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Abstract—In this paper, we aim to produce the state-of-
the-art semantic segmentation for street fashion photos with
three contributions. Firstly, we propose a high-performance
semantic segmentation network that follows the encoder-decoder
structure. Secondly, we propose a guided training process using
multiple auxiliary losses. And thirdly, the 2D max-pooling-based
scaling operation to produce segmentation feature maps for
the aforementioned guided training process. We also propose
mIoU+ metric taking noise into account for better evaluation.
Evaluations with the ModaNet data set show that the proposed
network achieves high benchmark results with less computational
cost compared to ever-proposed methods.

Index Terms—semantic segmentation, street fashion photos,
label pooling, mIoU+

I. INTRODUCTION

D IFFERENT from the classic object detection and clas-
sification problem, semantic segmentation requires each

pixel in the input image to be assigned to a class of objects.
Fig. 1 shows examples of inputs and corresponding ground-
truth labels in semantic segmentation problem for street fash-
ion photos.

Fully convolutional neural network (FCN) for semantic
segmentation [1] has laid the foundation for applying CNN
into dense segmentation. Recently proposed models such as
SegNet [2], DeepLabv3+ [3], and PSPNet [4] have achieved
high benchmark results on data sets such as MSCOCO [5],
CityScapes [6], and ADE20K [7].

ModaNet [8] is the first large-scale street fashion data set
with pixel-level annotation published by S. Zheng et al.. This
data set consists of 55,176 fully annotated images, where
52,377 images are for training and the remaining 2,799 images
are used for validation.

In this paper, we aim to produce the state-of-the-art semantic
segmentation for street fashion photos with three contributions.
First, we propose a lightweight asymmetric network that
follows the encoder-decoder structure. Secondly, we propose
a guided training process with auxiliary training objectives.
And thirdly, the 2D max-pooling-based scaling operation is
proposed to produce labels to be used in one of the auxil-
iary training objectives. For a better evaluating segmentation
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Fig. 1. Samples from our custom street fashion data set. In the top row,
original images are shown, and in the bottom row, corresponding segmentation
ground truths are shown. The class names for each color are shown in Table I.
Photos are public domain works downloaded from Pexels.com, and labels are
manually annotated by the authors.

result, we also propose the mIoU+ metric. Different from the
conventional mIoU metric, which only counts the classification
accuracy of individual pixels, segmentation noise is also taken
into account in mIoU+. By both mIoU and mIoU+, the
proposed network achieves the highest benchmark result in
ModaNet while keeping less computational cost compared
with ever-proposed methods.

The rest of the paper is organized as follows. In Section II,
we introduce previous works on semantic segmentation and the
use of auxiliary loss functions. In Section III, we describe our
network design, auxiliary loss functions that we use to train the
network, including image pyramid loss, segmentation pyramid
loss, and label pooling loss. In Section IV, we describe the
experimental setting, the mIoU+ metric, and the evaluation
result. The paper is concluded in Section V.

II. RELATED WORKS

A. Pre-Deep Learning Era

Semantic segmentation has been a challenge in the field
of computer vision. Before the deep learning era, the state-
of-the-art works have been based on Texton Forest [9] and
conditional random field (CRF) [10]. CRF is still being used
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as a post-process method to refine the segmentation output [1],
[4], [11]–[14].

B. Fully Convolutional Neural Network

Early works on this topic mostly adopt the straight network
design. The first proposed model is FCN [1]. The most im-
portant contribution of FCN is converting the fully connected
classification layers of image classification networks into a
1 × 1 (i.e., pointwise) convolutional layers to produce pixel-
level segmentation prediction. Hence, it can be implemented
on top of the ever-proposed classification models such as
GoogLeNet [15], VGG [16], and ResNet [17]. The authors
of FCN have found that their proposal works best by using
VGG-16 as the network base.

PSPNet [4] introduces the spatial pyramid pooling scheme,
which results in better context-awareness in the final result.
In this pyramid pooling scheme, features maps from different
layers of the base network are resized and concatenated. The
concatenated feature map is then used as input for a pointwise
CNN to produce segmentation results.

C. Encoder-Decoder Based

Later works on the topic mostly utilize the encoder-decoder
structure. Models following this approach usually yield better
performance. Popular models in this category include Seg-
Net [2] and U-Net [18]. SegNet is a CNN based autoencoder.
It utilizes the indices from 2D max-pooling layers in the
encoder to upscale the feature map using unpooling layers
in the decoder. U-Net implements skip connections between
the corresponding encoder and decoder blocks.

