
IoT Security Vulnerability: A Case Study of a Web
Camera

Yogeesh Seralathan*, Tae (Tom) Oh**, Suyash Jadhav**, Jonathan Myers**, Jaehoon (Paul) Jeong+, Young Ho
Kim^, and Jeong Neyo Kim^

*College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY United States of America
**Department of Computing Security, Rochester Institute of Technology, Rochester, NY, United States of America

+Department of Interaction, Science Sungkyunkwan University, Suwon, Republic of Korea
^Cyber Security Research Division, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea

ys 4815 @ri t. edu, t o m. oh @ri t. edu, ssj 8127 @ri t. edu, jl m4508 @ri t. edu, paul j eong @s k k u. edu, wt o wt o @et ri. re. kr, j nki m@et ri. re. kr

Abstract— Th e Inter net of T hings (IoT) are devices which are
connected and contro lled over the inter net. T he use of IoT
devices has increased expo nentially over time and kn owingly or
unkn owingly our data is capt ured by IoT devices on a daily
basis. Rece nt news on malware target ing IoT devices and some
curre nt researc h reveals that in most cases t here are no security
contro ls implemented on these devices. T he expo nential rise in
the use of IoT devices, more process ing of sensitive data by
these devices, and their mass exp loitat ion was the motivation
behin d our wor k. M alware like M irai is curre ntly being used to
build large botn ets which are used in DDoS attack s where up to
1.2 Teraby tes of networ ks traff ic is generated every second. We
will discuss the threats when there is a compro mise of an IoT
device’s security and provide a case study of an IP camera. We
also cover aspects of how and why moder n malware targets IoT
devices specifically. W e finally discuss the importa nce of
securing IoT and pro vide essential security pract ices for
mitigating device exp loitat ion.

Keywords— Inter net of T hings, security, vuln erab ility, Wi re-
Shark, nm ap

I. INTRODUCT ION
The Internet of Things (IoT) are devices connected to the

internet which hold the capability of doing tasks with or
without human interaction. IoT devices are used for multiple
purposes but are most commonly used in daily automation.
These devices collect data from sensors then either store the
data locally, send the data to the cloud via the internet, or
process the data and internally send commands to other devices
for further action.

IoT devices are used in every possible domain we can think
of including medical, industrial, and home automation.
Oftentimes these devices collect a vast amount of critical
information which is processed by machine learning
algorithms to enhance the product and build new products. A
large privacy problem is introduced as these devices collect
and transfer sensitive information about individuals. This
becomes an even larger issue with data collected from health

tracking devices, home environment monitoring devices,
financial devices, and most importantly cameras. While these
devices collect sensitive information they also process the data
and are sometimes left to make critical decisions with this data.
Take for instance a pacemaker which is a device responsible
for processing vital data and directly taking action on a human
body. With just a few malicious commands an adversary can
even cause the death of human.

As we see IoT devices collect more sensitive information
and control larger infrastructures it inevitably becomes a
target for attacks. IoT devices were originally not designed
with security in mind as the security community did not
explore IoT devices during its early emergence. Later as
attackers realized it is easily to break into these devices
without much effort devices started getting exploited by the
masses. Attackers scan the whole internet and target these
devices to build massive botnets which lead to 1.2 Terabytes
of network traffic being used in DDoS attacks. Following
these incidents, the security community started creating
awareness on how insecure IoT devices are and why it is
important to secure them.

II. R ELATED STUDY

A. IoT Hacking Case Study
The author, Craig Heffner [4] mainly focuses on IP

cameras which are connected to the internet and accessible to
anyone on the internet. Heffner analyses the devices using the
firmware images provided by the vendor in their respective
websites but verified his 0-day vulnerabilities on the live
devices. The author also demonstrates how easy it is to find
and exploit vulnerabilities on the targeted cameras using
existing tools. 10 Dlink Camera devices which were selected
by the author had a web server running on Lighttpd server.
The attackers found a series of vulnerabilities which gave out
the administrative password to the devices and gave the
attackers access to a script which was running as root and
held a remote code execution vulnerability. Further, the

172

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

author checks for the tested devices in Shodan and found
more than 20,000 devices running and accessible to the
internet. Linksys cameras also had a remote code execution
vulnerability however it was slightly more complicated to
exploit compared to the Dlink. The author reverse engineered
the binaries of the firmware and forced the vulnerable
application to return the hardcoded admin credentials which
were encoded with a very weak base64 format.

