
Self-Adaptive System Development Method for

Smart Control Systems in CPS

In-geol Chun, Jeong-min Park, Won-tae Kim

Embedded SW Research Department, Electronics and Telecommunications Research Institute (ETRI)

218 Gajeongno, Yuseong-gu, Deajon, 305-700, Korea

igchun@etri.re.kr, jmpark23@etri.re.kr, wtkim@etri.re.kr

Abstract— The human desire to develop high reactive, safety,

precise and convenient control system makes smart machinery

equipped with computing elements appear on the scene.

Especially in order to get free of household affairs, the necessity

of home service robot - that is a good example of control systems

- has been increased. Home service robot is a robot used for

household chores on behalf of human. We expect that every

home will at least possess and use more than one home service

robot in the near future. However the operating environment of

home service robots - like house, yard, garage, and so on - has

much uncertainty and uncontrollable conditions, so that it is

impossible to make robots suitable to all situations. In this paper,

to achieve user satisfaction and overcome abnormal situation, we

propose a self-adaptive system development method that make

home service robots dependable, secure, safe, and efficient, and

operating in real-time. To apply this approach, home service

robots could be more intelligent in the adaptation.

Keywords—Autonomic Computing, Home Service Robot,

Intelligent system, Self-Adaptive System, Smart Control System

I. INTRODUCTION

As the needs of the smart machinery are increased,

numerous computing systems are embodied in legacy systems.

Especially mission-critical systems and safety-critical systems

like Cyber-Physical Systems(CPS) including robotic surgery,

traffic control and safety, automotive systems, medical device

and systems, energy conservation, critical infrastructure

control (ex. power transmission systems, water resources and

communication systems), military systems, avionics and so on,

have always been held to a higher reliability and predictability

standard than general-purpose computing systems so that the

huge necessity of intelligence arise. The operating

environment for general-purpose computing systems is strict

and fixed, while the physical world in which these control

systems operate is not entirely predictable. That is, the control

systems will not be operating in a controlled environment, so

that they must be robust and reliable to unexpected conditions

and adaptable to system failure.

In this paper, we propose a self-adaptive system

development method to make a control system smart,

dependable, secure, safe, and efficient, and operating in real-

time. The self-adaptive system is a system that has some

special capabilities to reason about its state and environment,

and adapt itself at runtime automatically and dynamically in

response to changes[1]. The first consideration to make a self-

adaptive system is to understand the characteristics of the

operational environment. Most of the operational environment

has much uncertainty and uncontrollable conditions. But

considering the general development method, uncertainty and

uncontrollable conditions are not allowed[2]. Moreover, all of

the user requirements and the system states must be well-

defined and described in requirement specification documents.

For that reason, we propose new systems development method

based on the self-adaptation technologies. To prove the

proposed approach, we try to develop the smart home service

robot(S-HSR) based on the self-adaptive systems development

method. S-HSR is used for moving burden, cleaning room,

showing educational or entertainment videos, detecting fire

alarms or monitoring an intruder. Also it can help sick and

infirm people and provide helpful functions on behalf of

human[3]. It moves around everywhere at home to achieve

predefined missions. But the operational space of the robot

like a house is not entirely predictable, so that some

capabilities to overcome unpredictable condition are strongly

needed.

The remainder of this paper is organized as follows. In

section 2, we show the related work to look into prior

researches and section 3 introduces the self-adaptive system

development method. Finally in section 4, to prove the

proposed approach, we make S-HSR smart and reliable to

unexpected conditions and adaptable to abnormal situation.

Then we show that the feasibility and efficiency of the

proposed approach in case study.

II. RELATED WORKS

There are many definition of self-adaptive system but

commonly used notion is a system that is able to evaluate and

adjust their behaviour in respond to their perception of

environment and the system itself[4]. The primary reason why

we need self-adaptive device is the increasing cost of handling

the complexity of software systems to achieve their goals. In

past, software design is responsible for handling complexity

and achieving quality goals. However, in recent years, there

has been an increasing demand to handle these problems at

runtime. Researchers in this self-adaptive system aim to

ISBN 978-89-968650-2-5 635 February 16~19, 2014 ICACT2014

incorporate adaptation mechanisms into software systems that

adjust various artifacts or attributes in response to changes in

the self and in the context of a software system[5]. In this

section, we look into the related researches for fundamental

studies. An architecture-based adaptation framework named

Rainbow is proposed by Garlan[6]. The rainbow framework

consists of an adaptation infrastructure and system-specific

adaptation knowledge. The adaptation infrastructure

implements self-adaptive capabilities to monitor, detect,

decide, and act, based on the adaptation knowledge. Mukhija

and Glinz propose a Contract-based Adaptive Software

Architecture(CASA) framework that supports both

application-level and low-level (for example, middleware)

adaptation actions through an external adaptation engine[7].