D. Dilated Convolutional Neural Network

In [11], F. Yu et al. propose both dilated convolutional
neural network (DCNN) for semantic segmentation and a
reference network design. DCNN allows the deeper layers of
the network to capture the context without losing resolution.
The main drawback of this design is the great demand for
computational resources because the feature map is rarely
down-sampled.

DeepLabv3+ [3] combines all of the above approaches and
achieves state-of-the-art performance in many benchmarks.

E. Auxiliary Losses

As networks become deeper, new challenges arise. One of
the most challenging problems is the vanishing gradient [19].
In this problem, the gradient becomes too small in the layers
being far away from the training loss function.

At first, auxiliary losses are commonly used to overcome
the problem. For example, in GoogLeNet [15], besides the
main softmax classification loss at the end of the network,
another two similar classification losses are added into the
middle of the network. Thus, the weights of early blocks are
learned mostly by gradient propagated from auxiliary losses.
In the research on GANs [20], besides the usual real or
fake discrimination, Chen et al. propose an auxiliary loss to
discriminate the orientation of the input and output pairs to

TABLE I
DATA SET STATISTIC

Inst. Count Avg Inst. Size
Id. Color Class Train Val Train Val

0 Background – – – –
1 Bag 19,603 948 2.46% 2.53%
2 Belt 13,081 636 0.46% 0.44%
3 Boots 6,719 365 2.40% 2.36%
4 Footwear 37,468 1,753 0.94% 0.93%
5 Outer 22,597 1,093 7.43% 7.42%
6 Dress 13,764 662 10.46% 10.52%
7 Sunglasses 8,340 411 0.30% 0.30%
8 Pants 21,950 1,064 5.65% 5.47%
9 Top 33,131 1,544 4.79% 5.04%
10 Shorts 6,709 322 2.75% 2.83%
11 Skirts 12,953 622 6.37% 6.23%
12 Headwear 5,164 281 1.22% 1.21%
13 Scarf & Tie 4,711 284 2.85% 3.20%

produce a more robust model. Undoubtedly, selecting the type
of auxiliary objectives and their position greatly influences the
performance of the network. The auxiliary training objectives
also depict the type of features learned by the network. Thus,
it does not guarantee that the best feature would be learned.

Another solution to the gradient vanishing problem is using
skip connections [21], [22]. In [23], skip connections are used
to patch feature maps from early blocks to deeper blocks
of the encoder. In [24], ResBlocks [17] are used to replace
the conventional CNN blocks in both encoder and decoder,
resulting in a very deep encoder-decoder based network.

Even though skip connection has become more popular
due to its simplicity, it is not the replacement for auxiliary
loss. Perhaps, they can be complements to each other. In [4],
Zhao et al. conduct an ablation study for auxiliary loss on
ResNet [17] based FCN [1]. By adding an auxiliary loss after
the res4b22 residue block and weighted it appropriately, the
network performance is gained by 0.94% on pixel accuracy.
In [25], multiple spatially scaled versions of training labels are
used as auxiliary training objectives.

III. PROPOSAL

A. Motivation

1) Problems: Two common problems of semantic segmen-
tation are category confusion and inconspicuous segmenta-
tion [4]. Despite efforts to tackle the problems in previous
researches such as [3] and [4], the problems still occur on
street fashion photos, as shown in Fig. 5 in Appendix A.

In category confusion, the models fail to identify the correct
class of the whole segment. For example, PSPNet fails to
identify the outerwear in the image (n). And with the image
(a) and (b), all the models recognize boots as an ordinary
footwear. Another example of this problem is the segmentation
of the image (k) by DeepLabv3+. We observe that this
problem usually happens with networks that have high context-
awareness.

