various forms as long as 

the algorithm calculation units can be divided to satisfy 

the pipeline architecture needs. 

So to find a most efficient pipeline architecture for high 

processing speed and low power in hardware we need to 

consider the change of delay and area cost in SHA-256 

hardware architecture. 

A. State-of-art Pipeline principle 

The pipeline architecture’s core concept is to use FFs 

(Flip-Flops) to divide the serial working flow and rebuild it 

into a parallel working flow. So the timing model based on 

the hardware function requirement have to be built first to 

find out the most efficient hardware architecture solution. 

From [9-15] we used the state-of-art pipeline method to 

consider the relationship between delays and timing 

combinations with a piecewise linear model. Consider the 

serial working flow’s  path delay is “D” and area is “G”.  

And the parallel working flow’s one stage pipeline path 

delay is “S” and area is “L”. Then the relationship between 

the serial working flow and parallel working flow can be 

described as Fig. 2 showed. 

 

D

Original critical path

D/n D/nS D/n  

n stage pipelines insertion

S S

 
Fig. 2.  N stage pipeline insertion into a critical path 

 

The serial working flow can be described as an original 

critical path which can insert n stage pipelines to work as a 

parallel working flow. So the new path delay with n stage 

pipelines inserted is: 

  (27) 

The new area with n stage pipelines inserted can be 

described as: 

  (28) 

To give a most efficient pipeline architecture means to 

find an optimum solution which can have the smallest 

frequency per area. And that equals to the same question 

of finding out the smallest area cost for maximum 

achievable frequency. Considering the maximum 

achievable frequency can be described as “1/D” so the 

area cost is: 

  (29) 

Which means the n stage pipelines cost can use (27)-(29) 

to summarize as: 

  (30) 

B. Update the pipeline principle 

Evolve the theory and model of Ⅲ.A with Ⅱ’s SHA-256 

algorithm to update the pipeline architecture, the N stage 

pipelines insertion of Fig. 2 can be described as: 

D/n D/nS D/n  S S
n:1

MUX

ABCDEFGH(0)

ABCDEFGH(1)

  

ABCDEFGH(n-1)

1:n
DE

MUX

 

 
Fig. 3.  N stage pipeline insertion with SHA-256 

 

From Fig. 3 it is clear to see that besides the (30) 

considering FFs’ cost there are additional cost needed for 

MUX and DEMUX’s input and output. So for A~H’s 

calculation each pipeline insertion needs an extra 8 

registers to temporarily store values of A~H for MUX and 

DEMUX. No matter how many pipelines are inserted the 

hardware architecture only needs a pair of MUX and 

DEMUX. Taking   Intel 14nm technology devices’ 

parameter for reference to calculate the area cost with (28), 

the area of (28) can be updated to: 

  (31) 

The Lm&d is the area cost of MUX and DEMUX, which is 

almost 0.25L of (28). The 8*n*L represents the extra 8 

registers area cost for n pipelines insertion. 

Do the same calculation to find the delay relationship of 

MUX and DEMUX with (28) to update the (27): 

  (32) 

The 0.46 here is because in STA report it can find that 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 8, Issue 5, September 2019 1244

Copyright ⓒ 2019 GiRI (Global IT Research Institute) 



 

one AND gate’s delay is almost 0.46 time of a FF’s delay. 

Use (31) and (32) to update the cost equation as shown in 

(30): 

(33) 

In (33) only the “n” is a variable, the others are all 

decided by the technology lib used which can be 

considered as fixed values here. So the optimum solution 

means to find out the minimum value of (33). 

With the actual technology lib’s parameters. the fixed 

values of (33) can be calculated as: 

  (34) 

  (35) 

  (36) 

  (37) 

Calculating the (33) with (34)-(37), the relationship curve 

of cost’’ with different n is showed in Fig. 4. 

 
Fig. 4.  Relationship curve of cost’’ with different n 

According to Fig. 4 it is clear to see that when n=3 the 

cost gets the minimum value which means the most 

efficient pipeline architecture for SHA-256 calculation with 

Intel 14nm technology lib is 3 pipelined architecture. 

IV. PROPOSED DESIGN 

To realize the 3 pipeline architecture of SHA-256 we 

need to divide the SHA-256 calculation into 3 parallel 

working flow in an efficient way. From the SHA-256 

hashing algorithm we can see what limits the computation 

speed most is (4)-(17). In fact the (1)-(3) can be done quite 

earlier but has to wait a very long time for (4)-(17) to finish 

a round of whole SHA-256 computation. The proposed 

design is to optimize the (4)-(17) in order to get a better 

performance in 3 steps. 