Nest thermostat is a famous product of Nest Labs which was
acquired by Google for $3.2 billion. This thermostat is a smart
IoT device which monitors users heating and cooling settings
and eventually learns the user’s ideal settings and adjusts the
setting for better efficiency of electricity. This device is
connected to both Wi-Fi and Nest Cloud which is used to
control any registered device.

Nest Thermostat was used for the security research by
researchers by Hernandez1, Arias1, Buentello2 and Jin1. In
this case [3] the attack was on the bootloader, which was
attacked by injecting malicious USB during boot and sending
x-loader which granted access to the Nest file system. With
this access, the attacker can install any binary by compiling it
for the Nest environment. Netcat and Dropbear (SSH server)
was installed to maintain a persistent backdoor connection with
the devices. The authors claim that these backdoors can be
used in a massive botnet however building large botnets with
this particular vulnerability is not possible as it requires
physical access to the device.

The Author’s proposed solution to securing this device is
manufactures to leverage secure boot and to authenticate only
signed binaries for executing in the user space. Another
possible solution is to encrypt the file system. During the
research, it was found that the device used strong encryption
for communication over the internet and had signed
verification when patches were installed.

B. Major IoT Security Issues
Most IoT devices use Linux is their base operating system.

Linux provides the flexibility of modifying and compiling the
operating system to have just enough features to support a
particular IoT device. The user also has the liberty to choose
any low power Linux operating system already available.
Given this, most vulnerabilities found in the operating system
can also be exploited in IoT devices.

Learning from previous IoT device security analysis:

1) Weak server side controls.
2) No usage or broken cryptography.
3) Lack of binary protection.
4) Bad implementation of authentication or authorization.
5) Improper use of network services.

C. Major IoT Security Issues

Malware is simply a malicious piece of software which is
installed on the host machine without the awareness of the
machine’s owner or administrator. Malicious software is
designed with the intention to achieve a variety of tasks
ranging from stealing sensitive information to building a
massive botnet of slave devices.

Mirai is an example of a major IoT oriented malware
which caused substantial damage. Mirai was first detected
during a DDoS (Distributed Denial of service attack) on the
website of journalist Brian Krebs [1]. Mirai exploits basic
flaws in IoT devices like hard coded usernames and
passwords for telnet. Mirai has a preloaded set of username
and password combinations which it uses to brute force the
device. Mirai mainly targets cameras as they have high
computational power compared to other IoT devices.

Once Mirai successfully exploits a device it converts the
device into a bot which is controlled by the command and
control server. Mirai has the capacity of performing various
types of DDoS attacks like DNS, UDP, STOMP, SYN, and
ACK flooding [2].

There are many other types of IoT oriented malware which
have caused significant damage including Imeij, Brickerbot,
Remaiten, Linux.Darlloz, and many others.

III. CASE STUDY OF A N IP CAM ERA

This section will cover the analysis of the existing security
features in the camera and try to find the weakness in security
(vulnerabilities) of the camera. Devices which are connected
to the internet face the maximum amount of threat which is
why we chose a camera which connects directly to the
internet. The IP camera brand name and model are not
revealed in article. Just a generic IP camera is mentioned in
article.

Figure 1. IP Camera

173

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

A. Exploring the Camera

The IP camera provides the facility of access only through
mobile platforms such as android and iOS. To add a new
device or view previously added devices the user must use
their IP camera account which has all the added devices
attached to a IP camera account. For the first connection, the
camera needs to know the SSID and the password of the Wi-Fi
so it can connect to the internet. To accomplish this the
information is directly pushed from the application to camera.

Figure 2. IP Camera Connection Overview

Once the camera is connected to the internet almost all other
communication happens via IP camera’s dedicated servers. A
remote server is required to be in the middle of all network
communication so that the user can view the video feed
anywhere from the internet.

One interesting observation when working with the camera
is when both the camera and mobile client are in the same
LAN (local area network). When the IP camera server detects
that both the streaming device and viewer have the same
external IP the server finds the local IP of the camera and
informs the mobile device. This can be seen as ARP messages
during a packet capture within the LAN. Once the camera
contacts the mobile device in the LAN all of the video
streaming happens over the LAN which avoids internet usage
and reduces the burden on IP camera servers. Not only does
this decrease the load on IP camera servers but also decreases
the lag in video streaming and increasing the quality of the
video stream. This observation was found from the network
capture mentioned in section III-B2.

B. The Camera’s Security Perspective

Every device when added to a IP camera account, a
password is attached to the device. So, it is not possible to add
any device to the mobile and get the video stream from the
server as it requires authentication.