When the above-mentioned problem is limited to local ar-
eas, it creates inconspicuous segmentation. For example, with
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Fig. 2. Overview of the Proposed Network Structure with all three auxiliary losses. The three auxiliary losses are explained in detail in Section III-D. Ground
truth for Image Pyramid Loss and Segmentation Pyramid Loss are scaled versions of the image and the ground truth segmentation. However, in Label Pooling
Loss, the initial ground truth on the bottom right of the figure is one-hot vector version of the ground truth segmentation. This one-hot version of segmentation
is then progressively scaled-down by P[0..5]. This label pool feature is explained in detail in Section III-C. Moreover, in Label Pooling Lost, constrains ( )
are made only between label pool feature maps ( ) and output of decoders ( ). Network connections that are not necessary to generate output from input

are ignored during inference. The detailed configuration of the whole network is described in Table II.

input image (i), SegNet detects parts of the dress as top-wear
and outer-wear. With image (f), PSPNet frequently confuses
between pants and skirts. Thus, it results in segmentation with
a considerable amount of noise.

PSPNet [4] deliberately addresses this problem by propos-
ing the spatial pyramid pooling module (PPM). This module
is expected to increase the size of the receptive field of the
network. PPM is also adopted in [3]. However, it appears that
the receptive field is still limited for the street fashion problem.
A possible reason is that the PPM operates on the feature map
produced by a CNN head. Thus, information is already lost
during the process, and the important information may not be
produced simply by pooling the feature map.

2) Direction: We observe that, for street fashion photo,
the above-mentioned problems can be eliminated by knowing
whatever a type of apparels is presented in the whole image.
For example, in the image (d) of Fig. 5, there are only two
types of apparels presented in the image that are dress and
pants (a small dark gray area under the model’s left arm as
in the ground truth image). Thus, if a network only considers
dress and pants for the segmentation result, the problem of
class confusion and inconspicuous would greatly be reduced.

On the one hand, it is uncomplicated to create a separated
model to detect whatever the type of clothes is presented in
an image. On the other hand, it is not efficient to create and
train separated networks to solve a single problem. Therefore,
we merge two types of networks into one and further extend
the concept of apparel detector to all of the scales.

3) Implementation: Based on the encoder-decoder struc-
ture, we first set the length of the network so that the feature
map at the end of the decoder is 1×1. It is to ensure the high
context awareness of the network. Secondly, at every scale of
the decoder, we expect the network to produce a prediction
to indicate whatever the type of clothes is presented in the
receptive field of the corresponding pixel of the feature map,
i.e., the network first detects the presence of apparel type over
the whole image, and then refines it until reaching the required
resolution. Ground truth for such prediction can be produced
by applying 2D max-pooling on a one-hot vector form of the
original ground truth. This process is explained in detail in
Section III-C.

B. Network Structure

Fig. 2 shows the structure of our proposed network. It
comprises two main parts: encoder and decoder. Both the
encoder and decoder parts consist of 7 CNN blocks (Ei and
Di blocks, where i ∈ [0..6]). Feature map is downscaled every
time it is processed by an encoder block, and correspondingly
upscaled every time it is processed by a decoder block.
We organize this network into 7 different levels based on 7
different scales of the feature maps.

Similar to U-Net, skip connections with identity function
are implemented between encoder and decoder blocks of the
same level (black arrows as in Fig. 2). However, in our
proposal, the feature map produced by an encoder also leaks
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TABLE II
NETWORK PARAMETERS

Block Output Filters Kernel St.a Pd.b Ac./Op.c

224× 224
32 5× 5 1 2 ReLu
64 3× 3 1 1 ReLuA

32 1× 1 1 0 ReLu

112× 112
64 3× 3 1 1 ReLu

B1 3 3× 3 1 1 Sigmoid
B2 56× 56 – ” – – ” – – ” – – ” – – ” –
B3 28× 28 – ” – – ” – – ” – – ” – – ” –
B4 14× 14 – ” – – ” – – ” – – ” – – ” –

112× 112
64 4× 4 2 1 ReLu
128 3× 3 1 1 ReLuE0

64 1× 1 1 0 ReLu
E1 56× 56 128 – ” – – ” – – ” – – ” –
E2 28× 28 256 – ” – – ” – – ” – – ” –
E3 14× 14 512 – ” – – ” – – ” – – ” –
E4 7× 7 1024 – ” – – ” – – ” – – ” –

3× 3
1024 3× 3 3 1 ReLu
2048 3× 3 1 1 ReLuE5

1024 1× 1 1 0 ReLu

1× 1
1024 3× 3 1 0 ReLu
2048 1× 1 1 0 ReLuE6

1024 1× 1 1 0 ReLu

112× 112 128 3× 3 1 1 ReLu
C0

224× 224 1 2× 2 2 0 UnPool
C1 112× 112 – ” – – ” – – ” – – ” – – ” –
C2 56× 56 – ” – – ” – – ” – – ” – – ” –
C3 28× 28 – ” – – ” – – ” – – ” – – ” –
C4 14× 14 – ” – – ” – – ” – – ” – – ” –