A. Critical Path Analysis 

To analyze the critical path of SHA-256 we unfold the 

computation steps, which are showed in Fig. 5. 

E(t) Σ1 

ChF(t)

G(t)

K+W(t)

H(t)

A(t)

B(t)

C(t)

Σ0 

Maj

D(t)

E(t+1)

A(t+1)

 
Fig. 5.  Critical path  

 

The symbols in Fig. 5 are same as Fig. 1, and the “+” 

represents the addition modulo 232. As known the most 

problematic characteristic of SHA-256 is the addition 

modulo 232, which slows down the speed heavily versus 

the other calculation steps [16]. Based on this fact, we find 

the most critical path in SHA-256 round calculation. As Fig. 

5 shows, the most critical path is showed in dotted line, 

which means from calculation e(t) to obtain a(t+1) in each 

round is the longest path worth optimizing (same as other 

long path with 3 “+” calculations). 

B. Break Critical Path 

To optimize the SHA-256 computation it needs to break 

the critical path into shorter paths thus make it possible for 

the whole computation chain to work at a higher frequency. 

For this need, we consider each addition modulo 232 

calculation as one basic unit of SHA-256 calculation in 

each round. To separate all calculations we insert FFs to 

each minimum unit. 

E(t) Σ1 

ChF(t)

G(t)

K+W(t)

H(t)
A(t)

B(t)

C(t)

Σ0 

Maj

D(t)

E(t+1)

A(t+1)

T11
(t)

T12
(t)

T1
(t)

T2
(t)

 
Fig. 6.  FFs insertion  

 

As Fig. 6 shows, we insert 4 32-bits FFs (The grey 

rectangles) in each round of SHA-256 to separate all basic 

units. With the insertion, there is only one addition 

modulo 232 calculation between each two FFs. And the T1 

(t) and T2 (t) mean the FFs for T1 and T2 calculation as 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 8, Issue 5, September 2019 1245

Copyright ⓒ 2019 GiRI (Global IT Research Institute) 



 

what equation (4) and (5) show, n means the round number 

of whole SHA-256 computation. T11 (t) and T12 (t) are 

intermediate results for T1, “t” the same as before. 

Because the long path is broken， we can run almost 3 

times faster than before, but each round will take 3 cycles 

now. 

C. Reschedule With Parallel Pipeline 

In standard SHA-256 computation, variable “A” to “H” 

are calculated one after another. But most of them are just 

a bit shifting operation which is much easier compared to 

addition modulo 232 calculation. Consequently, we 

reschedule the SHA-256 computation based on step B’s 

basic units with parallel pipeline. 

E(t) Σ1 

ChF(t)

G(t)

K+W(t)

H(t)
A(t)

B(t)

C(t)

Σ0 

Maj

D(n)

E(t+1)

A(t+1)

T11
(t)

T12
(t)

T1
(t)

T2
(t)

D(t+1)
C_D
(t)

 Fig. 7.  Variable update 

 

As Fig. 7 showed, to achieve parallel computation, a key 

intermediate FF “C_D” is added, to preserve C and update 

D later. With this rescheduling the SHA-256 is separated 

into 3 individual steps to update “A” ~ “H”, in subsequent 

3 cycles. The functional diagram in sequence is showed in 

Fig. 8. 

EFGH(0), K+W(0) ABC(0) D0(0)

FGH(1) BC(1) ADE(1)

EFGH(1), K+W(1) ABC(1) D(1)

FGH(2) BC(2) ADE(2)

Hash0 A-H input

Hash0 A-H output

Hash1 A-H input

Hash1 A-H output

Hash2 A-H input

Hash2 A-H output

clk

EFGH(0),K+W(0) ABC(0) D(0)

FGH(1) BC(1) ADE(1)

EFGH(1),K+W(1) ABC(1) D(1)

FGH(2) BC(2) ADE(2)

EFGH(0),K+W(0) ABC(0) D(0)

FGH(1) BC(1) ADE(1)

EFGH(1),K+W(1) ABC(1) D(1)

FGH(2) BC(2) ADE(2)

 Fig. 8.  Rescheduled parallel pipeline SHA-256 

 

As the Fig. 8 shows, with parallel pipelines three 

SHA-256 hashes can be calculated at the same time. The 

hardware architecture is showed in Fig. 9. 