To perform more in depth analysis on camera security it is
required to do network and application security analysis. Easier
way to find application related security flaws is by getting root
access to the camera or get access to the firmware of the
camera. Which would give access to applications running on
device and sometimes even finding configuration files with
user name and passwords. But in this case the IP camera did

not provide the firmware for the camera so the analysis started
with network security services.

1) Inspecting Network Services:
 NMAP(Network Mapper) network scanning tool can be
used to find the IP address of the camera to proceed with
further testing. This can be done by scanning for all the live
hosts in the network but because the camera does not have
any host name it is hard to differentiate it from other devices.
This scan is done over the LAN so it is easier to filter the
known devices which will give the IP address of the camera.
To find this device while scanning the internet a use of open
ports and services running on the open ports can help drill
down to the most accurate results.
 To scan for open ports and finding the services running in
the devices to further investigate the services NMAP was ran
with the ”-A” flag to output all details of services running on
the device.

1) Port: 554/TCP RTSP.
2) Port: 5000/TCP SOAP.

 RTSP is a real time streaming protocol which is used to
control streaming media servers. It supports multiple
commands like OPTIONS, DESCRIBE, SETUP,
TEARDOWN, PLAY, PAUSE, GET PARAMETER, SET
PARAMETER and USER_CMD_SET. Another interesting
detail about RTSP is that all requests have URLs very similar
to HTTP (Hypertext Transfer Protocol).

2) Inspecting Communication Between Devices:
 Capturing all network level packet data can be done
using network packet capture tools like Wireshark or
TcpDump. In our case we used Wireshark to achieve this
task. As in our setup 2 we can observe that both the camera
and the mobile device are on the same LAN network, so
Wireshark can be used to capture all LAN packets.

 Wireshark can run in many modes like non-promiscuous
mode, promiscuous mode, and monitor mode. Non-
promiscuous mode is the normal mode which the tool runs
on. In this mode, it captures all the data entering and
existing the device. In promiscuous mode, it captures all
the data which enters the network interface even it is
filtered out of the Ethernet layer. But not all hardware and
software support this mode so this is not a guaranteed
approach. If promiscuous mode works fine on the host
machine then the proceedings task becomes easy otherwise
there is a need for a special network setup to capture all the
data. This network setup will be addressed further in this
section.

 There are two flows of data which needs to be captured;
data flowing in and out of the mobile device and data
flowing in and out of the camera. These two data flows
must be monitored to understand the inner workings of the

174

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

data flow and find potentially sensitive information
transferred to the server or other devices.

Capturing data flow from mobile is easy since it can be
done by setting a proxy in android/iOS phone settings or by
installing an emulator. We achieved this task using
Androidx86 as it gives complete control over the operating
system. The tricky part is capturing the data from the camera
to the server or mobile device as it is not possible to set any
proxy settings in the camera. This is achieved by using a
network tap as shown in the setup figure 3.

Figure 3. IP camera All Data Capture Setup

The network tap as shown in figure 4 is used to
capture all the communication in between two ends of a
network. As shown in the figure , two ends A and B can be a
different network all by itself or it can be a device. In our A
we have a device and our B is a separate network. All the
network flowing between A and B is also duplicated to C

Figure 4. Overview of Network Tap

Once the network setup described in figure 4 is ready
Wireshark should be started and running on device C.
Wireshark will be capturing all the data but in our case we
need data only between device A and C. We can leverage
Wireshark filters to achieve this.

To filter only IP camera data:
 ”ip.src==[IP camera ip] or ip.dst==[IP camera ip]”
To filter only mobile data:
 ”ip.src==[mobile ip] or ip.dst==[mobile ip]”
To capture both IP camera and mobile application data
concatenate either the filter with or operator.

Wireshark will populate with a huge amount of data once
this is setup properly. To see a particular data stream a feature
called ”Follow TCP” can be used to get all the data of a
particular context.

One of our observations was mentioned in section III-A on
how the camera shifts its video streaming via LAN rather than
streaming via IP camera servers. Another observation is that
all IP camera media streaming servers are of format
p*p*.videoipcamera.cn 5. The ”*” in the URL can be replaced
with any number between 1 and 6, so for example
p1p5.videocamera.cn is a valid IP camera server. This
information is very useful for attackers as this server stream
contains all the video from all the camera’s. The same servers
are probably used by all the IP camera camera’s which would
become a single point of failure of all the companies’ cameras
if the IP camera servers are vulnerable. This paper only
restricts its research to the IoT devices security
implementation rather than on media streaming server security
so we will not look into the IP camera’s server security since it
is not legal to perform security testing on a server which is not
owned by the security analyst/tester.