3× 3 128 3× 3 1 1 ReLu
C5

7× 7 1 3× 3 3 1 UnPool
1× 1 128 1× 1 1 0 ReLu

C6
3× 3 1 3× 3 3 0 UnPool

112× 112
128 3× 3 1 1 ReLu
14 3× 3 1 1 SigmoidD0

224× 224 1 2× 2 2 0 UnPool
D1 112× 112 – ” – – ” – – ” – – ” – – ” –
D2 56× 56 – ” – – ” – – ” – – ” – – ” –
D3 28× 28 – ” – – ” – – ” – – ” – – ” –
D4 14× 14 – ” – – ” – – ” – – ” – – ” –

3× 3
128 3× 3 1 1 ReLu
14 3× 3 1 1 SigmoidD5

7× 7 1 3× 3 3 1 UnPool

1× 1
128 1× 1 1 0 ReLu
14 1× 1 1 0 SigmoidD6

3× 3 1 3× 3 1 0 UnPool

P0 56× 56 1 2× 2 2 0 MaxPool
P1 28× 28 – ” – – ” – – ” – – ” – – ” –
P2 14× 14 – ” – – ” – – ” – – ” – – ” –
P3 7× 7 – ” – – ” – – ” – – ” – – ” –
P4 3× 3 – ” – 3× 3 3 1 – ” –
P5 1× 1 – ” – 3× 3 1 1 – ” –

224× 224
128 3× 3 1 1 ReLu

L0 14 3× 3 1 1 Softmax
L1 112× 112 – ” – – ” – – ” – – ” – – ” –
L2 56× 56 – ” – – ” – – ” – – ” – – ” –
L3 28× 28 – ” – – ” – – ” – – ” – – ” –
L4 14× 14 – ” – – ” – – ” – – ” – – ” –

aStride, bPadding, cActivation/Operation

into the next level of the decoder. To adapt the feature map into
the larger scale, we employ CNN - 2D unpooling blocks Ci.
In our network, encoder blocks scale down the feature map by
utilizing CNN with stride 2 instead of using 2D max-pooling
operation. Thus, different from SegNet [2], the 2D unpooling
layer in our network doesn’t utilize the pooling indices.

As mentioned, in this network, we expect decoder blocks to
produce the prediction on the presence of a class within the
whole image and then gradually refine the prediction result.
Therefore, all the decoder blocks have the same design that
output only 14 channels feature map, which is the number of
segmentation classes of ModaNet (13 classes plus background,
as shown in Table II).

Element-wise sigmoid function is used as the activation
function for Di blocks as follows.

di =
1

1 + exp(−d′i)
(1)

Where di is the output of Di block, and d′i is the pre-
activation value of Di.

Segmentation prediction is produced by L0 block. In this
network, besides L0, there are another 4 Li blocks where
i ∈ [1..4]. These blocks produce smaller-scale versions of the
segmentation prediction. In general, the scale of the prediction
produced by Li block is 2−i. The input of Li block is the
concatenation of feature maps output from Ci, Di and Ei

blocks. Pixel-wise softmax is used to produce the output of
Li blocks as follows.

lij =
exp

(
l′ij

)∑K
k=1 exp (l

′
ik)

(2)

Where lij denotes the value of channel j of the feature
map produced by Li, l′ij denotes the pre-activation value of
lij , and K denotes the total number of channels which also is
the number of segmentation classes.

From level 1 to level 4, different scales of the input image
are reconstructed by Bi blocks where i is the level number.
The input of Bi block is the feature map ei−1 produced by
Ei−1 block. All the Bi blocks reconstruct the input at the scale
of 2−i. Thus, all the outputs from Bi blocks create a spatial
scale pyramid of the input image. Element-wise sigmoid, as
in (1) is used as the activation function for Bi layers. Thus,
different from works such as [25] and [26], we are not using
the image pyramid as input but as auxiliary training objective.

C. Label Pooling

Previous works involving multiple-scale inputs or outputs
only consider spatial scaling. In [25], they are used as an
auxiliary training objective. In [26], they are used to create
multi-scale fusion features. In [4] and [3], the network is
trained with different spatial scaled versions of input and
output to produce more robust features.