Dynamic adaptation on the CASA framework is achieved via

runtime reconfiguration of the components of an application,

according to the adaptation policy specified in the application

contract. DEAS propose a framework for identifying the

objectives, and analyzing alternative ways of how these

objectives can be met[8]. The DEAS framework defines the

design method for the system that supports all or some of

these alternative behaviors using goal models. MADAM

proposes modelling tools and middleware that facilitate

adaptive application development for mobile computing by

representing architecture models at runtime[9]. A middleware

of this project provides the dynamic adaptation of component-

based applications, and a model-driven development

methodology that is based on abstract adaptation models and

corresponding model-to-code transformations. The

Middleware(M-Ware) project addresses distributed

applications subject to performance constraints when moving

and operating on large data volumes[10]. The M-ware

provides agility (adapting application components and then,

dynamically deploying new components and change

component structures), resource-awareness, runtime

management and openness in distributed applications. Multi-

Level Intrusion Detection System(ML-IDS) detects network

attacks by inspecting and analyzing the traffic using an

autonomic computing concept to automate control and

management. This automation allows ML-IDS to detect

network attacks and proactively protect the operating system

against them.

III. SELF-ADAPTIVE SYSTEM DEVELOPMENT METHOD

A. Develop System Model

To develop a system model is the starting point to make

self-adaptive software. We have selected ECML(ETRI CPS

Modeling Language) as a system modeling language[11].

ECML is developed by ETRI(Electronics and

Telecommunications Research Institute) to model a hybrid

system that includes both continuous and discrete properties.

First of all, developer designs a system model and defines the

normal status, then specifies them into the system model. In

order to specify a normal status and its condition, we defines

the normal status constraint(NSC) in the extension of ECML.

The NSC is inserted in a behavior model of ECML to specify

the normal status and the normal condition as shown in Figure

1. Each state of CPS behavior model may have the NSC that

describe as follows.

 nNSConditioNSCname (1)

In equation (1), the NSC name is a unique name of the NSC

and the NSC condition is the condition that describes normal

status.

Figure 1. CPS Behavior Model of ECML

Next, the fault monitor(FM) is inserted in CPS structure

model of ECML to specify system components where failures

may occur as shown in Figure 2. Each structure of a structure

model may have FM that describes the fault status.

Figure 2. CPS Structure Model of ECML

B. Implement Self-Adaptive System

Generally internal and external adaptation approaches are

used to implement a self-adaptive system. However, they are

not suitable for S-HSR because of various user requirements,

the physical size of a system and the mutual

intercommunication between outer systems. For that reason,

we used the hybrid adaptation approach to implement

cooperative S-HSR[2]. The architecture of the hybrid

adaptation approach consists of the adaptable software and the

adaptation agent. The adaptable software consists of the main

function and the SAManager thread that achieves the internal

adaptation cooperating with the adaptation agent. The

adaptation agent gathers massive distributed data from

widespread sensors and the SAManager in adaptable software.

Such data can be acquired by polling at specified time

ISBN 978-89-968650-2-5 636 February 16~19, 2014 ICACT2014

intervals or can be collected asynchronously when needed.

The various types of the collected data, such as sound, seismic,

light, video, audio, temperature, and system information (CPU,

memory, process, etc.) are transformed into a single type

through data fusion mechanism. If the self-adaptive software

encounters an anomaly, it constructs and executes adaptation

plans to achieve its objective in accordance with the policies

and rules in effect. The knowledgebase acts as a repository

including system status, the predefined normal status

constraints (NSC) and conditions, faults, error status, the

healing strategies, machine-learning procedures and

environmental information. Knowledge can be obtained from

multiple sources such as system models, peer systems and

users, observation, past experience or can be obtained using

the machine-learning procedure.

Figure 3. Sequence Diagram of Self-Adaptive System

The sequence diagram of self-adaptive system is shown in

Figure 3. First of all, the adaptable software invokes the

SAManager thread when it starts. The SAManager monitors

the main function and executes the internal adaptation. The

adaptable software adds NSC to the NSC_list of the

SAManager, when the adaptable software meets “Add_NSC”

command. Then the SAManager and the adaptation agent

cooperate to monitor the status of the adaptable software and

detect anomalies. If detected, the adaptation agent analyzes

how anomaly occurs, then decides an adaptation policy and

executes adaptation processes.

IV. CASE STUDY OF THE PROPOSED APPROACH

In order to provide feasibility and effectiveness of proposed

approach, we developed the prototype of S-HSR in Figure 4.