Figure 5. IP Camera Servers Contacted by Camera (WireShark Data)

Observations related to security of the camera can be found
in section III-C.

C. Exposing Weaknesses (Vulnerabilities)
In this subsection, we will be looking various weakness in

security implementation of the IP camera shown in Figure: 1.

1) Unencrypted Communication:
 During the network data capture phase as explained in
section III-B2 and the setup shown in Figure 3 we can
observe that all data was transferred in plain text. This means
that all data which was communicated between the camera
and mobile application, the mobile app and the IP camera
server, and IP camera server and camera are all readable in
plain text.

 There was no use of any form of cryptographic modules in
the device, so all communications were not encrypted.
Sensitive information sent from the mobile device such as IP
camera registration and login accounts details are sent in clear
text which can lead to compromise of all the camera devices
attached to the IP camera account. The Camera id and
password which is initially set for the camera’s authentication
can also be captured in clear text.

Sending all the data without encrypting does not only
compromise the camera security but also the LAN security in
which the camera is present. In the initial stages of activating

175

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

the camera, the mobile application pushes the Wi-Fi SSID
and password. We notice in figure 6 that this was captured
during the Wi-Fi password update phase as this information
was sent to the IP camera servers in clear text. If an attacker
performs a man-in-the-middle attack and captures all the
traffic they would be able to join the Wi-Fi network and
sniff all further data.

Figure 6. Wireshark Captured Wi-Fi Credentials in Clear Text

Figure 6 shows the screenshot of the data captured by
Wireshark. The data displayed was obtained using the
Wireshark filter ”Follow TCP stream”, which selects all the
TCP packets of the particular packet selected and dumps all
of its data. In the screenshot, the two red elliptic marks show
the Wi-Fi identifier and its password (censored).

2) Brute Forceible RTSP URL to Stream Video:
In section III-B1 the results of the Nmap scan reveal that it

an RTSP service was found running on port 554. RTSP is
similar to HTTP as it has URLs and control commands.
Streaming using RTSP will produce a URL that look like
”rtsp://mediaserver/stream1”. Authentication in the RTSP
protocol works similarly to the HTTP basic authentication.

During the network data capture phase, there was a hunt for
the authorization portion within the RTSP URL but we could
not find the RTSP URL in the network data captured. A
simple method to find the URL will be to simply brute force
the URL for common stream names. Nmap provides the
capability of running scripts which leverages the capabilities
of Nmap. RTSP brute force script ”rtsp-url-brute” runs with a
list of commonly known RTSP URL’s and checks if they
work with the device. Nmap RTSP URL brute force
command:

Nmap –script rtsp-url-brute –p 554 [IP camera ip]

But in our case, it failed to find the valid RTSP URL. So

more common patterns of URL were added to the list of
common RTSP URL’s from the internet. Then nmap was able
to catch the valid URL of RTSP video streaming. Once the
URL was found the video was directly streamed on the TCP
connection. There is no authentication of any request to
stream data. To demonstrate this, VLC can be used to stream
an RTSP video stream by adding the RTSP URL in the
network stream URL section.

RTSP URL for IP camera sp 009: ”rtsp://[IP camera
ip]/onvif1”

3) IP camera Account Credentials Stored in Clear Text:
 When inspecting the IP camera mobile application in
android the IP camera account details were stored in clear
text as shown in the figure 7.

Figure 7. Credentials in Clear Text in Android App

The credentials can be found under the directory
”/data/datacom.xapcamera/shared prefs”. The user email ID
can be found under;

”KEY RECENT LOGIN EMAIL”

Which censored and stored the password under;

 ”KEY RECENT LOGIN PWD”.

But this bad implementation has low security severity level
as all the application data is sandboxed by android. This makes
it impossible to reach APCam.xml file for credentials without
root privilege or another application flaw in IP camera’s
mobile application.

IV . CONCLUSIONS
Three security related flaws where found while inspecting

IP camera’ security posture:

1) Not using secure channel for communication, all
sensitive data was transferred in clear text.

2) RTSP URL used to stream data was brute forcible as
it a common RTSP URL.

3) IP camera account credentials are stored in clear text
within the mobile application.

Any attacker can connect to the camera given that the
camera is connected to the internet and gets video feed just by
having its IP address. Attackers can even scan the internet to
find open RTSP ports and try common URLs which this
camera uses to broadcast its video feed.