However, with spatial scaling, details from the original input
eventually are lost at smaller scales. To avoid such problems,
instead of spatially scaling the label, we use max-pooling
operation on the one-hot label vector to produce multiple
scales of labels. As such, the existence of a segment is
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Fig. 3. Comparison between proposed 2D max-pooling-based label scaling and conventional label scaling. With conventional label scaling, the label is
progressively scaled-down using nearest-neighbor interpolation (blue arrows ). In our proposal, the original label (bottom left) is first converted to one-hot
vectors (top left) and then progressively scaled-down by 2D max-pooling operation (red arrows ). The segmentation color codes in the label are described
in Table I. On the top row, classes rather than footwear, sunglasses, top, and shorts are ignored.

preserved even in the smallest scale. This process is illustrated
in Fig. 3.

In Fig. 3, the spatial scaling operation makes the existence
of segmentation vanished. After the first scale down operation,
the segmentation of sunglass class has vanished. From the
scale of 4 × 4 to 2 × 2, the top segment has vanished. By
the time of scaling down to 1× 1 pixel, all the segmentations
vanished. On the other hand, the proposed label pool features
retain all of the segmentation even at the smallest scale.

Shown in Fig. 2, Di blocks are guide-trained by the result
of Pi blocks where i is the level number, and Pi blocks are 2D
max-pooling operation on the input label. Their configuration
is shown in Table II. This is to avoid the detail loss when
scaling down the label. Also shown in Table II, the strides
of Pi are matched with the strides of Di and Ei blocks.
Furthermore, the kernel size of Pi is also matched with the
kernel size of Di.

D. Training Objectives

With the segmentation prediction l0 coming from L0, we
utilize pixel-wise cross-entropy as a training objective.

H (t, l0) =
1

N

N−1∑
i=0

K−1∑
j=0

tij log (l0ij) (3)

Where t is the ground-truth, tij is the j-th channel of the i-
th pixel of t, l0ij is the j-th channel of the i-th pixel of l0, K is
the number of segmentation class, and N is the total number of
pixel in the output. Besides this conventional training criteria,
we introduce the three auxiliary training objectives as follows.

1) Image Pyramid Loss (IPL): Different from popular
works, we do not utilize multi-scaled input to reinforce the
training process. Instead, we expect the network to reconstruct
scaled versions of the input using feature maps produced by
encoder blocks. Thus, additional scaled inputs and processing
are not required during the inference process. We penalize
the difference between output bi from Bi block and the input
image xi by binary cross-entropy loss as follows.

H (xi, bi) = − 1

N

N−1∑
j=0

(
xij · log (bij)+

(1− xij) · log (1− bij)
)

(4)

Where xi and bi are input image and reconstructed image
at scale 2−i with i ∈ [1..4], xij and bij are the j-th element
of xi and bi, N is the total number of elements in xi and bi
(i.e. number of pixel × number of color channels). We use
binary cross entropy (i.e. log loss) as the error function. Then,
the image pyramid loss is calculated by:

IPL =
1

4

4∑
i=1

H(xi, bi) (5)

2) Segmentation Pyramid Loss (SPL): It is the average
of the cross-entropy between segmentation and ground truth
across different scales.

SPL =
1

4

4∑
i=1

H(ti, li) (6)

Where H(·) is binary cross-entropy loss similar to (4), ti
and li are ground truth and predicted segmentation at scale
2−i with i ∈ [1..4].

3) Label Pooling Loss (LPL): It is the average of binary
cross-entropy loss between label pool features and output of
decoders across different scales as follows.

LPL =
1

6

6∑
i=1

H(pi, di) (7)

Where H(·) is binary cross-entropy loss similar to (4), pi
and di are ground truth and prediction of label pool feature at
scale 2−i.

The final loss is calculated by averaging all the above
mentioned losses as follows:

loss =
1

4
(H (t, l0) + IPL+ SPL+ LPL) (8)
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Fig. 4. Illustration of segmentation results. Photos are public domain works downloaded from Pexels.com. Label are manually annotated by the authors.

IV. EVALUATION

Using the ModaNet data set, we compare our model with
U-Net [18], PSPNet [4], SegNet [2], and DeepLabv3+ [3].

A. Data Set
We split the original training set into new training and

evaluation sets. The new evaluation set consists of 2,400
images, and the new training set consists of the remaining
49,977 images.