ABCDEFGH(0)

ABCDEFGH(1)

ABCDEFGH(2)

MUX
SHA-256

computation
DE

MUX

CFG

Kt+Wt(0)

Kt+Wt(2)

Kt+Wt(1)

 Fig. 9.  Parallel computation SHA-256 hardware architecture 

 

The proposed architecture gains 3 times performance 

with a 3 times higher clock frequency, compared to the 

standard architecture. 

V.   RESULT AND DISCUSSION 

The proposed high performance parallel computation of 

SHA-256 is successfully implemented in Verilog. The 

hardware architecture is fully verified at RTL level and 

synthesized with Intel 14nm technology lib. The 

comparison results are showed below: 
TABLE I 

HARDWARE COMPARISON RESULTS 

 Clock(ps) Area(μm2) Power(mW) 

Standard 1959 4916.7 3.3794 

Proposed 653 14272.6 6.855 

 

The proposed high performance parallel computation 

hardware architecture of SHA-256 is 3 times faster than the 

standard architecture as we expected.  

The area cost to achieve this improvement is 2.90 times 

compare to standard SHA-256, which is because there are 

reused function modules to save area.  

The power of proposed parallel SHA-256 is just 2.03 

times of standard SHA-256 to have same 3 times output. 

That’s because the sequential logic consumes much 

bigger power than the combinational logic, and the 

proposed architecture can exactly save much sequential 

logic. 

VI. CONCLUSIONS 

The parallel hardware architecture is the best solution to 

achieve high processing speed and low power 

consumption in hardware. This paper first builds the speed 

and area model with SHA-256 algorithm and technology lib 

to find the most efficient pipeline architecture is 3 pipeline 

stages for SHA-256 realization. Then it is dividing and 

updating the architecture with SHA-256 calculation 

unfolding by FFs to give a high performance hardware 

architecture for parallel computation in AISC. The design 

is synthesized with Intel 14nm technology and the 

comparison results demonstrated the improvement of 3 

times computation speed with 50.7% power consumption, 

at a cost of only 2.9 times area. 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 8, Issue 5, September 2019 1246

Copyright ⓒ 2019 GiRI (Global IT Research Institute) 



 

REFERENCES 

[1] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. 

[Online]. Available: https://bitcoin.org/bitcoin.pdf 

[2] X. Cao and M. O’Neill, “ Application-oriented SHA-256 hardware 

design for low-cost RFID,” in Proc. IEEE International Symposium on 

Circuits and Systems, Seoul, 2012, pp. 1412-1415. 

[3] W. L. Harrison, A. M. Procter and G. Allwein, “ Model-driven design 

& synthesis of the SHA-256 cryptographic hash function in rewire,” in 

Proc. IEEE International Symposium on Rapid System Prototyping 

(RSP), Pittsburgh, 2016, pp. 1-7. 

[4] M. Padhi and R. Chaudhari, “ An optimized pipelined architecture of 

SHA-256 hash function,” in Proc. IEEE 7th International Symposium 

on Embedded Computing and System Design (ISED), Durgapur, 2017, 

pp. 1-4. 

[5] S. Suhaili and T. Watanabe, “ Design of high-throughput SHA-256 

hash function based on FPGA,” in Proc. IEEE 6th International 

Conference on Electrical Engineering and Informatics (ICEEI), 

Langkawi, 2017, pp. 1-6. 

[6] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido and M 

Morales-Sandoval, “ FPGA-based implementation alternatives for the 

inner loop of the Secure Hash Algorithm SHA-256,” Microprocessors 

&  Microsystems, vol. 37, pp. 750-757, Jun. 2013. 

[7] H.  Mestiri, F. Kahri, B. Bouallegue, and M. Machhout, “ Efficient 

FPGA Hardware Implementation of Secure Hash Function SHA-2,” 

International Journal of Computer Network and Information Security, 

vol. 7, pp. 9-15, Dec. 2014. 

[8] Secure Hash Standard (SHS), N. I. of Standards and Technology, FIBS 

PUB 180-4, 2012.     

[9] G. L. Zhang, B. Li, and U. Schlichtmann, “ PieceTimer: a holistic 

timing analysis framework considering setup/hold time interdependency 

using a piecewise model,” in Proc. 2016 IEEE/ACM International 

Conference on Computer-Aided Design (ICCAD), Austin, 2016, pp. 

1-8. 