The device successfully accomplishes a security objective
is by not leaving any telnet or SSH service open. So Mirai’s
initial step on hacking into this camera would have failed. But
because the Mirai source code can be found online it is
possible to scan for other attack vectors and create a botnet
using these cameras. However, in this case we were not able
to get root shell access so converting the camera into a botnet
was not possible.

Suggested fix for the security flaws found in the camera:

1) Use OpenSSL library or any well-known open
sourced SSL library for encrypting all the
communication between the camera, application, and
its servers.

176

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

2) Use Basic authentication in RTSP protocol to slow
down the attacker brute forcing the URL parameter
and the username-password combination.

3) Store the password using Android keystore and any
similar options in iOS which encrypts the password
and stores it in isolated locations.

A CK NOWL EDGM ENT
This work was supported by Institute for Information and

communications Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (B0190-16-2032,
Development of Operating System Security Core Technology
for the Smart Lightweight IoT Devices)

R EFERENCES
[1] Brain Krebs, KrebsOnSecurity Hit with Record DDoS, Sept 2016,

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-
ddos, accessed on 05/25/2017.

[2] Igal Zeifman, Ben Herzberg, and Dima Bekerman Breaking
Down Mirai: An IoT DDoS Botnet Analysis, Oct 2016,
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-
botnet.html, accessed on 05/25/2017.

[3] Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin
Smart Nest Thermostat: A Smart Spy in Your Home, Black Hat
conference, 2014.

[4] Craig Heffner, Exploiting Surveillance Cameras, Black Hat
conference, Feb 2013.

Y ogeesh Seralathan received MS in Computer Science from Rochester
Institute of Technology in 2017.
.

Tae (Tom) Oh (SM’09) received the B.S. degree in
electrical engineering from Texas Tech University in
1991, and the M.S. and Ph.D. degrees in electrical
engineering from Southern Methodist University in
1995 and 2001, respectively, while working for
telecommunication and defense companies. He is
currently an Associate Professor with the Department of
Information Sciences and Technologies and the

Department of Computing Security, Rochester Institute of Technology. His
research includes mobile ad hoc networks, vehicle area networks, sensor
networks, and mobile device security.

Suyash S. Jadhav born in Pune, INDIA on 31st March
1992. Holding Bachelor of Engineering in computer
engineering form Pune University, India (2013); currently
pursuing Master of Science in computing security at
Rochester Institute of Technology.
He is currently working Google.

Jonathan L. M yers is currently pursuing his Bachelors of Science in
Computing Security at the Rochester Institute of Technology.
He has worked as a Software Engineering Intern at Trademark Global in
Lorain, Ohio. He currently works as a Research Assistant at the Rochester
Institute of Technology. His areas of interest include binary exploitation, web
application security, and security tool development.
Jonathan Myers is also an active member of the Security Practices and
Research Student Association at the Rochester Institute of Technology.

Jaehoon (Paul) Jeong (M’12) received the B.S. degree
from the Department of Information Engineering,
Sungkyunkwan University, in 1999, the M.S. degree from

the School of Computer Science and Engineering, Seoul National University,
South Korea, in 2001, and the Ph.D. degree from the Department of Computer
Science and Engineering, University of Minnesota, in 2009. He is currently an
Assistant Professor with the Department of Software, Sungkyunkwan
University. His research interests include Internet of Things, vehicular
networks, wireless sensor networks, and mobile ad hoc networks. He is a
member of the ACM and the IEEE Computer Society.

Y oungho K im received his MS and BS degree
in Computer Science from Korea University,
Korea, in 1999 and 2001 respectively. He was a
visiting research scholar at Rochester Institute
of Technology (RIT) in 2013 and 2014. Since
2002, He has been a senior member of
engineering staff at the Electronics and
Telecommunications Research Institute (ETRI).
His research interests include operating system,

embedded system and mobile device security.

Jeongnyeo K im received her MS degree and
Ph.D. in Computer Engineering from
Chungnam National University, Korea, in 2000
and 2004, respectively. She studied at computer
science from the University of California, Irvine,
USA in 2005. Since 1988, she has been a
principal member of engineering staff at the
Electronics and Telecommunications Research
Institute (ETRI), where she is currently working

as a management director of the Cyber Security System Research
Department. Her research interests include mobile security, secure
operating system, network security and system security

177

International Conference on Advanced Communications Technology(ICACT)

ISBN 979-11-88428-00-7 ICACT2018 February 11 ~ 14, 2018

http://www.incapsula.com/blog/malware-analysis-mirai-ddos-
http://www.incapsula.com/blog/malware-analysis-mirai-ddos-

	IoT Security Vulnerability: A Case Study of a Web Camera
	Acknowledgment
	References