The randomized splitting process is constrained so that
there are at least 280 instances of each class available in the
evaluation set to ensure the quality of evaluation. The statistic
of training and validation data sets are shown in Table I.

B. Data Augmentation
We train and evaluate all the networks with input and output

sizes of 224 × 224. To make the network more robust, the
following pipeline is used for data augmentation:

1) Random horizontal flipping
2) Random expanding with a max expansion ratio of 1.5.

In this step, black bars of random size t, b, l and r are
padded into the original image so that l + r ≤ 0.5× w
and t+b ≤ 0.5×h, where w and h are width and height
of the input of this step, t and b are the sizes of black
bars padded on the top and bottom of the image, and l
and r are the sizes of black bars padded on the left and
right side of the image.

3) Randomly cropping the image with the scale ratio range
(0.5, 1] and aspect ratio range [ 34 ,

4
3 ]. Thus, width w and

height h of the cropping window are randomized so that:

• w ≤ w0 and h ≤ h0

• 3
4 ≤ w

h ≤ 4
3

• 0.5× (w0 × h0) < w × h ≤ w0 × h0

Where w0 and h0 are the width and height of the input
of this step. Hence, the top left corner of the cropping
window (x, y) must satisfy the following conditions:

• 0 ≤ x ≤ w0 − w
• 0 ≤ y ≤ h0 − h

4) Adding Gaussian noise with mean µ = 0 and stan-
dard deviation σ = 25.5 . Thus, the output image is
x = min (255,max (0, x+G(µ, σ) ) where G(·) is the
Gaussian function.

5) Resize to 224× 224× 3

We then normalize the input image by scaling pixel value
into [0, 1] range. Since the label is an image containing pixel-
level segmentation of the input image, it also needs to be aug-
mented correspondingly, except for the step 4. Furthermore,
nearest-neighbor sampling must be used in all the steps that
involve interpolation to preserve class information.

C. Metrics

1) mIoU: We utilize intersection over union (IoU, i.e.,
Jaccard distance) as the performance metric. We first compute
the IoU of individual class as follows.

IoUi =
1

N

N−1∑
j=0

|Tij ∩ Lij |
|Tij ∪ Lij |

(9)

Where IoUi is the IoU score of class i, N is the total
number of photos in the data set, Tij is the set of all the
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TABLE III
IOU OF INDIVIDUAL CLASSES

A B C D E F G H Unet DLv3+a PSPNet SegNet

Background 0.979 0.979 0.978 0.979 0.979 0.980 0.978 0.979 0.979 0.975 0.977 0.955
Bag 0.690 0.692 0.691 0.694 0.693 0.689 0.707 0.694 0.701 0.674 0.708 0.429
Belt 0.465 0.462 0.467 0.442 0.456 0.454 0.454 0.440 0.479 0.394 0.415 0.205
Boots 0.556 0.577 0.570 0.543 0.575 0.557 0.569 0.559 0.561 0.535 0.567 0.369
Footwear 0.630 0.624 0.629 0.628 0.638 0.638 0.631 0.622 0.637 0.586 0.555 0.452
Outer 0.642 0.644 0.623 0.629 0.639 0.651 0.627 0.638 0.623 0.625 0.665 0.438
Dress 0.669 0.668 0.633 0.663 0.651 0.657 0.651 0.649 0.594 0.660 0.689 0.462
Sunglasses 0.634 0.611 0.652 0.606 0.650 0.625 0.646 0.621 0.675 0.531 0.534 0.321
Pants 0.805 0.810 0.793 0.790 0.802 0.808 0.801 0.792 0.787 0.761 0.800 0.683
Top 0.647 0.650 0.625 0.641 0.653 0.660 0.641 0.652 0.624 0.610 0.679 0.478
Shorts 0.686 0.718 0.686 0.697 0.697 0.692 0.688 0.708 0.662 0.715 0.711 0.487
Skirts 0.661 0.674 0.659 0.671 0.646 0.673 0.666 0.652 0.618 0.683 0.709 0.503
Headwear 0.608 0.586 0.606 0.584 0.582 0.590 0.606 0.590 0.618 0.545 0.594 0.258
Scarf & Tie 0.393 0.429 0.396 0.409 0.439 0.426 0.397 0.395 0.420 0.370 0.473 0.129