Figure 4. Operational Environment of Smart Home Service Robot

This prototype has many hardware and software

components such as ultra-sonic sensor, color/light/sound

sensor, compass sensor, step motor, web camera, service and

monitoring software, and self-adaptation agent. As mentioned

in our previous research[2], we collect customer requirements

and desired functions firstly. Then we design the system

model in which NSCs and FMs are specified and make the

Adaptation Strategy Table(AST) according to the adaptation

capability of a target system. Finally we generate the

adaptation knowledgebase that includes the Normal Status

Table(NST), the Fault Monitor Table(FMT) and the

Adaptation Policy Table(APT) derived from the system model.

The NST consists of category, NSC name, CBM name, CPM

name, state name and condition to specify the normal status of

a target system. The FMT consists of category, FM name,

CSM name, substructure name, fault description to designate

the potential structure of a target system. The APT is made

based on the FMT and the AST for specifying an adaptation

policy by developers. The AST has been defined according to

the adaptation capability of a target system and consists of

strategy name, action and type. The AST has two types of the

adaptation strategy – internal and external type. Internal type

is that adaptation processes are executed in the adaptable

software. On the other hand, external type is that adaptation

processes are executed by the adaptation agent outside of the

adaptable software.

Figure 5. Example of Status-Fault Relation Graph for Smart Home Service

Robot

After above processes, the adaptation knowledgebase is

applied to the target system for the runtime adaptation. During

the runtime, we propose the Status-Fault relation Graph(SFG)

to analyze the current system status as indicated in Figure 5.

SFG is generated by the adaptation agent dynamically and

used to the failure analysis method that finds a faulty state of a

system using Boolean logic to combine a series of lower-level

events. SFG is composed of the normal status and the faulty

condition. The normal status is the user desirable status of the

system and the faulty condition is the criteria to judge the

status of the system. For example, “Normal_forward” status is

judged by the combination of the faulty condition

“RevolutionPerMinute < threshold” and ”getCompassSensor

Status() = fail”. In the same manner, the faulty condition

“RevolutionPerMinute < threshold” is composed of the

normal status “Wheel_driving” and “MainBattery_charged”.

ISBN 978-89-968650-2-5 637 February 16~19, 2014 ICACT2014

This Status-Fault relation graph analysis method is generally

used in the field of safety engineering to determine the

probability of a safety hazard quantitatively.

In this case study, we show how the self-adaptive robot is

adapted to unpredictable situation. We assume that S-HSR

goes around satisfying customer requests in one’s house then

meets a sudden-appeared obstacle. This robot is developed to

operate in a pre-defined flat space that has no sudden

obstacles and only has a few adaptive functions because of the

lack of the memory capacity. The robot patrols and monitor

the house for performing its objective (NST {NSC_name :

Object_recognization, State_name : Vehicle

Controller/Tarcking/SensingObject, Conditioin : Dectected

_Ojbect = normal}) in the normal condition as shown in

Figure 6. If the robot encounters any object – that is, the robot

is in the abnormal status-, the adaptation agent of this robot

tries to analyze the detected object and decides how to act

against it. In the case of the pre-defined object such as people,

wall, door, furniture and so on, the robot operates its own jobs.

On the other hand - that is, the condition (NST {Condition :

Detected_Object = normal}) is violated - the robot starts an

analysis process to decide the type of the occurred fault using

a heuristic algorithm and a neuro fuzzy algorithm based on

granular-neuro-evolutionary computing (FMT {FM_name :

UnknownObject, Strucutre _name :

GroundVehicle/Vision_Sonsor, Fault_status : image

Analysis() = fail}). Then referring to the APT, the robot builds

the adaptation plan (APT{Policy_name : Upgrade SW,

FM_name : UnknownObject, Strategy_name : SW Update})

and executes the adaptation strategy (AST {Strategy _name :

SWUpdate, Action : Update current SW to new SW, Type :

External}). Finally the robot applying new SW can, therefore,

avoid or remove the obstacle.

Figure 6. Example of Adaptation Processes

V. CONCLUSIONS

The self-adaptive system is an adaptive system that has

special capabilities of evaluating and adjusting their behaviour

in respond to their perception of environment and the system

by itself. Especially the self-adaptation is to handle

uncertainty and unpredictable situation of its operational

environment. It is very useful technology to make a proactive

and high reliable system that is an emergent research

challenges.

In this paper, we proposed the self-adaptive system

development method to make a control system dependable,

secure, safe, and efficient, and operating in real-time. In case

study, we developed the prototype of a smart home service

robot based on the proposed approach to satisfy user

requirements, overcome the system failure, and then provide

seamless service to user. If the smart home service robot faces

on abnormal condition, it doesn’t stop operating but can

achieve the self-adaptation process to modify its behavior.