[10] G. L. Zhang, B. Li, Y. Shi, J. Hu, and U. Schlichtmann, “ EffiTest2: 

Efficient Delay Test and Prediction for Post-Silicon Clock Skew 

Configuration Under Process Variations,” IEEE Trans. on CAD of 

Integrated Circuits and Systems, vol. 38, pp. 705-718, Apr. 2019. 

[11] G. L. Zhang, B. Li, J. Hu, Y. Shi, and U. Schlichtmann, 

“ Design-Phase Buffer Allocation for Post-Silicon Clock Binning by 

Iterative Learning,” IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 37, pp. 392 – 405, Feb. 2018. 

[12] G. L. Zhang, B. Li, M. Hashimoto, and U. Schlichtmann, “ Virtualsync: 

timing optimization by synchronizing logic waves with sequential and 

combinational components as delay units,” in Proc. 2018 55th 

ACM/ESDA/IEEE Design Automation Conference (DAC),  San 

Francisco, 2018, pp. 1-6. 

[13] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, 

“ TimingCamouflage: Improving circuit security against counterfeiting 

by unconventional timing,” in Proc. 2018 Design, Automation & Test 

in Europe Conference & Exhibition (DATE),  Dresden, 2018, pp. 

91-96. 

[14] G. L. Zhang, B. Li, and U. Schlichtmann, “ Timing with Virtual Signal 

Synchronization for Circuit Performance and Netlist Security,” in Proc. 

2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 

Hong Kong, 2018, pp. 715 – 718. 

[15] Y. Yao, SuperScalar RISC Processor Design.  Bei Jing: Tsinghua 

University Press, 2014, ch. 1. 

[16] L. Dadda, M. Macchetti and J. Owen, “ The design of a high speed 

ASIC unit for the hash function SHA-256 (384, 512),” in Proc. Design, 

Automation and Test in Europe Conference and Exhibition, Paris, 2004, 

pp. 70-75.  

 

Ruizhen, Wu was born in China, Jan 1st 1986. PhD. 

The PhD was earned in School of Microelectronics of 

XIDIAN University, Shaanxi Province, China, in 

2014. The major field of study is Asynchronous 

Circuits design, 5G CODEC and AI. 

He has worked in Hangzhou, Zhejiang Province, China, 

since 2014, in the 2012 communication lab of Huawei 

at first, then Intel iCDG, and Inspur Electronic 

Information Industry Co.,Ltd now 

 

Xiaoyong, Zhang was born in China, Nov 5
th

 

1980.  Bachelor. The first bachelor degree was earned 

in automation, in School of Marine Science and 

Technology, Northwestern Polytechnical University, Shaanxi 

Province, China, in 2003, and the second bachelor degree was earned in 

electronic science and technology, in Institute of Microelectronics, 

Tsinghua University, Beijing City, China, in 2005.  

He has worked in Xi’an, Shaanxi Province, China, since 2005, in the wireless 

department for Infineon Technology at first, and now Biren technology. His 

current job is SoC HW design manager 

 

 

 

 

Mingming, Wang was born in China, Oct 1
st
 

1986.  Master. The Master degree was earned in 

Computer Application Technology  in Xi’an University 

of posts & Telecommunications, Shaanxi Province, 

China, in 2011, and the bachelor degree was earned in 

electronic science and technology, in Xi’an University of 

posts & Telecommunications, Shaanxi Province, China 

in 2008.  

He has worked in Inspur Electronic Information Industry Co.,Ltd since 2019. 

Lin, Wang was born in China, Dec. 1st. 1971. Master 

of Sci. The master degree was earned in Dept. of 

Electrical Engineering, Fudan University, Shanghai, 

China, in 1998. His majority is microelectronics and 

physics on semiconductor and semiconductor device.  

He worked in Shanghai Nortel Semiconductor and 

Broadcom, focusing on communication chip 

development after his graduation. 

He is now the Director of  SoC R&D in Inspur Electronic Information Industry 

Co.,Ltd. 

ICACT Transactions on Advanced Communications Technology (TACT) Vol. 8, Issue 5, September 2019 1247

Copyright ⓒ 2019 GiRI (Global IT Research Institute) 


	I. INTRODUCTION
	II. SHA-256 ALGORITHM
	III. PIPELINE ARCHITECTURE
	IV. PROPOSED DESIGN
	V. RESULT AND DISCUSSION
	VI. CONCLUSIONS
	REFERENCES