mIoU 0.648 0.652 0.643 0.641 0.650 0.650 0.647 0.642 0.641 0.619 0.648 0.441
inference time (ms) 100.96 78.99 68.81 68.80 75.11 75.23 66.16 66.05 116.24 137.83 115.98 29.61
training time (h) 19.568 19.328 17.825 17.625 19.359 19.297 17.831 17.483 30.84 33.64 23.68 9.04

aDeepLabv3+

pixels belongs to the i-th class in j-th ground truth, Lij is the
set of all pixels predicted as i-th class in the j-th prediction,
and | · | is the cardinality of a set. Thus, the mIoU metric is
calculated as follows.

mIoU =
1

M

M−1∑
i=0

IoUi (10)

Where M is the total number of segmentation classes.
2) mIoU+: Because the mIoU metric favors the total num-

ber of accurately classified pixels, a prediction with noise fre-
quently results in higher mIoU compared to a prediction with
no noise. Depending on the application, prediction with low
noise may be favored over absolutely high mIoU prediction.

Therefore, we propose mIoU+ (mIoU-plus) metric in which
noise is taken into account. This metric is not based on
individual pixel but connected components (i.e. individual seg-
ments). Given a prediction and a ground truth segmentation,
the connected component based segmentation score of a class
is calculated as follows.

CCSSi(U, V ) =
1

|Ui|
∑
u∈Ui

max
v∈Vi

IoU (u, v) (11)

Where CCSSi is the segmentation score of the i-th class
between predicted segmentation U and ground truth V , Ui

is the set of all connected components of i-th class in the
prediction, Vi is the set of all connected components of i-
th class in the ground truth. However, because this score
is not symmetric (i.e., CCSSi(U, V ) ̸= CCSSi(V,U)), the
segmentation score is calculated as follows.

SSi(U, V ) = CCSSi(U, V ) ∧ CCSSi(V,U) (12)

Where SSi(U, V ) is the segmentation score of the i-th
class between two segmentations U and V . Similar to the
conventional mIoU, IoU+ of each class is computed as follows.

IoU+i =
1

N

N−1∑
j=0

SSi(Uj , Vj) (13)

Where IoU+i is IoU+ score of the i-th class, N is the total
number of samples, Uj is the set of connected components
from the j-th prediction, and Vj is the set of connected
components from the j-th ground truth. The score for a
whole segmentation with multiple connected components is
calculated as follows.

mIoU+ =
1

K

K−1∑
i=0

SSi(U, V ) (14)

Where K is the total number of segmentation classes.

D. Ablation Study on Effect of Auxiliary Training Objectives

We investigate more into the effect of auxiliary training ob-
jective on the model performance. We retrain our network with
different training objective configurations. The loss function
used in this experiment is as follows.

loss =
H (t0, l0) + αIPL+ βSPL+ γLPL

1 + α+ β + γ
(15)

Where α, β, γ ∈ {0, 1}. In practice, when α = 0, bi
computations are ignored. Similarly, when β = 0, l[1..4]
computations are ignored. However, when γ = 0, di still need
to be computed because it is an integrated part of the model.

There are 8 different configurations of the loss function. We
annotate them as configuration A to configuration H, as shown
in Table V.
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TABLE IV
IOU+ OF INDIVIDUAL CLASSES

A B C D E F G H Unet DLv3+a PSPNet SegNet

Background 0.373 0.344 0.369 0.336 0.359 0.347 0.339 0.338 0.345 0.379 0.404 0.233
Bag 0.441 0.398 0.434 0.361 0.429 0.392 0.424 0.385 0.373 0.364 0.427 0.124
Belt 0.290 0.257 0.312 0.245 0.316 0.257 0.297 0.240 0.287 0.204 0.211 0.082
Boots 0.347 0.303 0.358 0.269 0.335 0.297 0.360 0.280 0.297 0.299 0.301 0.100
Footwear 0.502 0.474 0.503 0.483 0.503 0.489 0.504 0.475 0.500 0.434 0.418 0.247
Outer 0.412 0.379 0.383 0.356 0.409 0.375 0.408 0.329 0.286 0.381 0.425 0.104
Dress 0.425 0.393 0.370 0.336 0.398 0.382 0.393 0.360 0.208 0.366 0.434 0.082
Sunglasses 0.501 0.471 0.541 0.433 0.531 0.463 0.514 0.402 0.502 0.355 0.392 0.157
Pants 0.629 0.613 0.642 0.568 0.635 0.621 0.623 0.567 0.557 0.591 0.641 0.316
Top 0.432 0.439 0.438 0.394 0.452 0.428 0.401 0.391 0.347 0.406 0.465 0.173
Shorts 0.488 0.426 0.490 0.393 0.527 0.454 0.449 0.374 0.364 0.453 0.497 0.203
Skirts 0.459 0.413 0.438 0.370 0.465 0.426 0.454 0.390 0.297 0.436 0.497 0.163
Headwear 0.479 0.399 0.468 0.362 0.452 0.379 0.467 0.310 0.441 0.336 0.400 0.083
Scarf & Tie 0.278 0.230 0.239 0.185 0.270 0.186 0.238 0.172 0.184 0.211 0.263 0.049