That is, it can provide its services continuously without user

intervention and ensure the feasibility and efficiency of the

proposed approach. In future work, we are planning to achieve

additional tests and verification process to enhance the

proposed approach.

ACKNOWLEDGMENT

This work was supported by the IT R&D Program of

MSIP/KEIT [10035708, "The Development of CPS(Cyber-

Physical Systems) Core Technologies for High Confidential

Autonomic Control Software"]

REFERENCES

[1] Betty H.C. Cheng, Rog ério de Lemos, Holger Giese, Paola Inverardi,

and Jeff Magee, “Software Engineering for Self-adaptive devices: A
Research Roadmap”

[2] Ingeol Chun, Jeongmin Park, Hyeyoung Lee, Wontae Kim, Seungmin

Park and Eunseok Lee, “An agent-based self-adaptation architecture
for implementing smart device in smart space”, Telecommunication

Systems, Vol. 52, no. 4, Apr. 2013

[3] Bill Gates, A Robot in Every Home, Scientific American Magazine, Jan.

2007

[4] Laddaga R., Self-adaptive software, Technical Report. 98-12. DARPA

BBA, 1997.
[5] Salehie, M., and Tahvildari, L. (2009). “Self-adaptive software:

Landscape and research challenges”, ACM Transaction on Autonomous

and Adaptation Systems. vol. 4, no. 2, 2009
[6] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste,

P., “Rainbow: Architecture-based self-adaptation with reusable

infrastructure”, IEEE Computing, vol. 37, vo. 10, pp. 46–54, 2004
[7] Mukhija, A., and Glinz, M., “Runtime adaptation of applications

through dynamic recomposition of components”, In Proceedings of the

International Conference on Architecture of Computing Systems, pp.
124–138, 2005.

[8] Lapouchnian, A., Liaskos, S., Mylopoulos, J., and Yu, Y., “Towards

requirements-driven autonomic systems design”, In Proceedings of the
Workshop on Design and Evolution of Autonomic Application Software,

pp. 1–7, 2005.

[9] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., and Gjorven,
E. , “Using architecture models for runtime adaptability”, IEEE

Software, pp. 62–70, 2006.

[10] Kumar, V., Cooper, B., Cai, Z., Eisenhauer, G., and Schwan, K.,
“Middleware for enterprise scale data stream management using utility-

driven self-adaptive information flows”, Cluster Computing, vol. 10,

no. 4, pp. 443–455, 2007
[11] Ingeol Chun, Jinmyoung Kim, Haeyoung Lee, Wontae Kim, Seungmin

Park and Eunseok Lee, “Faults and Adaptation Policy Modeling

Method for Self-adaptive Robots”, Communications in Computer and
Information Science, 2011, Volume 150, 156-164.

ISBN 978-89-968650-2-5 638 February 16~19, 2014 ICACT2014

 In-geol Chun received his Ph.D., M.S. and B.S.

degrees in Electrical and Computer Engineering from

SungKyunKwan University, Korea, in 2010, 1997

and 1995 respectively. He is currently a senior

member of engineering staff in Electronics and
Telecommunication Research Institute (ETRI), Korea

from 1998 and also an adjunct professor in University

of Science & Technology (UST) from 2012. His
research interests are Cyber-Physical Systems (CPS),

Autonomic Computing, Agent-oriented intelligence system, Embedded

systems and Software Engineering.

Jeong-min Park received his Ph.D. and M.S. degrees

in Department of Computer Engineering from
Sungkyunkwan University, Korea, in 2009 and 2005,

respectively, and his B.S. degree in Computer

Engineering from Korea Polytechnic University, in
2003. He is currently a senior member of engineering

staff in ETRI, Korea. His research interests include

Cyber-Physical System (CPS), Autonomic Computing

and Software Engineering.

 Won-tae Kim received his B.E., M.E., and Ph.D.

degrees in Electronic Engineering from Hanyang

University, Seoul, Korea in 1994, 1996, and 2000,
respectively. From Jan. 2001 to Feb. 2005, he was

CTO of Rostic Technologies, a venture company
which developed advanced mobile technologies. He

joined ETRI (Electronics and Telecommunication

Research Institute), the major national research
institute of Korea, in March 2005. He is the team

director of CPS (Cyber-Physical Systems) Research Team in Dept. of

Embedded SW from Aug. 2010. His main research areas are CPS, RT
Middleware, Autonomic Control, and High confidential Computing.

ISBN 978-89-968650-2-5 639 February 16~19, 2014 ICACT2014