mIoU+ 0.433 0.396 0.428 0.363 0.434 0.392 0.419 0.358 0.356 0.373 0.412 0.151
inference time (ms) 100.96 78.99 68.81 68.80 75.11 75.23 66.16 66.05 116.24 137.83 115.98 29.61
training time (h) 19.568 19.328 17.825 17.625 19.359 19.297 17.831 17.483 30.84 33.64 23.68 9.04

aDeepLabv3+

E. Settings

We implement all the networks using Chainer deep learning
framework [27]. LeCun normal weight initializer [28] is used.
The models are trained by Adam optimizer [29] with the
learning rate of 1 × 10−3 and the decay rate of 0.99. The
machine used to carry out the experiment is a Linux box
equipped with three Nvidia Pascal GPUs.

We train each configuration for three times with 100 epochs
each and take averages of the best mIoU and mIoU+.

F. Result

We report the experimental results using mIoU metric
in Table III. Our proposed network configured with three
different auxiliary losses outperforms all the ever-proposed
models in terms of performance. Among all the auxiliary
loss configurations, configuration B achieves the highest mIoU
score. This configuration consists of only image pyramid loss
and segmentation pyramid loss. Among the ever-proposed
networks, PSPNet achieves the highest mIoU score. Moreover,
our top proposed network takes only 2/3 of the time for
training as well as inference compared to PSPNet.

We realize that the mIoU performance of the model is
worsened when combining label pooling loss with the other
two auxiliary training losses. In fact, configuration B, D, and

TABLE V
DIFFERENT AUXILIARY CONFIGURATIONS

A B C D E F G H

α 1 1 1 1 0 0 0 0
β 1 1 0 0 1 1 0 0
γ 1 0 1 0 1 0 1 0

F achieve higher mIoU compared to configuration A, C, and
E.

We report experimental results using mIoU+ metric in
Table IV. The training and inference time in Table IV are
carried over from Table III. We observe that all the models
achieve their best mIoU and mIoU+ in the same epoch.
Furthermore, mIoU and mIoU+ are loosely proportional to
each other during the training process.

As shown in Table IV, the proposed model with config-
uration E achieves the highest mIoU+ score. Configuration
E consists of segmentation pyramid loss and label pooling
loss. Configuration A with all the auxiliary loss functions is
the runner-up. Among the ever-proposed model, PSPNet also
achieves the highest mIoU+ score.

The proposed model used to generate samples in Fig. 4 and
Fig. 5 is trained with configuration A.

V. CONCLUSION

In this paper, we propose a high-performance semantic
segmentation model for street fashion photos. This network
infers the existence of the classes over the whole image, and
progressively refines the result up to the desired resolution.
We also propose a new label pool feature that can be used
to improve the performance of the proposed network. And
finally, we provide benchmarking results of the network with
and without 3 different types of auxiliary loss. For better
evaluation, we propose mIoU+ metric in which noises are
taken into account.

We compare the performance of our network to the other
state-of-the-art networks, including U-Net [18], PSPNet [4],
SegNet [2], and DeepLabv3+ [3]. We report the evaluation re-
sult using both conventional mIoU and newly proposed mIoU+
metrics. The experiment shows that our network requires less
time to train and infer while achieves the highest segmentation
performance in both mIoU and mIoU+ metrics.
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For future work, we will extend the evaluation on the
scene parsing problem using data sets such as MSCOCO [5],
CityScapes [6], and ADE20K [7].
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APPENDIX A
SEGMENTATION RESULTS
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